-
Notifications
You must be signed in to change notification settings - Fork 9
/
train.py
252 lines (208 loc) · 9.33 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import os
import argparse
import logging
import numpy as np
import torch
from torch import distributed
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from backbones import get_model
from dataset import get_dataloader
from losses import CombinedMarginLoss
from lr_scheduler import PolyScheduler
from partial_fc_exp import PartialFC, PartialFCAdamW
from utils.utils_callbacks import CallBackLogging, CallBackVerification
from utils.utils_config import get_config
from utils.utils_logging import AverageMeter, init_logging
from utils.utils_distributed_sampler import setup_seed
from torchvision import transforms
from FFT import amplitude_spectrum_mix
import random
assert torch.__version__ >= "1.9.0", "In order to enjoy the features of the new torch, \
we have upgraded the torch to 1.9.0. torch before than 1.9.0 may not work in the future."
try:
world_size = int(os.environ["WORLD_SIZE"])
rank = int(os.environ["RANK"])
distributed.init_process_group("nccl")
except KeyError:
world_size = 1
rank = 0
distributed.init_process_group(
backend="nccl",
#backend="gloo",
init_method="tcp://127.0.0.1:12584",
rank=rank,
world_size=world_size,
)
def main(args):
# get config
cfg = get_config(args.config)
# global control random seed
setup_seed(seed=cfg.seed, cuda_deterministic=False)
torch.cuda.set_device(args.local_rank)
os.makedirs(cfg.output, exist_ok=True)
init_logging(rank, cfg.output)
summary_writer = (
SummaryWriter(log_dir=os.path.join(cfg.output, "tensorboard"))
if rank == 0
else None
)
train_loader = get_dataloader(
cfg.rec,
args.local_rank,
cfg.batch_size,
cfg.dali,
cfg.seed,
cfg.num_workers
)
backbone = get_model(
cfg.network, dropout=0.0, fp16=cfg.fp16, num_features=cfg.embedding_size).cuda()
backbone = torch.nn.parallel.DistributedDataParallel(
module=backbone, broadcast_buffers=False, device_ids=[args.local_rank], bucket_cap_mb=16,
find_unused_parameters=True)
backbone.train()
# FIXME using gradient checkpoint if there are some unused parameters will cause error
backbone._set_static_graph()
margin_loss = CombinedMarginLoss(
64,
cfg.margin_list[0],
cfg.margin_list[1],
cfg.margin_list[2],
cfg.interclass_filtering_threshold
)
if cfg.optimizer == "sgd":
module_partial_fc = PartialFC(
margin_loss, cfg.embedding_size, cfg.num_classes,
cfg.sample_rate, cfg.fp16)
module_partial_fc.train().cuda()
# TODO the params of partial fc must be last in the params list
opt = torch.optim.SGD(
params=[{"params": backbone.parameters()}, {"params": module_partial_fc.parameters()}],
lr=cfg.lr, momentum=0.9, weight_decay=cfg.weight_decay)
elif cfg.optimizer == "adamw":
module_partial_fc = PartialFCAdamW(
margin_loss, cfg.embedding_size, cfg.num_classes,
cfg.sample_rate, cfg.fp16)
module_partial_fc.train().cuda()
opt = torch.optim.AdamW(
params=[{"params": backbone.parameters()}, {"params": module_partial_fc.parameters()}],
lr=cfg.lr, weight_decay=cfg.weight_decay)
else:
raise
cfg.total_batch_size = cfg.batch_size * world_size
cfg.warmup_step = cfg.num_image // cfg.total_batch_size * cfg.warmup_epoch
cfg.total_step = cfg.num_image // cfg.total_batch_size * cfg.num_epoch
lr_scheduler = PolyScheduler(
optimizer=opt,
base_lr=cfg.lr,
max_steps=cfg.total_step,
warmup_steps=cfg.warmup_step,
last_epoch=-1
)
start_epoch = 0
global_step = 0
if cfg.resume:
dict_checkpoint = torch.load(os.path.join(cfg.output, f"checkpoint_gpu_{rank}.pt"))
start_epoch = dict_checkpoint["epoch"]
global_step = dict_checkpoint["global_step"]
backbone.module.load_state_dict(dict_checkpoint["state_dict_backbone"])
module_partial_fc.load_state_dict(dict_checkpoint["state_dict_softmax_fc"])
opt.load_state_dict(dict_checkpoint["state_optimizer"])
lr_scheduler.load_state_dict(dict_checkpoint["state_lr_scheduler"])
del dict_checkpoint
for key, value in cfg.items():
num_space = 25 - len(key)
logging.info(": " + key + " " * num_space + str(value))
callback_verification = CallBackVerification(
val_targets=cfg.val_targets, rec_prefix=cfg.rec, summary_writer=summary_writer
)
callback_logging = CallBackLogging(
frequent=cfg.frequent,
total_step=cfg.total_step,
batch_size=cfg.batch_size,
start_step = global_step,
writer=summary_writer
)
loss_am = AverageMeter()
amp = torch.cuda.amp.grad_scaler.GradScaler(growth_interval=100)
for epoch in range(start_epoch, cfg.num_epoch):
if isinstance(train_loader, DataLoader):
train_loader.sampler.set_epoch(epoch)
for _, (img, local_labels) in enumerate(train_loader): # sampler
global_step += 1
with torch.no_grad():
local_embeddings, weight, local_patch_entropy = backbone(img)
loss: torch.Tensor = module_partial_fc(local_embeddings, local_labels, opt, local_patch_entropy)
img_original= ( (img*0.5) + 0.5 ) * 255 #[0,255]
img_original = img_original.permute(0,2,3,1) #[batch, height, width, channel]
img_original = img_original.cpu().numpy() #
##TopK
K = 7
TopK_ALL = torch.argsort(weight, dim=1, descending=True)
TopK_ALL = TopK_ALL.cpu().numpy()
TopK = TopK_ALL[:, :K]
probability = 0.2
batch_index = 0
for index in TopK:
if random.random() <= probability:
for j in range(TopK.shape[1]):
patch_index_h = int(np.floor(index[j]/12))
patch_index_w = int( (index[j] - patch_index_h * 12) )
img_src = img_original[batch_index, 9*patch_index_h:9*(1+patch_index_h), 9*patch_index_w:9*(1+patch_index_w), :]
random_index = int(np.random.randint(0,img.size()[0],1))
random_h = int(np.random.randint(0,12,1))
random_w = int(np.random.randint(0,12,1))
img_random = img_original[random_index, 9*random_h:9*(1+random_h), 9*random_w:9*(1+random_w), :]
img_src_random = amplitude_spectrum_mix(img_src, img_random, alpha=1)
img_original[batch_index, 9*patch_index_h:9*(1+patch_index_h), 9*patch_index_w:9*(1+patch_index_w), :] = img_src_random
batch_index = batch_index + 1
img_fft = torch.tensor(img_original).cuda()
img_fft = img_fft.permute(0,3,1,2) ## [batch, channel, height, width]
img_fft = ( (img_fft/255) - 0.5) / (0.5)
local_embeddings, weight, local_patch_entropy = backbone(img_fft)
loss: torch.Tensor = module_partial_fc(local_embeddings, local_labels, opt, local_patch_entropy)
if cfg.fp16:
amp.scale(loss).backward()
amp.unscale_(opt)
torch.nn.utils.clip_grad_norm_(backbone.parameters(), 5)
amp.step(opt)
amp.update()
else:
loss.backward()
torch.nn.utils.clip_grad_norm_(backbone.parameters(), 5)
opt.step()
opt.zero_grad()
lr_scheduler.step()
with torch.no_grad():
loss_am.update(loss.item(), 1)
callback_logging(global_step, loss_am, epoch, cfg.fp16, lr_scheduler.get_last_lr()[0], amp)
if global_step % cfg.verbose == 0 and global_step > 0:
callback_verification(global_step, backbone)
if cfg.save_all_states:
checkpoint = {
"epoch": epoch + 1,
"global_step": global_step,
"state_dict_backbone": backbone.module.state_dict(),
"state_dict_softmax_fc": module_partial_fc.state_dict(),
"state_optimizer": opt.state_dict(),
"state_lr_scheduler": lr_scheduler.state_dict()
}
torch.save(checkpoint, os.path.join(cfg.output, f"checkpoint_gpu_{rank}.pt"))
if rank == 0:
path_module = os.path.join(cfg.output, "model.pt")
torch.save(backbone.module.state_dict(), path_module)
if cfg.dali:
train_loader.reset()
if rank == 0:
path_module = os.path.join(cfg.output, "model.pt")
torch.save(backbone.module.state_dict(), path_module)
from torch2onnx import convert_onnx
convert_onnx(backbone.module.cpu().eval(), path_module, os.path.join(cfg.output, "model.onnx"))
distributed.destroy_process_group()
if __name__ == "__main__":
torch.backends.cudnn.benchmark = True
parser = argparse.ArgumentParser(
description="Distributed Arcface Training in Pytorch")
parser.add_argument("--config", type=str, help="py config file", default='configs/glint360k_vit_s.py')
parser.add_argument("--local_rank", type=int, default=0, help="local_rank")
main(parser.parse_args())