-
Notifications
You must be signed in to change notification settings - Fork 273
/
roaring64map.hh
1882 lines (1689 loc) · 69.2 KB
/
roaring64map.hh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/**
* A C++ header for 64-bit Roaring Bitmaps,
* implemented by way of a map of many
* 32-bit Roaring Bitmaps.
*
* Reference (format specification) :
* https://github.com/RoaringBitmap/RoaringFormatSpec#extention-for-64-bit-implementations
*/
#ifndef INCLUDE_ROARING_64_MAP_HH_
#define INCLUDE_ROARING_64_MAP_HH_
#include <algorithm>
#include <cinttypes> // PRIu64 macro
#include <cstdarg> // for va_list handling in bitmapOf()
#include <cstdio> // for std::printf() in the printf() method
#include <cstring> // for std::memcpy()
#include <functional>
#include <initializer_list>
#include <limits>
#include <map>
#include <new>
#include <numeric>
#include <queue>
#include <stdexcept>
#include <string>
#include <utility>
#include "roaring.hh"
namespace roaring {
using roaring::Roaring;
class Roaring64MapSetBitBiDirectionalIterator;
// For backwards compatibility; there used to be two kinds of iterators
// (forward and bidirectional) and now there's only one.
typedef Roaring64MapSetBitBiDirectionalIterator
Roaring64MapSetBitForwardIterator;
class Roaring64Map {
typedef api::roaring_bitmap_t roaring_bitmap_t;
public:
/**
* Create an empty bitmap
*/
Roaring64Map() = default;
/**
* Construct a bitmap from a list of 32-bit integer values.
*/
Roaring64Map(size_t n, const uint32_t *data) { addMany(n, data); }
/**
* Construct a bitmap from a list of 64-bit integer values.
*/
Roaring64Map(size_t n, const uint64_t *data) { addMany(n, data); }
/**
* Construct a bitmap from an initializer list.
*/
Roaring64Map(std::initializer_list<uint64_t> l) {
addMany(l.size(), l.begin());
}
/**
* Construct a 64-bit map from a 32-bit one
*/
explicit Roaring64Map(const Roaring &r) { emplaceOrInsert(0, r); }
/**
* Construct a 64-bit map from a 32-bit rvalue
*/
explicit Roaring64Map(Roaring &&r) { emplaceOrInsert(0, std::move(r)); }
/**
* Construct a roaring object from the C struct.
*
* Passing a NULL point is unsafe.
*/
explicit Roaring64Map(roaring_bitmap_t *s) {
emplaceOrInsert(0, Roaring(s));
}
Roaring64Map(const Roaring64Map &r) = default;
Roaring64Map(Roaring64Map &&r) noexcept = default;
/**
* Copy assignment operator.
*/
Roaring64Map &operator=(const Roaring64Map &r) = default;
/**
* Move assignment operator.
*/
Roaring64Map &operator=(Roaring64Map &&r) noexcept = default;
/**
* Assignment from an initializer list.
*/
Roaring64Map &operator=(std::initializer_list<uint64_t> l) {
// Delegate to move assignment operator
*this = Roaring64Map(l);
return *this;
}
/**
* Construct a bitmap from a list of uint64_t values.
*/
static Roaring64Map bitmapOf(size_t n...) {
Roaring64Map ans;
va_list vl;
va_start(vl, n);
for (size_t i = 0; i < n; i++) {
ans.add(va_arg(vl, uint64_t));
}
va_end(vl);
return ans;
}
/**
* Construct a bitmap from a list of uint64_t values.
* E.g., bitmapOfList({1,2,3}).
*/
static Roaring64Map bitmapOfList(std::initializer_list<uint64_t> l) {
Roaring64Map ans;
ans.addMany(l.size(), l.begin());
return ans;
}
/**
* Adds value x.
*/
void add(uint32_t x) { lookupOrCreateInner(0).add(x); }
/**
* Adds value x.
*/
void add(uint64_t x) { lookupOrCreateInner(highBytes(x)).add(lowBytes(x)); }
/**
* Adds value x.
* Returns true if a new value was added, false if the value was already
* present.
*/
bool addChecked(uint32_t x) { return lookupOrCreateInner(0).addChecked(x); }
/**
* Adds value x.
* Returns true if a new value was added, false if the value was already
* present.
*/
bool addChecked(uint64_t x) {
return lookupOrCreateInner(highBytes(x)).addChecked(lowBytes(x));
}
/**
* Adds all values in the half-open interval [min, max).
*/
void addRange(uint64_t min, uint64_t max) {
if (min >= max) {
return;
}
addRangeClosed(min, max - 1);
}
/**
* Adds all values in the closed interval [min, max].
*/
void addRangeClosed(uint32_t min, uint32_t max) {
lookupOrCreateInner(0).addRangeClosed(min, max);
}
/**
* Adds all values in the closed interval [min, max]
*/
void addRangeClosed(uint64_t min, uint64_t max) {
if (min > max) {
return;
}
uint32_t start_high = highBytes(min);
uint32_t start_low = lowBytes(min);
uint32_t end_high = highBytes(max);
uint32_t end_low = lowBytes(max);
// We put std::numeric_limits<>::max in parentheses to avoid a
// clash with the Windows.h header under Windows.
const uint32_t uint32_max = (std::numeric_limits<uint32_t>::max)();
// Fill in any nonexistent slots with empty Roarings. This simplifies
// the logic below, allowing it to simply iterate over the map between
// 'start_high' and 'end_high' in a linear fashion.
auto current_iter = ensureRangePopulated(start_high, end_high);
// If start and end land on the same inner bitmap, then we can do the
// whole operation in one call.
if (start_high == end_high) {
auto &bitmap = current_iter->second;
bitmap.addRangeClosed(start_low, end_low);
return;
}
// Because start and end don't land on the same inner bitmap,
// we need to do this in multiple steps:
// 1. Partially fill the first bitmap with values from the closed
// interval [start_low, uint32_max]
// 2. Fill intermediate bitmaps completely: [0, uint32_max]
// 3. Partially fill the last bitmap with values from the closed
// interval [0, end_low]
auto num_intermediate_bitmaps = end_high - start_high - 1;
// Step 1: Partially fill the first bitmap.
{
auto &bitmap = current_iter->second;
bitmap.addRangeClosed(start_low, uint32_max);
++current_iter;
}
// Step 2. Fill intermediate bitmaps completely.
if (num_intermediate_bitmaps != 0) {
auto &first_intermediate = current_iter->second;
first_intermediate.addRangeClosed(0, uint32_max);
++current_iter;
// Now make (num_intermediate_bitmaps - 1) copies of this.
for (uint32_t i = 1; i != num_intermediate_bitmaps; ++i) {
auto &next_intermediate = current_iter->second;
next_intermediate = first_intermediate;
++current_iter;
}
}
// Step 3: Partially fill the last bitmap.
auto &bitmap = current_iter->second;
bitmap.addRangeClosed(0, end_low);
}
/**
* Adds 'n_args' values from the contiguous memory range starting at 'vals'.
*/
void addMany(size_t n_args, const uint32_t *vals) {
lookupOrCreateInner(0).addMany(n_args, vals);
}
/**
* Adds 'n_args' values from the contiguous memory range starting at 'vals'.
*/
void addMany(size_t n_args, const uint64_t *vals) {
// Potentially reduce outer map lookups by optimistically
// assuming that adjacent values will belong to the same inner bitmap.
Roaring *last_inner_bitmap = nullptr;
uint32_t last_value_high = 0;
BulkContext last_bulk_context;
for (size_t lcv = 0; lcv < n_args; lcv++) {
auto value = vals[lcv];
auto value_high = highBytes(value);
auto value_low = lowBytes(value);
if (last_inner_bitmap == nullptr || value_high != last_value_high) {
last_inner_bitmap = &lookupOrCreateInner(value_high);
last_value_high = value_high;
last_bulk_context = BulkContext{};
}
last_inner_bitmap->addBulk(last_bulk_context, value_low);
}
}
/**
* Removes value x.
*/
void remove(uint32_t x) {
auto iter = roarings.begin();
// Since x is a uint32_t, highbytes(x) == 0. The inner bitmap we are
// looking for, if it exists, will be at the first slot of 'roarings'.
if (iter == roarings.end() || iter->first != 0) {
return;
}
auto &bitmap = iter->second;
bitmap.remove(x);
eraseIfEmpty(iter);
}
/**
* Removes value x.
*/
void remove(uint64_t x) {
auto iter = roarings.find(highBytes(x));
if (iter == roarings.end()) {
return;
}
auto &bitmap = iter->second;
bitmap.remove(lowBytes(x));
eraseIfEmpty(iter);
}
/**
* Removes value x
* Returns true if a new value was removed, false if the value was not
* present.
*/
bool removeChecked(uint32_t x) {
auto iter = roarings.begin();
// Since x is a uint32_t, highbytes(x) == 0. The inner bitmap we are
// looking for, if it exists, will be at the first slot of 'roarings'.
if (iter == roarings.end() || iter->first != 0) {
return false;
}
auto &bitmap = iter->second;
if (!bitmap.removeChecked(x)) {
return false;
}
eraseIfEmpty(iter);
return true;
}
/**
* Remove value x
* Returns true if a new value was removed, false if the value was not
* present.
*/
bool removeChecked(uint64_t x) {
auto iter = roarings.find(highBytes(x));
if (iter == roarings.end()) {
return false;
}
auto &bitmap = iter->second;
if (!bitmap.removeChecked(lowBytes(x))) {
return false;
}
eraseIfEmpty(iter);
return true;
}
/**
* Removes all values in the half-open interval [min, max).
*/
void removeRange(uint64_t min, uint64_t max) {
if (min >= max) {
return;
}
return removeRangeClosed(min, max - 1);
}
/**
* Removes all values in the closed interval [min, max].
*/
void removeRangeClosed(uint32_t min, uint32_t max) {
auto iter = roarings.begin();
// Since min and max are uint32_t, highbytes(min or max) == 0. The inner
// bitmap we are looking for, if it exists, will be at the first slot of
// 'roarings'.
if (iter == roarings.end() || iter->first != 0) {
return;
}
auto &bitmap = iter->second;
bitmap.removeRangeClosed(min, max);
eraseIfEmpty(iter);
}
/**
* Removes all values in the closed interval [min, max].
*/
void removeRangeClosed(uint64_t min, uint64_t max) {
if (min > max) {
return;
}
uint32_t start_high = highBytes(min);
uint32_t start_low = lowBytes(min);
uint32_t end_high = highBytes(max);
uint32_t end_low = lowBytes(max);
// We put std::numeric_limits<>::max in parentheses to avoid a
// clash with the Windows.h header under Windows.
const uint32_t uint32_max = (std::numeric_limits<uint32_t>::max)();
// If the outer map is empty, end_high is less than the first key,
// or start_high is greater than the last key, then exit now because
// there is no work to do.
if (roarings.empty() || end_high < roarings.cbegin()->first ||
start_high > (roarings.crbegin())->first) {
return;
}
// If we get here, start_iter points to the first entry in the outer map
// with key >= start_high. Such an entry is known to exist (i.e. the
// iterator will not be equal to end()) because start_high <= the last
// key in the map (thanks to the above if statement).
auto start_iter = roarings.lower_bound(start_high);
// end_iter points to the first entry in the outer map with
// key >= end_high, if such a key exists. Otherwise, it equals end().
auto end_iter = roarings.lower_bound(end_high);
// Note that the 'lower_bound' method will find the start and end slots,
// if they exist; otherwise it will find the next-higher slots.
// In the case where 'start' landed on an existing slot, we need to do a
// partial erase of that slot, and likewise for 'end'. But all the slots
// in between can be fully erased. More precisely:
//
// 1. If the start point falls on an existing entry, there are two
// subcases:
// a. if the end point falls on that same entry, remove the closed
// interval [start_low, end_low] from that entry and we are done.
// b. Otherwise, remove the closed interval [start_low, uint32_max]
// from that entry, advance start_iter, and fall through to
// step 2.
// 2. Completely erase all slots in the half-open interval
// [start_iter, end_iter)
// 3. If the end point falls on an existing entry, remove the closed
// interval [0, end_high] from it.
// Step 1. If the start point falls on an existing entry...
if (start_iter->first == start_high) {
auto &start_inner = start_iter->second;
// 1a. if the end point falls on that same entry...
if (start_iter == end_iter) {
start_inner.removeRangeClosed(start_low, end_low);
eraseIfEmpty(start_iter);
return;
}
// 1b. Otherwise, remove the closed range [start_low, uint32_max]...
start_inner.removeRangeClosed(start_low, uint32_max);
// Advance start_iter, but keep the old value so we can check the
// bitmap we just modified for emptiness and erase if it necessary.
auto temp = start_iter++;
eraseIfEmpty(temp);
}
// 2. Completely erase all slots in the half-open interval...
roarings.erase(start_iter, end_iter);
// 3. If the end point falls on an existing entry...
if (end_iter != roarings.end() && end_iter->first == end_high) {
auto &end_inner = end_iter->second;
end_inner.removeRangeClosed(0, end_low);
eraseIfEmpty(end_iter);
}
}
/**
* Clears the bitmap.
*/
void clear() { roarings.clear(); }
/**
* Return the largest value (if not empty)
*/
uint64_t maximum() const {
for (auto roaring_iter = roarings.crbegin();
roaring_iter != roarings.crend(); ++roaring_iter) {
if (!roaring_iter->second.isEmpty()) {
return uniteBytes(roaring_iter->first,
roaring_iter->second.maximum());
}
}
// we put std::numeric_limits<>::max/min in parentheses
// to avoid a clash with the Windows.h header under Windows
return (std::numeric_limits<uint64_t>::min)();
}
/**
* Return the smallest value (if not empty)
*/
uint64_t minimum() const {
for (auto roaring_iter = roarings.cbegin();
roaring_iter != roarings.cend(); ++roaring_iter) {
if (!roaring_iter->second.isEmpty()) {
return uniteBytes(roaring_iter->first,
roaring_iter->second.minimum());
}
}
// we put std::numeric_limits<>::max/min in parentheses
// to avoid a clash with the Windows.h header under Windows
return (std::numeric_limits<uint64_t>::max)();
}
/**
* Check if value x is present
*/
bool contains(uint32_t x) const {
auto iter = roarings.find(0);
if (iter == roarings.end()) {
return false;
}
return iter->second.contains(x);
}
bool contains(uint64_t x) const {
auto iter = roarings.find(highBytes(x));
if (iter == roarings.end()) {
return false;
}
return iter->second.contains(lowBytes(x));
}
// TODO: implement `containsRange`
/**
* Compute the intersection of the current bitmap and the provided bitmap,
* writing the result in the current bitmap. The provided bitmap is not
* modified.
*
* Performance hint: if you are computing the intersection between several
* bitmaps, two-by-two, it is best to start with the smallest bitmap.
*/
Roaring64Map &operator&=(const Roaring64Map &other) {
if (this == &other) {
// ANDing *this with itself is a no-op.
return *this;
}
// Logic table summarizing what to do when a given outer key is
// present vs. absent from self and other.
//
// self other (self & other) work to do
// --------------------------------------------
// absent absent empty None
// absent present empty None
// present absent empty Erase self
// present present empty or not Intersect self with other, but
// erase self if result is empty.
//
// Because there is only work to do when a key is present in 'self', the
// main for loop iterates over entries in 'self'.
decltype(roarings.begin()) self_next;
for (auto self_iter = roarings.begin(); self_iter != roarings.end();
self_iter = self_next) {
// Do the 'next' operation now, so we don't have to worry about
// invalidation of self_iter down below with the 'erase' operation.
self_next = std::next(self_iter);
auto self_key = self_iter->first;
auto &self_bitmap = self_iter->second;
auto other_iter = other.roarings.find(self_key);
if (other_iter == other.roarings.end()) {
// 'other' doesn't have self_key. In the logic table above,
// this reflects the case (self.present & other.absent).
// So, erase self.
roarings.erase(self_iter);
continue;
}
// Both sides have self_key. In the logic table above, this reflects
// the case (self.present & other.present). So, intersect self with
// other.
const auto &other_bitmap = other_iter->second;
self_bitmap &= other_bitmap;
if (self_bitmap.isEmpty()) {
// ...but if intersection is empty, remove it altogether.
roarings.erase(self_iter);
}
}
return *this;
}
/**
* Compute the difference between the current bitmap and the provided
* bitmap, writing the result in the current bitmap. The provided bitmap
* is not modified.
*/
Roaring64Map &operator-=(const Roaring64Map &other) {
if (this == &other) {
// Subtracting *this from itself results in the empty map.
roarings.clear();
return *this;
}
// Logic table summarizing what to do when a given outer key is
// present vs. absent from self and other.
//
// self other (self - other) work to do
// --------------------------------------------
// absent absent empty None
// absent present empty None
// present absent unchanged None
// present present empty or not Subtract other from self, but
// erase self if result is empty
//
// Because there is only work to do when a key is present in both 'self'
// and 'other', the main while loop ping-pongs back and forth until it
// finds the next key that is the same on both sides.
auto self_iter = roarings.begin();
auto other_iter = other.roarings.cbegin();
while (self_iter != roarings.end() &&
other_iter != other.roarings.cend()) {
auto self_key = self_iter->first;
auto other_key = other_iter->first;
if (self_key < other_key) {
// Because self_key is < other_key, advance self_iter to the
// first point where self_key >= other_key (or end).
self_iter = roarings.lower_bound(other_key);
continue;
}
if (self_key > other_key) {
// Because self_key is > other_key, advance other_iter to the
// first point where other_key >= self_key (or end).
other_iter = other.roarings.lower_bound(self_key);
continue;
}
// Both sides have self_key. In the logic table above, this reflects
// the case (self.present & other.present). So subtract other from
// self.
auto &self_bitmap = self_iter->second;
const auto &other_bitmap = other_iter->second;
self_bitmap -= other_bitmap;
if (self_bitmap.isEmpty()) {
// ...but if subtraction is empty, remove it altogether.
self_iter = roarings.erase(self_iter);
} else {
++self_iter;
}
++other_iter;
}
return *this;
}
/**
* Compute the union of the current bitmap and the provided bitmap,
* writing the result in the current bitmap. The provided bitmap is not
* modified.
*
* See also the fastunion function to aggregate many bitmaps more quickly.
*/
Roaring64Map &operator|=(const Roaring64Map &other) {
if (this == &other) {
// ORing *this with itself is a no-op.
return *this;
}
// Logic table summarizing what to do when a given outer key is
// present vs. absent from self and other.
//
// self other (self | other) work to do
// --------------------------------------------
// absent absent empty None
// absent present not empty Copy other to self and set flags
// present absent unchanged None
// present present not empty self |= other
//
// Because there is only work to do when a key is present in 'other',
// the main for loop iterates over entries in 'other'.
for (const auto &other_entry : other.roarings) {
const auto &other_bitmap = other_entry.second;
// Try to insert other_bitmap into self at other_key. We take
// advantage of the fact that std::map::insert will not overwrite an
// existing entry.
auto insert_result = roarings.insert(other_entry);
auto self_iter = insert_result.first;
auto insert_happened = insert_result.second;
auto &self_bitmap = self_iter->second;
if (insert_happened) {
// Key was not present in self, so insert was performed above.
// In the logic table above, this reflects the case
// (self.absent | other.present). Because the copy has already
// happened, thanks to the 'insert' operation above, we just
// need to set the copyOnWrite flag.
self_bitmap.setCopyOnWrite(copyOnWrite);
continue;
}
// Both sides have self_key, and the insert was not performed. In
// the logic table above, this reflects the case
// (self.present & other.present). So OR other into self.
self_bitmap |= other_bitmap;
}
return *this;
}
/**
* Compute the XOR of the current bitmap and the provided bitmap, writing
* the result in the current bitmap. The provided bitmap is not modified.
*/
Roaring64Map &operator^=(const Roaring64Map &other) {
if (this == &other) {
// XORing *this with itself results in the empty map.
roarings.clear();
return *this;
}
// Logic table summarizing what to do when a given outer key is
// present vs. absent from self and other.
//
// self other (self ^ other) work to do
// --------------------------------------------
// absent absent empty None
// absent present non-empty Copy other to self and set flags
// present absent unchanged None
// present present empty or not XOR other into self, but erase self
// if result is empty.
//
// Because there is only work to do when a key is present in 'other',
// the main for loop iterates over entries in 'other'.
for (const auto &other_entry : other.roarings) {
const auto &other_bitmap = other_entry.second;
// Try to insert other_bitmap into self at other_key. We take
// advantage of the fact that std::map::insert will not overwrite an
// existing entry.
auto insert_result = roarings.insert(other_entry);
auto self_iter = insert_result.first;
auto insert_happened = insert_result.second;
auto &self_bitmap = self_iter->second;
if (insert_happened) {
// Key was not present in self, so insert was performed above.
// In the logic table above, this reflects the case
// (self.absent ^ other.present). Because the copy has already
// happened, thanks to the 'insert' operation above, we just
// need to set the copyOnWrite flag.
self_bitmap.setCopyOnWrite(copyOnWrite);
continue;
}
// Both sides have self_key, and the insert was not performed. In
// the logic table above, this reflects the case
// (self.present ^ other.present). So XOR other into self.
self_bitmap ^= other_bitmap;
if (self_bitmap.isEmpty()) {
// ...but if intersection is empty, remove it altogether.
roarings.erase(self_iter);
}
}
return *this;
}
/**
* Exchange the content of this bitmap with another.
*/
void swap(Roaring64Map &r) { roarings.swap(r.roarings); }
/**
* Get the cardinality of the bitmap (number of elements).
* Throws std::length_error in the special case where the bitmap is full
* (cardinality() == 2^64). Check isFull() before calling to avoid
* exception.
*/
uint64_t cardinality() const {
if (isFull()) {
#if ROARING_EXCEPTIONS
throw std::length_error(
"bitmap is full, cardinality is 2^64, "
"unable to represent in a 64-bit integer");
#else
ROARING_TERMINATE(
"bitmap is full, cardinality is 2^64, "
"unable to represent in a 64-bit integer");
#endif
}
return std::accumulate(
roarings.cbegin(), roarings.cend(), (uint64_t)0,
[](uint64_t previous,
const std::pair<const uint32_t, Roaring> &map_entry) {
return previous + map_entry.second.cardinality();
});
}
/**
* Returns true if the bitmap is empty (cardinality is zero).
*/
bool isEmpty() const {
return std::all_of(
roarings.cbegin(), roarings.cend(),
[](const std::pair<const uint32_t, Roaring> &map_entry) {
return map_entry.second.isEmpty();
});
}
/**
* Returns true if the bitmap is full (cardinality is max uint64_t + 1).
*/
bool isFull() const {
// only bother to check if map is fully saturated
//
// we put std::numeric_limits<>::max/min in parentheses
// to avoid a clash with the Windows.h header under Windows
return roarings.size() ==
((uint64_t)(std::numeric_limits<uint32_t>::max)()) + 1
? std::all_of(roarings.cbegin(), roarings.cend(),
[](const std::pair<const uint32_t, Roaring>
&roaring_map_entry) {
return roaring_map_entry.second.isFull();
})
: false;
}
/**
* Returns true if the bitmap is subset of the other.
*/
bool isSubset(const Roaring64Map &r) const {
for (const auto &map_entry : roarings) {
if (map_entry.second.isEmpty()) {
continue;
}
auto roaring_iter = r.roarings.find(map_entry.first);
if (roaring_iter == r.roarings.cend())
return false;
else if (!map_entry.second.isSubset(roaring_iter->second))
return false;
}
return true;
}
/**
* Returns true if the bitmap is strict subset of the other.
* Throws std::length_error in the special case where the bitmap is full
* (cardinality() == 2^64). Check isFull() before calling to avoid
* exception.
*/
bool isStrictSubset(const Roaring64Map &r) const {
return isSubset(r) && cardinality() != r.cardinality();
}
/**
* Convert the bitmap to an array. Write the output to "ans",
* caller is responsible to ensure that there is enough memory
* allocated
* (e.g., ans = new uint32[mybitmap.cardinality()];)
*/
void toUint64Array(uint64_t *ans) const {
// Annoyingly, VS 2017 marks std::accumulate() as [[nodiscard]]
(void)std::accumulate(
roarings.cbegin(), roarings.cend(), ans,
[](uint64_t *previous,
const std::pair<const uint32_t, Roaring> &map_entry) {
for (uint32_t low_bits : map_entry.second)
*previous++ = uniteBytes(map_entry.first, low_bits);
return previous;
});
}
/**
* Return true if the two bitmaps contain the same elements.
*/
bool operator==(const Roaring64Map &r) const {
// we cannot use operator == on the map because either side may contain
// empty Roaring Bitmaps
auto lhs_iter = roarings.cbegin();
auto lhs_cend = roarings.cend();
auto rhs_iter = r.roarings.cbegin();
auto rhs_cend = r.roarings.cend();
while (lhs_iter != lhs_cend && rhs_iter != rhs_cend) {
auto lhs_key = lhs_iter->first, rhs_key = rhs_iter->first;
const auto &lhs_map = lhs_iter->second, &rhs_map = rhs_iter->second;
if (lhs_map.isEmpty()) {
++lhs_iter;
continue;
}
if (rhs_map.isEmpty()) {
++rhs_iter;
continue;
}
if (!(lhs_key == rhs_key)) {
return false;
}
if (!(lhs_map == rhs_map)) {
return false;
}
++lhs_iter;
++rhs_iter;
}
while (lhs_iter != lhs_cend) {
if (!lhs_iter->second.isEmpty()) {
return false;
}
++lhs_iter;
}
while (rhs_iter != rhs_cend) {
if (!rhs_iter->second.isEmpty()) {
return false;
}
++rhs_iter;
}
return true;
}
/**
* Computes the negation of the roaring bitmap within the half-open interval
* [min, max). Areas outside the interval are unchanged.
*/
void flip(uint64_t min, uint64_t max) {
if (min >= max) {
return;
}
flipClosed(min, max - 1);
}
/**
* Computes the negation of the roaring bitmap within the closed interval
* [min, max]. Areas outside the interval are unchanged.
*/
void flipClosed(uint32_t min, uint32_t max) {
auto iter = roarings.begin();
// Since min and max are uint32_t, highbytes(min or max) == 0. The inner
// bitmap we are looking for, if it exists, will be at the first slot of
// 'roarings'. If it does not exist, we have to create it.
if (iter == roarings.end() || iter->first != 0) {
iter = roarings.emplace_hint(iter, std::piecewise_construct,
std::forward_as_tuple(0),
std::forward_as_tuple());
auto &bitmap = iter->second;
bitmap.setCopyOnWrite(copyOnWrite);
}
auto &bitmap = iter->second;
bitmap.flipClosed(min, max);
eraseIfEmpty(iter);
}
/**
* Computes the negation of the roaring bitmap within the closed interval
* [min, max]. Areas outside the interval are unchanged.
*/
void flipClosed(uint64_t min, uint64_t max) {
if (min > max) {
return;
}
uint32_t start_high = highBytes(min);
uint32_t start_low = lowBytes(min);
uint32_t end_high = highBytes(max);
uint32_t end_low = lowBytes(max);
// We put std::numeric_limits<>::max in parentheses to avoid a
// clash with the Windows.h header under Windows.
const uint32_t uint32_max = (std::numeric_limits<uint32_t>::max)();
// Fill in any nonexistent slots with empty Roarings. This simplifies
// the logic below, allowing it to simply iterate over the map between
// 'start_high' and 'end_high' in a linear fashion.
auto current_iter = ensureRangePopulated(start_high, end_high);
// If start and end land on the same inner bitmap, then we can do the
// whole operation in one call.
if (start_high == end_high) {
auto &bitmap = current_iter->second;
bitmap.flipClosed(start_low, end_low);
eraseIfEmpty(current_iter);
return;
}
// Because start and end don't land on the same inner bitmap,
// we need to do this in multiple steps:
// 1. Partially flip the first bitmap in the closed interval
// [start_low, uint32_max]
// 2. Flip intermediate bitmaps completely: [0, uint32_max]
// 3. Partially flip the last bitmap in the closed interval
// [0, end_low]
auto num_intermediate_bitmaps = end_high - start_high - 1;
// 1. Partially flip the first bitmap.
{
auto &bitmap = current_iter->second;
bitmap.flipClosed(start_low, uint32_max);
auto temp = current_iter++;
eraseIfEmpty(temp);
}
// 2. Flip intermediate bitmaps completely.
for (uint32_t i = 0; i != num_intermediate_bitmaps; ++i) {
auto &bitmap = current_iter->second;
bitmap.flipClosed(0, uint32_max);
auto temp = current_iter++;
eraseIfEmpty(temp);
}
// 3. Partially flip the last bitmap.
auto &bitmap = current_iter->second;
bitmap.flipClosed(0, end_low);
eraseIfEmpty(current_iter);
}
/**
* Remove run-length encoding even when it is more space efficient
* return whether a change was applied
*/
bool removeRunCompression() {
return std::accumulate(
roarings.begin(), roarings.end(), true,
[](bool previous, std::pair<const uint32_t, Roaring> &map_entry) {
return map_entry.second.removeRunCompression() && previous;
});
}
/**
* Convert array and bitmap containers to run containers when it is more
* efficient; also convert from run containers when more space efficient.
* Returns true if the result has at least one run container.
* Additional savings might be possible by calling shrinkToFit().
*/