-
Notifications
You must be signed in to change notification settings - Fork 2
/
inference_global_optimization.py
464 lines (400 loc) · 21 KB
/
inference_global_optimization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
# Copyright (C) 2025-present Meta Platforms, Inc. and affiliates. All rights reserved.
# Licensed under CC BY-NC 4.0 (non-commercial use only).
import argparse
import math
import os
import torch
import numpy as np
import tempfile
import functools
import trimesh
import copy
import time
from scipy.spatial.transform import Rotation
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__)))
from dust3r.inference import inference
from dust3r.model import AsymmetricCroCo3DStereo
from dust3r.image_pairs import make_pairs
from dust3r.utils.image import load_images, rgb
from dust3r.utils.device import to_numpy
from dust3r.viz import add_scene_cam, CAM_COLORS, OPENGL, pts3d_to_trimesh, cat_meshes
from dust3r.cloud_opt import global_aligner, GlobalAlignerMode
import matplotlib.pyplot as pl
pl.ion()
torch.backends.cuda.matmul.allow_tf32 = True # for gpu >= Ampere and pytorch >= 1.12
batch_size = 1
from dust3r.pcd_render import pcd_render
def loss_of_one_batch_go_mv(batch, model, criterion, device, symmetrize_batch=False, use_amp=False, ret=None):
views = batch
view1, view2s = views[0], views[1:]
for view in batch:
for name in 'img pts3d valid_mask camera_pose camera_intrinsics F_matrix corres'.split(): # pseudo_focal
if name not in view:
continue
view[name] = view[name].to(device, non_blocking=True)
t1s, t2s = [], []
with torch.cuda.amp.autocast(enabled=bool(use_amp)):
# pred1, pred2 = model(view1, view2s[0]) # pred1 pcd torch.Size([2, 224, 224, 3])
# print('views img', view1['img'].max(), view1['img'].min(), view1['img'].shape) # views img tensor(1., device='cuda:0') tensor(-0.9216, device='cuda:0') torch.Size([bs, 3, 224, 224])
# print(view1['img'].dtype) # float32
# import fbvscode
# fbvscode.set_trace()
bs = view1['img'].shape[0]
n_v_real = 1
for view2_id, view2 in enumerate(view2s):
if view2['only_render'][0].item():
break
n_v_real += 1
view2s_all = view2s
view2s = view2s[:n_v_real - 1]
views = [view1] + view2s
n_v = len(view2s) + 1
# print('pred1 pcd', pred1['pts3d'].shape)
# print('view1 pcd', view1['pts3d'].shape) # torch.Size([bs, 224, 224, 3])
preds = [{'pts3d':[], 'conf':[], 'c2ws_pred':[], 'intrinsics_pred':[]} for i in range(n_v)]
for i in range(bs):
# print('camera pose shape', view1['camera_pose'].shape)
pts3ds, c2ws, intrinsics, confs, t1, t2 = inference_global_optimization(model, device, False, [view1['img'][i]] + [view2['img'][i] for view2 in view2s], view1['camera_pose'][i])
print('GO per scene time', t1, t2, n_v_real)
t1s.append(t1)
t2s.append(t2)
for j in range(n_v):
preds[j]['pts3d'].append(pts3ds[j])
preds[j]['conf'].append(confs[j])
preds[j]['c2ws_pred'].append(c2ws[j])
preds[j]['intrinsics_pred'].append(intrinsics[j])
# pred1 : ['conf', 'rgb', 'opacity', 'scale', 'rotation', 'pts3d']
# ('pts3d', torch.Size([bs, 224, 224, 3]), 3.4764482975006104, -1.5572370290756226),
# ('conf', torch.Size([bs, 224, 224]), 41.92277908325195, 1.0040476322174072)
# ('rgb', torch.Size([bs, 224, 224, 3]), 0.8159868121147156, -0.8702595829963684)
# ('opacity', torch.Size([bs, 224, 224, 1]), 0.999699592590332, 7.182779518188909e-05)
# ('scale', torch.Size([bs, 224, 224, 3]), 0.03545345366001129, -0.04244176670908928),
# ('rotation', torch.Size([bs, 224, 224, 4]), 0.9999783039093018, -0.9999967813491821)
for pred, view in zip(preds, views):
pred['pts3d'] = torch.stack(pred['pts3d'], dim=0).detach()
pred['conf'] = torch.stack(pred['conf'], dim=0).detach()
# import fbvscode
# fbvscode.set_trace()
pred['c2ws_pred'] = torch.stack(pred['c2ws_pred'], dim=0).detach()
pred['intrinsics_pred'] = torch.stack(pred['intrinsics_pred'], dim=0).detach()
# pred['conf'] = pred['conf'].unsqueeze(-1)
pred['rgb'] = view['img'].permute(0, 2, 3, 1)
pred['opacity'] = torch.ones_like(pred['rgb'][:,:,:,0:1])
for b in range(bs):
conf_b = pred['conf'][b].reshape(-1)
conf_sorted = conf_b.sort()[0]
conf_thres = float(conf_sorted[int(conf_b.shape[0] * 0.03)])
conf_mask = pred['conf'][b] < conf_thres # [224, 224]
# print('conf_mask', conf_mask.float().mean())
pred['opacity'][b][conf_mask] = 0
pred['scale'] = torch.ones_like(pred['rgb']) * 1e-3 * 2
pred['rotation'] = torch.ones_like(pred['rgb'][:,:,:,0:1].repeat(1,1,1,4))
# print('preds', pred['pts3d'].shape) # [bs, 224, 224, 3]
for pred in preds[1:]:
pred['pts3d_in_other_view'] = pred.pop('pts3d')
pred1, pred2s = preds[0], preds[1:]
# loss is supposed to be symmetric
# pred1, pred2 = model(view1, view2s[0]) # pred1 pcd torch.Size([2, 224, 224, 3])
# pred2s = [pred2, pred2, pred2]
with torch.cuda.amp.autocast(enabled=False):
loss = criterion(view1, view2s_all, pred1, pred2s, log = True) if criterion is not None else None
# print('in go_mv all keys')
# print('views', [k for k in view1.keys()], [[k for k in view2.keys()] for view2 in view2s])
# print('preds', [k for k in pred1.keys()], [[k for k in pred2.keys()] for pred2 in pred2s])
# views ['img', 'depthmap', 'camera_pose', 'camera_intrinsics', 'dataset', 'label', 'instance', 'idx', 'true_shape', 'pts3d', 'valid_mask', 'rng'] [['img', 'depthmap', 'camera_pose', 'camera_intrinsics', 'dataset', 'label', 'instance', 'idx', 'true_shape', 'pts3d', 'valid_mask', 'rng'], ['img', 'depthmap', 'camera_pose', 'camera_intrinsics', 'dataset', 'label', 'instance', 'idx', 'true_shape', 'pts3d', 'valid_mask', 'rng'], ['img', 'depthmap', 'camera_pose', 'camera_intrinsics', 'dataset', 'label', 'instance', 'idx', 'true_shape', 'pts3d', 'valid_mask', 'rng']]
# preds ['pts3d', 'conf'] [['conf', 'pts3d_in_other_view'], ['conf', 'pts3d_in_other_view'], ['conf', 'pts3d_in_other_view']]
# import fbvscode
# fbvscode.set_trace()
view2s = batch[1:]
result = dict(view1=view1, view2s=view2s, pred1=pred1, pred2s=pred2s, loss=loss)
res = result[ret] if ret else result
return res, float(np.mean(t1)), float(np.mean(t2)), n_v_real
def get_args_parser():
parser = argparse.ArgumentParser()
parser_url = parser.add_mutually_exclusive_group()
parser_url.add_argument("--local_network", action='store_true', default=False,
help="make app accessible on local network: address will be set to 0.0.0.0")
parser_url.add_argument("--server_name", type=str, default=None, help="server url, default is 127.0.0.1")
parser.add_argument("--image_size", type=int, default=512, choices=[512, 224], help="image size")
parser.add_argument("--server_port", type=int, help=("will start gradio app on this port (if available). "
"If None, will search for an available port starting at 7860."),
default=None)
parser_weights = parser.add_mutually_exclusive_group(required=True)
parser_weights.add_argument("--weights", type=str, help="path to the model weights", default=None)
parser_weights.add_argument("--model_name", type=str, help="name of the model weights",
choices=["DUSt3R_ViTLarge_BaseDecoder_512_dpt",
"DUSt3R_ViTLarge_BaseDecoder_512_linear",
"DUSt3R_ViTLarge_BaseDecoder_224_linear"])
parser.add_argument("--device", type=str, default='cuda', help="pytorch device")
parser.add_argument("--tmp_dir", type=str, default=None, help="value for tempfile.tempdir")
parser.add_argument("--silent", action='store_true', default=False,
help="silence logs")
return parser
def _convert_scene_output_to_glb(outdir, imgs, pts3d, mask, focals, cams2world, cam_size=0.05,
cam_color=None, as_pointcloud=False,
transparent_cams=False, silent=False):
assert len(pts3d) == len(mask) <= len(imgs) <= len(cams2world) == len(focals)
pts3d = to_numpy(pts3d)
imgs = to_numpy(imgs)
focals = to_numpy(focals)
cams2world = to_numpy(cams2world)
scene = trimesh.Scene()
# full pointcloud
if as_pointcloud:
pts = np.concatenate([p[m] for p, m in zip(pts3d, mask)])
col = np.concatenate([p[m] for p, m in zip(imgs, mask)])
pct = trimesh.PointCloud(pts.reshape(-1, 3), colors=col.reshape(-1, 3))
scene.add_geometry(pct)
else:
meshes = []
for i in range(len(imgs)):
meshes.append(pts3d_to_trimesh(imgs[i], pts3d[i], mask[i]))
mesh = trimesh.Trimesh(**cat_meshes(meshes))
scene.add_geometry(mesh)
# add each camera
for i, pose_c2w in enumerate(cams2world):
if isinstance(cam_color, list):
camera_edge_color = cam_color[i]
else:
camera_edge_color = cam_color or CAM_COLORS[i % len(CAM_COLORS)]
add_scene_cam(scene, pose_c2w, camera_edge_color,
None if transparent_cams else imgs[i], focals[i],
imsize=imgs[i].shape[1::-1], screen_width=cam_size)
rot = np.eye(4)
rot[:3, :3] = Rotation.from_euler('y', np.deg2rad(180)).as_matrix()
scene.apply_transform(np.linalg.inv(cams2world[0] @ OPENGL @ rot))
outfile = os.path.join(outdir, 'scene.glb')
if not silent:
print('(exporting 3D scene to', outfile, ')')
scene.export(file_obj=outfile)
return outfile
def get_3D_model_from_scene(outdir, silent, scene, min_conf_thr=3, as_pointcloud=False, mask_sky=False,
clean_depth=False, transparent_cams=False, cam_size=0.05):
"""
extract 3D_model (glb file) from a reconstructed scene
"""
if scene is None:
return None
# post processes
if clean_depth:
scene = scene.clean_pointcloud()
if mask_sky:
scene = scene.mask_sky()
# get optimized values from scene
rgbimg = scene.imgs
focals = scene.get_focals().cpu()
cams2world = scene.get_im_poses().cpu()
# 3D pointcloud from depthmap, poses and intrinsics
pts3d = to_numpy(scene.get_pts3d())
scene.min_conf_thr = float(scene.conf_trf(torch.tensor(min_conf_thr)))
msk = to_numpy(scene.get_masks())
return _convert_scene_output_to_glb(outdir, rgbimg, pts3d, msk, focals, cams2world, as_pointcloud=as_pointcloud,
transparent_cams=transparent_cams, cam_size=cam_size, silent=silent)
def get_reconstructed_scene(outdir, model, device, silent, image_size, filelist):
"""
from a list of images, run dust3r inference, global aligner.
then run get_3D_model_from_scene
"""
schedule = "linear"
niter = 300
min_conf_thr = 3
as_pointcloud = True
mask_sky = False
clean_depth = False
transparent_cams = False
cam_size = 0.05
scenegraph_type = "complete"
winsize = 1
refid = 0
# all_info cuda False 512 ['/tmp/gradio/8df9d5949578ec91fd98805367183ce574801453/vis_0_1.png', '/tmp/gradio/a26c13cba5c2675ffc9e8289d9bd5c20b0fae128/vis_0_0.png'] linear 300 3 False False True False 0.05 complete 1 0
print('all_info', device, silent, image_size, filelist, schedule, niter, min_conf_thr, as_pointcloud, mask_sky, clean_depth, transparent_cams, cam_size, scenegraph_type, winsize, refid)
imgs = load_images(filelist, size=image_size, verbose=not silent) # image resize inside
if len(imgs) == 1:
imgs = [imgs[0], copy.deepcopy(imgs[0])]
imgs[1]['idx'] = 1
if scenegraph_type == "swin":
scenegraph_type = scenegraph_type + "-" + str(winsize)
elif scenegraph_type == "oneref":
scenegraph_type = scenegraph_type + "-" + str(refid)
pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
t = [time.time()]
torch.cuda.synchronize()
output = inference(pairs, model, device, batch_size=batch_size, verbose=not silent)
torch.cuda.synchronize()
t.append(time.time())
mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
scene = global_aligner(output, device=device, mode=mode, verbose=not silent)
lr = 0.01
torch.cuda.synchronize()
if mode == GlobalAlignerMode.PointCloudOptimizer:
loss = scene.compute_global_alignment(init='mst', niter=niter, schedule=schedule, lr=lr)
torch.cuda.synchronize()
t.append(time.time())
print('test net inference time', t[1] - t[0], 'GO time', t[2] - t[1])
pts_3d = scene.get_pts3d() # in the first cam sys
rgbs = scene.imgs # list of [h, w, 3]
c2w = scene.get_im_poses()
for x in pts_3d:
print(x.shape) # [h, w, 3]
print('c2w', c2w.shape, c2w) # [n, 4, 4]
all_pcd = torch.cat([pcd.reshape(-1, 3).detach().cuda() for pcd in pts_3d], dim = 0)
all_pcd = c2w[0,:3,3] + all_pcd @ c2w[0,:3,:3].T
all_rgb = torch.cat([torch.from_numpy(rgb.reshape(-1, 3)).cuda() for rgb in rgbs], dim = 0)
return
# pcd_render(all_pcd, all_rgb, tgt = "./all.mp4", normalize = True)
# outfile = get_3D_model_from_scene(outdir, silent, scene, min_conf_thr, as_pointcloud, mask_sky,
# clean_depth, transparent_cams, cam_size)
# also return rgb, depth and confidence imgs
# depth is normalized with the max value for all images
# we apply the jet colormap on the confidence maps
rgbimg = scene.imgs
depths = to_numpy(scene.get_depthmaps())
confs = to_numpy([c for c in scene.im_conf])
cmap = pl.get_cmap('jet')
depths_max = max([d.max() for d in depths])
depths = [d/depths_max for d in depths]
confs_max = max([d.max() for d in confs])
confs = [cmap(d/confs_max) for d in confs]
imgs = []
for i in range(len(rgbimg)):
imgs.append(rgbimg[i])
imgs.append(rgb(depths[i]))
imgs.append(rgb(confs[i]))
exit(0)
# return scene, outfile, imgs
def Rt(M, p):
return M[:3,3] + p @ M[:3,:3].T
def inference_global_optimization(model, device, silent, img_tensors, first_view_c2w): # (model), cuda, False, 512, [...,...]
"""
from a list of images, run dust3r inference, global aligner.
then run get_3D_model_from_scene
"""
schedule = "linear"
niter = 300
min_conf_thr = 3
as_pointcloud = True
mask_sky = False
clean_depth = False
transparent_cams = False
cam_size = 0.05
scenegraph_type = "complete"
winsize = 1
refid = 0
imgs = []
for img_id, img in enumerate(img_tensors):
print('img inference', img.shape, img_id)
imgs.append(dict(img = img[None], true_shape=np.int32([img.shape[-2:]]), idx=img_id, instance=str(img_id)))
# imgs = load_images(filelist, size=image_size, verbose=not silent) # image resize inside
if len(imgs) == 1:
imgs = [imgs[0], copy.deepcopy(imgs[0])]
imgs[1]['idx'] = 1
if scenegraph_type == "swin":
scenegraph_type = scenegraph_type + "-" + str(winsize)
elif scenegraph_type == "oneref":
scenegraph_type = scenegraph_type + "-" + str(refid)
pairs = make_pairs(imgs, scene_graph=scenegraph_type, prefilter=None, symmetrize=True)
t = [time.time()]
torch.cuda.synchronize()
output = inference(pairs, model, device, batch_size=batch_size, verbose=not silent)
torch.cuda.synchronize()
t.append(time.time())
torch.cuda.synchronize()
mode = GlobalAlignerMode.PointCloudOptimizer if len(imgs) > 2 else GlobalAlignerMode.PairViewer
scene = global_aligner(output, device=device, mode=mode, verbose=not silent)
lr = 0.01
if mode == GlobalAlignerMode.PointCloudOptimizer:
loss = scene.compute_global_alignment(init='mst', niter=niter, schedule=schedule, lr=lr)
torch.cuda.synchronize()
t.append(time.time())
print('test net inference time', t[1] - t[0], 'GO time', t[2] - t[1])
pts_3d = scene.get_pts3d() # in the first cam sys
conf = scene.get_conf()
# rgbs = scene.imgs # list of [h, w, 3]
# c2w = first_view_c2w
# for x in pts_3d:
# print(x.shape) # [h, w, 3]
# print('c2w', c2w.shape, c2w) # [n, 4, 4]
# all_pcd = torch.cat([pcd.reshape(-1, 3).detach().cuda() for pcd in pts_3d], dim = 0)
# all_pcd = c2w[:3,3] + all_pcd @ c2w[:3,:3].T
output_pcd = []
vis_pcd = []
all_c2w = scene.get_im_poses()
intrinsics = scene.get_intrinsics()
# all_c2w = [torch.linalg.inv(w2c) for w2c in all_w2c]
for pcd in pts_3d:
pcd_original_shape = pcd.shape
original_first_w2c = torch.linalg.inv(scene.get_im_poses()[0])
pcd_c = Rt(original_first_w2c, pcd.reshape(-1, 3))
output_pcd.append(pcd_c.reshape(*pcd_original_shape))
# pcd_transformed = Rt(c2w, pcd_c)
# vis_pcd.append(pcd_transformed)
# vis_pcd = torch.stack(vis_pcd, dim = 0).reshape(-1, 3)
# vis_rgb = torch.cat([torch.from_numpy(rgb.reshape(-1, 3)).cuda() for rgb in rgbs], dim = 0)
# pcd_render(vis_rgb, vis_pcd, tgt = "./all.mp4", normalize = True)
return output_pcd, all_c2w, intrinsics, conf, t[1] - t[0], t[2] - t[1]
# outfile = get_3D_model_from_scene(outdir, silent, scene, min_conf_thr, as_pointcloud, mask_sky,
# clean_depth, transparent_cams, cam_size)
# also return rgb, depth and confidence imgs
# depth is normalized with the max value for all images
# we apply the jet colormap on the confidence maps
rgbimg = scene.imgs
depths = to_numpy(scene.get_depthmaps())
confs = to_numpy([c for c in scene.im_conf])
cmap = pl.get_cmap('jet')
depths_max = max([d.max() for d in depths])
depths = [d/depths_max for d in depths]
confs_max = max([d.max() for d in confs])
confs = [cmap(d/confs_max) for d in confs]
imgs = []
for i in range(len(rgbimg)):
imgs.append(rgbimg[i])
imgs.append(rgb(depths[i]))
imgs.append(rgb(confs[i]))
def set_scenegraph_options(inputfiles, winsize, refid, scenegraph_type):
num_files = len(inputfiles) if inputfiles is not None else 1
max_winsize = max(1, math.ceil((num_files-1)/2))
if scenegraph_type == "swin":
winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize,
minimum=1, maximum=max_winsize, step=1, visible=True)
refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0,
maximum=num_files-1, step=1, visible=False)
elif scenegraph_type == "oneref":
winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize,
minimum=1, maximum=max_winsize, step=1, visible=False)
refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0,
maximum=num_files-1, step=1, visible=True)
else:
winsize = gradio.Slider(label="Scene Graph: Window Size", value=max_winsize,
minimum=1, maximum=max_winsize, step=1, visible=False)
refid = gradio.Slider(label="Scene Graph: Id", value=0, minimum=0,
maximum=num_files-1, step=1, visible=False)
return winsize, refid
def main_demo(tmpdirname, model, device, image_size, server_name, server_port, silent=False):
recon_fun = functools.partial(get_reconstructed_scene, tmpdirname, model, device, silent, image_size)
recon_fun(["/home/zgtang/manifold_things/sample_img/vis_0_0.png", "/home/zgtang/manifold_things/sample_img/vis_0_1.png", "/home/zgtang/manifold_things/sample_img/vis_0_0.png", "/home/zgtang/manifold_things/sample_img/vis_0_1.png"])
model_from_scene_fun = functools.partial(get_3D_model_from_scene, tmpdirname, silent)
recon_fun(inputfiles, schedule, niter, min_conf_thr, as_pointcloud,
mask_sky, clean_depth, transparent_cams, cam_size,
scenegraph_type, winsize, refid)
if __name__ == '__main__':
parser = get_args_parser()
args = parser.parse_args()
if args.tmp_dir is not None:
tmp_path = args.tmp_dir
os.makedirs(tmp_path, exist_ok=True)
tempfile.tempdir = tmp_path
if args.server_name is not None:
server_name = args.server_name
else:
server_name = '0.0.0.0' if args.local_network else '127.0.0.1'
if args.weights is not None:
weights_path = args.weights
else:
weights_path = "naver/" + args.model_name
model = AsymmetricCroCo3DStereo.from_pretrained(weights_path).to(args.device)
# dust3r will write the 3D model inside tmpdirname
with tempfile.TemporaryDirectory(suffix='dust3r_gradio_demo') as tmpdirname:
if not args.silent:
print('Outputing stuff in', tmpdirname)
main_demo(tmpdirname, model, args.device, args.image_size, server_name, args.server_port, silent=args.silent)