-
Notifications
You must be signed in to change notification settings - Fork 590
/
keytap.cpp
655 lines (537 loc) · 23.5 KB
/
keytap.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
/*! \file keytap.cpp
* \brief Enter description here.
* \author Georgi Gerganov
*/
#include "constants.h"
#include "common.h"
#include "audio-logger.h"
#include <map>
#include <mutex>
#include <cmath>
#include <string>
#include <chrono>
#include <thread>
#include <vector>
#include <deque>
#include <fstream>
//#define MY_DEBUG
//#define OUTPUT_WAVEFORMS
// globals
static int g_predictedKey = -1;
static bool g_isInitialized = false;
static std::function<int()> g_init;
static std::function<void()> g_update;
static std::function<bool()> g_mainUpdate;
static std::function<void(int)> g_handleKey;
int init() {
if (g_isInitialized) return 1;
return g_init();
}
void update() {
if (g_isInitialized == false) return;
g_update();
}
void mainUpdate() {
g_mainUpdate();
}
// JS interface
extern "C" {
int doInit() {
return init();
}
void keyPressedCallback(int key) {
g_handleKey(key);
}
int getPredictedKey() {
return g_predictedKey;
}
}
int main(int argc, char ** argv) {
printf("Usage: %s input.kbd [input2.kbd ...] [-cN] [-pF] [-tF]\n", argv[0]);
printf(" -cN - select capture device N\n");
printf(" -CN - select number N of capture channels to use\n");
printf(" -pF - prediction threshold: CC > F\n");
printf(" -tF - background threshold: ampl > F*avg_background\n");
printf("\n");
if (argc < 2) {
return -127;
}
auto argm = parseCmdArguments(argc, argv);
int captureId = argm["c"].empty() ? 0 : std::stoi(argm["c"]);
int nChannels = argm["C"].empty() ? 0 : std::stoi(argm["C"]);
std::map<int, std::ifstream> fins;
for (int i = 0; i < argc - 1; ++i) {
if (argv[i + 1][0] == '-') continue;
printf("Opening file '%s'\n", argv[i + 1]);
fins[i] = std::ifstream(argv[i + 1], std::ios::binary);
if (fins[i].good() == false) {
printf("Failed to open input file: '%s'\n", argv[i + 1]);
return -2;
}
{
int bufferSize_frames = 1;
fins[i].read((char *)(&bufferSize_frames), sizeof(bufferSize_frames));
if (bufferSize_frames != kBufferSizeTrain_frames) {
printf("Buffer size in file (%d) does not match the expected one (%d)\n", bufferSize_frames, (int) kBufferSizeTrain_frames);
return -1;
}
}
}
TKey keyPressed = -1;
std::map<TKey, TKeyHistoryF> keySoundHistoryAmpl;
std::map<TKey, TKeyWaveformF> keySoundAverageAmpl;
int ntest = 0;
bool doRecord = false;
bool isReadyToPredict = false;
bool finishApp = false;
bool processingInput = true;
int curFile = 0;
float amplMin = 0.0f;
float amplMax = 0.0f;
float thresholdCC = argm["p"].empty() ? 0.35f : std::stof(argm["p"]);
float thresholdBackground = argm["t"].empty() ? 10.0f : std::stof(argm["t"]);
// ring buffer
int rbBegin = 0;
float rbAverage = 0.0f;
std::array<float, kBkgrRingBufferSize> rbSamples;
rbSamples.fill(0.0f);
// Train data
bool isAcquiringTrainData = false;
std::map<int, int> nTimes;
size_t totalSize_bytes = 0;
std::ofstream foutTrain("train_default.kbd", std::ios::binary);
{
int x = kBufferSizeTrain_frames;
foutTrain.write((char *)(&x), sizeof(x));
}
AudioLogger audioLogger;
struct WorkData {
TKeyWaveformF ampl;
std::vector<int> positionsToPredict;
};
std::mutex mutex;
std::deque<WorkData> workQueue;
std::thread worker([&]() {
int lastkey = -1;
double lastcc = -1.0f;
while (finishApp == false) {
bool process = false;
WorkData workData;
{
std::lock_guard<std::mutex> lock(mutex);
while (workQueue.size() > 30) {
workQueue.pop_front();
printf("pop\n");
}
if (workQueue.size() > 0) {
workData = std::move(workQueue.front());
workQueue.pop_front();
process = true;
}
}
if (process) {
const auto & ampl = workData.ampl;
const auto & positionsToPredict = workData.positionsToPredict;
//int alignWindow = kSamplesPerFrame/2;
int alignWindow = 64;
for (int ipos = 0; ipos < (int) positionsToPredict.size(); ++ipos) {
auto curPos = positionsToPredict[ipos];
int scmp0 = curPos - kSamplesPerFrame;
int scmp1 = curPos + kSamplesPerFrame;
char res = -1;
TValueCC maxcc = -1.0f;
//TOffset offs = 0;
TKeyConfidenceMap keyConfidenceTmp;
for (const auto & ka : keySoundAverageAmpl) {
//auto [bestcc, bestoffset] = findBestCC(keySoundAverageAmpl[ka.first], ampl, scmp0, scmp1, alignWindow);
auto ret = findBestCC(keySoundAverageAmpl[ka.first], ampl, scmp0, scmp1, alignWindow);
auto bestcc = std::get<0>(ret);
//auto bestoffset = std::get<1>(ret);
if (bestcc > maxcc) {
res = ka.first;
maxcc = bestcc;
//offs = bestoffset;
}
keyConfidenceTmp[ka.first] = bestcc;
}
if (maxcc > thresholdCC) {
if (lastkey != res || lastcc != maxcc) {
printf(" Prediction: '%c' (%8.5g), ntest = %d\n", res, maxcc, ntest);
}
lastkey = res;
lastcc = maxcc;
}
++ntest;
}
} else {
std::this_thread::sleep_for(std::chrono::milliseconds(1));
}
}
});
AudioLogger::Callback cbAudio = [&](const AudioLogger::Record & frames) {
if (isAcquiringTrainData) {
foutTrain.write((char *)(&keyPressed), sizeof(keyPressed));
for (const auto & frame : frames) {
totalSize_bytes += sizeof(frame[0])*frame.size();
foutTrain.write((char *)(frame.data()), sizeof(frame[0])*frame.size());
foutTrain.flush();
}
++nTimes[keyPressed];
printf("Last recorded key - %3d '%s'. Total times recorded so far - %3d. Total data saved: %g MB\n",
keyPressed, kKeyText.at(keyPressed), nTimes[keyPressed], ((float)(totalSize_bytes)/1024.0f/1024.0f));
keyPressed = -1;
return;
}
if (frames.size() != kBufferSizeTrain_frames && isReadyToPredict == false) {
printf("Unexpected number of frames - %d, expected - %d. Should never happen\n",
(int) frames.size(), (int) kBufferSizeTrain_frames);
return;
}
const int nFrames = frames.size();
if (isReadyToPredict) {
std::vector<int> positionsToPredict;
{
float amax = 0.0f;
for (int f = 0; f < (int) frames.size(); ++f) {
for (int s = 0; s < (int) frames[f].size(); s += kBkgrStep_samples) {
rbAverage *= rbSamples.size();
rbAverage -= rbSamples[rbBegin];
auto acur = std::abs(frames[f][s]);
rbSamples[rbBegin] = acur;
if (acur > amax) amax = acur;
rbAverage += acur;
rbAverage /= rbSamples.size();
if (++rbBegin >= (int) rbSamples.size()) rbBegin = 0;
}
}
int nFrames = frames.size();
auto _acc = [](const AudioLogger::Record & r, int id) { return std::abs(r[id/kSamplesPerFrame][id%kSamplesPerFrame]); };
int k = kSamplesPerFrame;
std::deque<int> que(k);
for (int i = 0; i < nFrames*kSamplesPerFrame; ++i) {
if (i < k) {
while((!que.empty()) && _acc(frames, i) >= _acc(frames, que.back())) {
que.pop_back();
}
que.push_back(i);
} else {
while((!que.empty()) && que.front() <= i - k) {
que.pop_front();
}
while((!que.empty()) && _acc(frames, i) >= _acc(frames, que.back())) {
que.pop_back();
}
que.push_back(i);
int itest = i - k/2;
if (itest >= (0.5*kSamplesPerWaveformTrain - kSamplesPerFrame) && itest < (0.5*kSamplesPerWaveformTrain + kSamplesPerFrame) && que.front() == itest) {
auto acur = _acc(frames, itest);
if (acur > thresholdBackground*rbAverage){
positionsToPredict.push_back(itest);
}
}
}
}
}
if (positionsToPredict.size() > 0) {
WorkData workData;
auto & ampl = workData.ampl;
ampl.resize(nFrames*kSamplesPerFrame);
for (int k = 0; k < nFrames; ++k) {
std::copy(frames[k].begin(), frames[k].end(), ampl.begin() + k*kSamplesPerFrame);
}
workData.positionsToPredict = positionsToPredict;
{
std::lock_guard<std::mutex> lock(mutex);
workQueue.push_back(std::move(workData));
}
}
doRecord = true;
} else {
auto & history = keySoundHistoryAmpl[keyPressed];
history.push_back(TKeyWaveformF());
auto & ampl = history.back();
ampl.resize(nFrames*kSamplesPerFrame);
for (int k = 0; k < nFrames; ++k) {
std::copy(frames[k].begin(), frames[k].end(), ampl.begin() + k*kSamplesPerFrame);
}
}
keyPressed = -1;
};
g_init = [&]() {
AudioLogger::Parameters parameters;
parameters.callback = cbAudio;
parameters.captureId = captureId;
parameters.nChannels = nChannels;
parameters.sampleRate = kSampleRate;
parameters.freqCutoff_Hz = kFreqCutoff_Hz;
if (audioLogger.install(std::move(parameters)) == false) {
fprintf(stderr, "Failed to install audio logger\n");
return -1;
}
printf("[+] Collecting training data\n");
g_isInitialized = true;
return 0;
};
g_handleKey = [&](int key) {
if (keyPressed == -1 && isReadyToPredict == false) {
g_predictedKey = -1;
keyPressed = key;
audioLogger.record(kBufferSizeTrain_s, 3);
}
};
g_update = [&]() {
if (isAcquiringTrainData) {
return;
}
if (processingInput) {
if (keyPressed == -1) {
AudioLogger::Frame frame;
AudioLogger::Record record;
fins[curFile].read((char *)(&keyPressed), sizeof(keyPressed));
if (fins[curFile].eof()) {
++curFile;
if (curFile >= (int) fins.size()) {
processingInput = false;
}
} else {
printf("%c", keyPressed);
fflush(stdout);
for (int i = 0; i < kBufferSizeTrain_frames; ++i) {
fins[curFile].read((char *)(frame.data()), sizeof(AudioLogger::Sample)*frame.size());
record.push_back(frame);
}
cbAudio(record);
}
}
return;
}
if (isReadyToPredict == false) {
printf("[+] Training\n");
std::vector<TKey> failedToTrain;
auto trainKey = [&](TKey key) {
auto & history = keySoundHistoryAmpl[key];
int nWaveforms = history.size();
int nFramesPerWaveform = kBufferSizeTrain_frames;
printf(" - Training key '%c'\n", key);
printf(" - History size = %d key waveforms\n", nWaveforms);
printf(" - Frames per key waveform = %d\n", nFramesPerWaveform);
printf(" - Total frames available = %d\n", nWaveforms*nFramesPerWaveform);
printf(" - Samples per frame = %d\n", (int) kSamplesPerFrame);
printf(" - Total samples available = %d\n", (int) (nWaveforms*nFramesPerWaveform*kSamplesPerFrame));
printf(" - Estimating waveform peaks ...\n");
std::vector<int> peakSum;
std::vector<int> peakMax;
peakSum.clear();
peakMax.clear();
for (int iwaveform = 0; iwaveform < nWaveforms; ++iwaveform) {
int isum = -1;
double asum = 0.0f;
double aisum = 0.0f;
int imax = -1;
double amax = 0.0f;
const auto & waveform = history[iwaveform];
for (int icur = 0; icur < kSamplesPerWaveformTrain; ++icur) {
double acur = std::abs(waveform[icur]);
double acur2 = acur*acur;
asum += acur2;
aisum += acur2*icur;
if (acur > amax) {
amax = acur;
imax = icur;
}
}
isum = aisum/asum;
peakSum.push_back(isum);
peakMax.push_back(imax);
//printf(" Estimated peak: %d (method - sum), %d (method - max)\n", isum, imax);
}
auto calcStdev = [](const std::vector<int> & data) {
double sum = 0.0f;
double sum2 = 0.0f;
for (const auto & p : data) {
int64_t v = p;
sum += v;
sum2 += v*v;
}
sum /= data.size();
sum2 /= data.size();
return sqrt(sum2 - sum*sum);
};
double stdevSum = calcStdev(peakSum);
double stdevMax = calcStdev(peakMax);
printf(" - Stdev of estimated peaks: %g (sum) vs %g (max)\n", stdevSum, stdevMax);
const auto & peakUsed = peakMax;
printf(" - Using 'max' estimation\n");
int centerSample = kSamplesPerWaveformTrain/2;
printf(" - Centering waveforms at sample %d\n", centerSample);
for (int iwaveform = 0; iwaveform < nWaveforms; ++iwaveform) {
int offset = peakUsed[iwaveform] - centerSample;
//printf(" Offset for waveform %-4d = %-4d\n", iwaveform, offset);
auto newWaveform = TKeyWaveformF();
newWaveform.resize(kSamplesPerWaveformTrain);
auto & waveform = history[iwaveform];
for (int icur = 0; icur < kSamplesPerWaveformTrain; ++icur) {
int iorg = icur + offset;
if (iorg >= 0 && iorg < kSamplesPerWaveformTrain) {
newWaveform[icur] = waveform[iorg];
} else {
newWaveform[icur] = 0.0f;
}
}
waveform = std::move(newWaveform);
}
int alignWindow = 64;
printf(" - Calculating CC pairs\n");
printf(" Align window = %d\n", alignWindow);
int bestw = -1;
int ntrain = 0;
double bestccsum = -1.0f;
//double bestosum = 1e10;
std::map<int, std::map<int, std::tuple<TValueCC, TOffset>>> ccs;
for (int alignToWaveform = 0; alignToWaveform < nWaveforms; ++alignToWaveform) {
ccs[alignToWaveform][alignToWaveform] = std::tuple<TValueCC, TOffset>(1.0f, 0);
int is0 = centerSample - kSamplesPerFrame;
int is1 = centerSample + kSamplesPerFrame;
const auto & waveform0 = history[alignToWaveform];
for (int iwaveform = alignToWaveform + 1; iwaveform < nWaveforms; ++iwaveform) {
const auto & waveform1 = history[iwaveform];
//auto [bestcc, bestoffset] = findBestCC(waveform0, waveform1, is0, is1, alignWindow);
auto ret = findBestCC(waveform0, waveform1, is0, is1, alignWindow);
auto bestcc = std::get<0>(ret);
auto bestoffset = std::get<1>(ret);
ccs[iwaveform][alignToWaveform] = std::tuple<TValueCC, TOffset>(bestcc, bestoffset);
ccs[alignToWaveform][iwaveform] = std::tuple<TValueCC, TOffset>(bestcc, -bestoffset);
}
int curntrain = 0;
double curccsum = 0.0;
double curosum = 0.0;
for (int iwaveform = 0; iwaveform < nWaveforms; ++iwaveform) {
//auto [cc, offset] = ccs[iwaveform][alignToWaveform];
auto cc = std::get<0>(ccs[iwaveform][alignToWaveform]);
auto offset = std::get<1>(ccs[iwaveform][alignToWaveform]);
if (std::abs(offset) > 50) continue;
++curntrain;
curccsum += cc*cc;
curosum += offset*offset;
}
if (curccsum > bestccsum) {
//if (curosum < bestosum) {
ntrain = curntrain;
bestw = alignToWaveform;
bestccsum = curccsum;
//bestosum = curosum;
}
}
bestccsum = sqrt(bestccsum/ntrain);
printf(" - Aligning all waveforms to waveform %d, (cost = %g)\n", bestw, bestccsum);
#ifdef OUTPUT_WAVEFORMS
std::ofstream fout(std::string("waveform_one_") + std::to_string(key) + ".plot");
for (auto & v : history[bestw]) fout << v << std::endl;
fout << std::endl;
#endif
for (int iwaveform = 0; iwaveform < nWaveforms; ++iwaveform) {
if (iwaveform == bestw) continue;
auto & waveform1 = history[iwaveform];
//auto [cc, offset] = ccs[iwaveform][bestw];
//auto cc = std::get<0>(ccs[iwaveform][bestw]);
auto offset = std::get<1>(ccs[iwaveform][bestw]);
auto newWaveform = TKeyWaveformF();
newWaveform.resize(kSamplesPerWaveformTrain);
for (int icur = 0; icur < kSamplesPerWaveformTrain; ++icur) {
int iorg = icur + offset;
if (iorg >= 0 && iorg < kSamplesPerWaveformTrain) {
newWaveform[icur] = waveform1[iorg];
} else {
newWaveform[icur] = 0.0f;
}
}
waveform1 = std::move(newWaveform);
#ifdef OUTPUT_WAVEFORMS
for (auto & v : waveform1) fout << v << std::endl;
fout << std::endl;
#endif
}
printf(" - Calculating average waveform\n");
double ccsum = 0.0f;
double norm = 0.0f;
auto & avgWaveform = keySoundAverageAmpl[key];
avgWaveform.resize(kSamplesPerWaveformTrain);
std::fill(avgWaveform.begin(), avgWaveform.end(), 0.0f);
for (int iwaveform = 0; iwaveform < nWaveforms; ++iwaveform) {
//auto [cc, offset] = ccs[iwaveform][bestw];
auto cc = std::get<0>(ccs[iwaveform][bestw]);
auto offset = std::get<1>(ccs[iwaveform][bestw]);
//if (std::abs(offset) > 5) continue;
printf(" Adding waveform %d - cc = %g, offset = %ld\n", iwaveform, cc, offset);
ccsum += cc*cc;
norm += cc*cc;
auto & waveform = history[iwaveform];
for (int is = 0; is < kSamplesPerWaveformTrain; ++is) {
avgWaveform[is] += cc*cc*waveform[is];
}
}
norm = 1.0f/(norm);
for (int is = 0; is < kSamplesPerWaveformTrain; ++is) {
avgWaveform[is] *= norm;
if (avgWaveform[is] > amplMax) amplMax = avgWaveform[is];
if (avgWaveform[is] < amplMin) amplMin = avgWaveform[is];
}
#ifdef OUTPUT_WAVEFORMS
{
std::ofstream fout(std::string("waveform_avg_") + std::to_string(key) + ".plot");
for (auto & v : avgWaveform) fout << v << std::endl;
}
#endif
if (ccsum*norm < 0.50f || (1.0f/norm < nWaveforms/3.0)) {
failedToTrain.push_back(key);
}
printf("\n");
};
for (const auto & kh : keySoundHistoryAmpl) {
if (kh.second.size() > 2) {
trainKey(kh.first);
} else {
printf("[!] Key '%s' does not have enough training data. Need at least 3 presses\n", kKeyText.at(kh.first));
failedToTrain.push_back(kh.first);
}
}
printf("Failed to train the following keys: ");
for (auto & k : failedToTrain) printf("'%c' ", k);
printf("\n");
isReadyToPredict = true;
doRecord = true;
amplMax = std::max(amplMax, -amplMin);
amplMin = -std::max(amplMax, -amplMin);
for (auto & kh : keySoundAverageAmpl) {
float curAmplMax = 0.0f;
for (const auto & v : kh.second) if (std::abs(v) > curAmplMax) curAmplMax = std::abs(v);
for (auto & v : kh.second) v = (v/curAmplMax)*amplMax;
}
audioLogger.resume();
printf("[+] Ready to predict. Keep pressing keys and the program will guess which key was pressed\n");
printf(" based on the captured audio from the microphone.\n");
printf("[+] Predicting\n");
}
if (doRecord) {
doRecord = false;
audioLogger.record(kBufferSizeTrain_s, getBufferSize_frames(kSampleRate, kBufferSizeTrain_s) - 1);
}
};
g_mainUpdate = [&]() {
if (finishApp) return false;
update();
std::this_thread::sleep_for(std::chrono::milliseconds(1));
return true;
};
init();
#ifdef __EMSCRIPTEN__
emscripten_set_main_loop(mainUpdate, 60, 1);
#else
while (true) {
if (g_mainUpdate() == false) break;
}
#endif
worker.join();
printf("[+] Terminated");
return 0;
}