You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
langchain_google_genai.chat_models.ChatGoogleGenerativeAIError: Invalid argument provided to Gemini: 400 * GenerateContentRequest.tools[0].function_declarations[0].parameters.properties[action].type: must be specified
#535
Open
Arunprakaash opened this issue
Oct 5, 2024
· 2 comments
class Response(BaseModel):
"""Response to user."""
response: str
class Act(BaseModel):
"""Action to perform."""
action: Union[Response, Plan] = Field(
description="Action to perform. If you want to respond to user, use Response. "
"If you need to further use tools to get the answer, use Plan."
)
def call_replan(state: AgentState, config: RunnableConfig):
model.with_structured_output(convert_to_openai_function(Act))
// throws error with/without converting pydantic to dict schema using convert_to_openai_function
class RequestsGetToolInput(BaseModel):
url: str = Field(description="The URL to send the GET request to")
params: Optional[dict[str, str]] = Field(
# default_factory=dict,
default={},
description="Query parameters for the GET request"
)
output_instructions: str = Field(description="Instructions on what information to extract from the response")
class RequestsGetToolWithParsing(BaseRequestsTool, BaseTool):
"""Requests GET tool with LLM-instructed extraction of truncated responses."""
name: str = "requests_get"
description: str = REQUESTS_GET_TOOL_DESCRIPTION
args_schema: type[BaseModel] = RequestsGetToolInput
response_length: int = MAX_RESPONSE_LENGTH
llm_chain: Any = Field(
default_factory=_get_default_llm_chain_factory(PARSING_GET_PROMPT)
)
def _run(
self,
url: str,
output_instructions: str,
params: dict[str, str] = {},
run_manager: Optional[CallbackManagerForToolRun] = None
) -> str:
response: str = cast(
str, self.requests_wrapper.get(url, params=params)
)
response = response[: self.response_length]
return self.llm_chain.invoke({
"response": response, "instructions": output_instructions
}).strip()
async def _arun(
self,
url: str,
output_instructions: str,
params: dict[str, str] = {},
run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
) -> str:
"""Use the tool asynchronously."""
return self._run(url, output_instructions, params, run_manager=run_manager.get_sync() if run_manager else None)
langchain_google_genai.chat_models.ChatGoogleGenerativeAIError: Invalid argument provided to Gemini: 400 * GenerateContentRequest.tools[0].function_declarations[0].parameters.properties[params].properties: should be non-empty for OBJECT type
The text was updated successfully, but these errors were encountered:
pydantic model
as well as on tool calling arg schema
langchain_google_genai.chat_models.ChatGoogleGenerativeAIError: Invalid argument provided to Gemini: 400 * GenerateContentRequest.tools[0].function_declarations[0].parameters.properties[params].properties: should be non-empty for OBJECT type
The text was updated successfully, but these errors were encountered: