-
Notifications
You must be signed in to change notification settings - Fork 6
/
nep-0052-python-api-cleanup.html
915 lines (723 loc) · 55.9 KB
/
nep-0052-python-api-cleanup.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
<!DOCTYPE html>
<html lang="en" data-content_root="./" >
<head>
<meta charset="utf-8" />
<meta name="viewport" content="width=device-width, initial-scale=1.0" /><meta name="viewport" content="width=device-width, initial-scale=1" />
<title>NEP 52 — Python API cleanup for NumPy 2.0 — NumPy Enhancement Proposals</title>
<script data-cfasync="false">
document.documentElement.dataset.mode = localStorage.getItem("mode") || "";
document.documentElement.dataset.theme = localStorage.getItem("theme") || "";
</script>
<!--
this give us a css class that will be invisible only if js is disabled
-->
<noscript>
<style>
.pst-js-only { display: none !important; }
</style>
</noscript>
<!-- Loaded before other Sphinx assets -->
<link href="_static/styles/theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link href="_static/styles/pydata-sphinx-theme.css?digest=8878045cc6db502f8baf" rel="stylesheet" />
<link rel="stylesheet" type="text/css" href="_static/pygments.css?v=03e43079" />
<!-- So that users can add custom icons -->
<script src="_static/scripts/fontawesome.js?digest=8878045cc6db502f8baf"></script>
<!-- Pre-loaded scripts that we'll load fully later -->
<link rel="preload" as="script" href="_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf" />
<link rel="preload" as="script" href="_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf" />
<script src="_static/documentation_options.js?v=7f41d439"></script>
<script src="_static/doctools.js?v=888ff710"></script>
<script src="_static/sphinx_highlight.js?v=dc90522c"></script>
<script>DOCUMENTATION_OPTIONS.pagename = 'nep-0052-python-api-cleanup';</script>
<link rel="icon" href="_static/favicon.ico"/>
<link rel="index" title="Index" href="genindex.html" />
<link rel="search" title="Search" href="search.html" />
<link rel="next" title="NEP 55 — Add a UTF-8 variable-width string DType to NumPy" href="nep-0055-string_dtype.html" />
<link rel="prev" title="NEP 50 — Promotion rules for Python scalars" href="nep-0050-scalar-promotion.html" />
<meta name="viewport" content="width=device-width, initial-scale=1"/>
<meta name="docsearch:language" content="en"/>
<meta name="docsearch:version" content="" />
<meta name="docbuild:last-update" content="Jan 09, 2025"/>
</head>
<body data-bs-spy="scroll" data-bs-target=".bd-toc-nav" data-offset="180" data-bs-root-margin="0px 0px -60%" data-default-mode="">
<div id="pst-skip-link" class="skip-link d-print-none"><a href="#main-content">Skip to main content</a></div>
<div id="pst-scroll-pixel-helper"></div>
<button type="button" class="btn rounded-pill" id="pst-back-to-top">
<i class="fa-solid fa-arrow-up"></i>Back to top</button>
<dialog id="pst-search-dialog">
<form class="bd-search d-flex align-items-center"
action="search.html"
method="get">
<i class="fa-solid fa-magnifying-glass"></i>
<input type="search"
class="form-control"
name="q"
placeholder="Search the docs ..."
aria-label="Search the docs ..."
autocomplete="off"
autocorrect="off"
autocapitalize="off"
spellcheck="false"/>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd>K</kbd></span>
</form>
</dialog>
<div class="pst-async-banner-revealer d-none">
<aside id="bd-header-version-warning" class="d-none d-print-none" aria-label="Version warning"></aside>
</div>
<header class="bd-header navbar navbar-expand-lg bd-navbar d-print-none">
<div class="bd-header__inner bd-page-width">
<button class="pst-navbar-icon sidebar-toggle primary-toggle" aria-label="Site navigation">
<span class="fa-solid fa-bars"></span>
</button>
<div class="col-lg-3 navbar-header-items__start">
<div class="navbar-item">
<a class="navbar-brand logo" href="content.html">
<img src="_static/numpylogo.svg" class="logo__image only-light" alt="NumPy Enhancement Proposals - Home"/>
<img src="_static/numpylogo.svg" class="logo__image only-dark pst-js-only" alt="NumPy Enhancement Proposals - Home"/>
</a></div>
</div>
<div class="col-lg-9 navbar-header-items">
<div class="me-auto navbar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item current active">
<a class="nav-link nav-internal" href="index.html">
Index
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="scope.html">
The Scope of NumPy
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="roadmap.html">
Current roadmap
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://github.com/numpy/numpy/issues?q=is%3Aopen+is%3Aissue+label%3A%2223+-+Wish+List%22">
Wish list
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://github.com/numpy/numpy/issues?q=is%3Aopen+is%3Aissue+label%3A%2223+-+Wish+List%22">
Wishlist
</a>
</li>
</ul>
</nav></div>
</div>
<div class="navbar-header-items__end">
<div class="navbar-item navbar-persistent--container">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/numpy/numpy" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
</div>
</div>
<div class="navbar-persistent--mobile">
<button class="btn search-button-field search-button__button pst-js-only" title="Search" aria-label="Search" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="fa-solid fa-magnifying-glass"></i>
<span class="search-button__default-text">Search</span>
<span class="search-button__kbd-shortcut"><kbd class="kbd-shortcut__modifier">Ctrl</kbd>+<kbd class="kbd-shortcut__modifier">K</kbd></span>
</button>
</div>
<button class="pst-navbar-icon sidebar-toggle secondary-toggle" aria-label="On this page">
<span class="fa-solid fa-outdent"></span>
</button>
</div>
</header>
<div class="bd-container">
<div class="bd-container__inner bd-page-width">
<dialog id="pst-primary-sidebar-modal"></dialog>
<div id="pst-primary-sidebar" class="bd-sidebar-primary bd-sidebar">
<div class="sidebar-header-items sidebar-primary__section">
<div class="sidebar-header-items__center">
<div class="navbar-item">
<nav>
<ul class="bd-navbar-elements navbar-nav">
<li class="nav-item current active">
<a class="nav-link nav-internal" href="index.html">
Index
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="scope.html">
The Scope of NumPy
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-internal" href="roadmap.html">
Current roadmap
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://github.com/numpy/numpy/issues?q=is%3Aopen+is%3Aissue+label%3A%2223+-+Wish+List%22">
Wish list
</a>
</li>
<li class="nav-item ">
<a class="nav-link nav-external" href="https://github.com/numpy/numpy/issues?q=is%3Aopen+is%3Aissue+label%3A%2223+-+Wish+List%22">
Wishlist
</a>
</li>
</ul>
</nav></div>
</div>
<div class="sidebar-header-items__end">
<div class="navbar-item">
<button class="btn btn-sm nav-link pst-navbar-icon theme-switch-button pst-js-only" aria-label="Color mode" data-bs-title="Color mode" data-bs-placement="bottom" data-bs-toggle="tooltip">
<i class="theme-switch fa-solid fa-sun fa-lg" data-mode="light" title="Light"></i>
<i class="theme-switch fa-solid fa-moon fa-lg" data-mode="dark" title="Dark"></i>
<i class="theme-switch fa-solid fa-circle-half-stroke fa-lg" data-mode="auto" title="System Settings"></i>
</button></div>
<div class="navbar-item"><ul class="navbar-icon-links"
aria-label="Icon Links">
<li class="nav-item">
<a href="https://github.com/numpy/numpy" title="GitHub" class="nav-link pst-navbar-icon" rel="noopener" target="_blank" data-bs-toggle="tooltip" data-bs-placement="bottom"><i class="fa-brands fa-square-github fa-lg" aria-hidden="true"></i>
<span class="sr-only">GitHub</span></a>
</li>
</ul></div>
</div>
</div>
<div class="sidebar-primary-items__start sidebar-primary__section">
<div class="sidebar-primary-item">
<nav class="bd-docs-nav bd-links"
aria-label="Section Navigation">
<p class="bd-links__title" role="heading" aria-level="1">Section Navigation</p>
<div class="bd-toc-item navbar-nav"><ul class="nav bd-sidenav">
<li class="toctree-l1"><a class="reference internal" href="scope.html">The Scope of NumPy</a></li>
<li class="toctree-l1"><a class="reference internal" href="roadmap.html">Current roadmap</a></li>
<li class="toctree-l1"><a class="reference external" href="https://github.com/numpy/numpy/issues?q=is%3Aopen+is%3Aissue+label%3A%2223+-+Wish+List%22">Wish list</a></li>
</ul>
<ul class="current nav bd-sidenav">
<li class="toctree-l1 has-children"><a class="reference internal" href="meta.html">Meta-NEPs (NEPs about NEPs or active Processes)</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0000.html">NEP 0 — Purpose and process</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0023-backwards-compatibility.html">NEP 23 — Backwards compatibility and deprecation policy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0036-fair-play.html">NEP 36 — Fair play</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0045-c_style_guide.html">NEP 45 — C style guide</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0046-sponsorship-guidelines.html">NEP 46 — NumPy sponsorship guidelines</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0048-spending-project-funds.html">NEP 48 — Spending NumPy project funds</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-template.html">NEP X — Template and instructions</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="provisional.html">Provisional NEPs (provisionally accepted; interface may change)</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="simple">
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="accepted.html">Accepted NEPs (implementation in progress)</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0041-improved-dtype-support.html">NEP 41 — First step towards a new datatype system</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0042-new-dtypes.html">NEP 42 — New and extensible DTypes</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0044-restructuring-numpy-docs.html">NEP 44 — Restructuring the NumPy documentation</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0051-scalar-representation.html">NEP 51 — Changing the representation of NumPy scalars</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="open.html">Open NEPs (under consideration)</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0043-extensible-ufuncs.html">NEP 43 — Enhancing the extensibility of UFuncs</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0053-c-abi-evolution.html">NEP 53 — Evolving the NumPy C-API for NumPy 2.0</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0054-simd-cpp-highway.html">NEP 54 — SIMD infrastructure evolution: adopting Google Highway when moving to C++?</a></li>
</ul>
</details></li>
<li class="toctree-l1 current active has-children"><a class="reference internal" href="finished.html">Finished NEPs</a><details open="open"><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul class="current">
<li class="toctree-l2"><a class="reference internal" href="nep-0001-npy-format.html">NEP 1 — A simple file format for NumPy arrays</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0005-generalized-ufuncs.html">NEP 5 — Generalized universal functions</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0007-datetime-proposal.html">NEP 7 — A proposal for implementing some date/time types in NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0010-new-iterator-ufunc.html">NEP 10 — Optimizing iterator/UFunc performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0013-ufunc-overrides.html">NEP 13 — A mechanism for overriding Ufuncs</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0014-dropping-python2.7-proposal.html">NEP 14 — Plan for dropping Python 2.7 support</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0015-merge-multiarray-umath.html">NEP 15 — Merging multiarray and umath</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0018-array-function-protocol.html">NEP 18 — A dispatch mechanism for NumPy's high level array functions</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0019-rng-policy.html">NEP 19 — Random number generator policy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0020-gufunc-signature-enhancement.html">NEP 20 — Expansion of generalized universal function signatures</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0022-ndarray-duck-typing-overview.html">NEP 22 — Duck typing for NumPy arrays – high level overview</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0027-zero-rank-arrarys.html">NEP 27 — Zero rank arrays</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0028-website-redesign.html">NEP 28 — numpy.org website redesign</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0029-deprecation_policy.html">NEP 29 — Recommend Python and NumPy version support as a community policy standard</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0032-remove-financial-functions.html">NEP 32 — Remove the financial functions from NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0034-infer-dtype-is-object.html">NEP 34 — Disallow inferring ``dtype=object`` from sequences</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0035-array-creation-dispatch-with-array-function.html">NEP 35 — Array creation dispatching with __array_function__</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0038-SIMD-optimizations.html">NEP 38 — Using SIMD optimization instructions for performance</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0040-legacy-datatype-impl.html">NEP 40 — Legacy datatype implementation in NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0049.html">NEP 49 — Data allocation strategies</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0050-scalar-promotion.html">NEP 50 — Promotion rules for Python scalars</a></li>
<li class="toctree-l2 current active"><a class="current reference internal" href="#">NEP 52 — Python API cleanup for NumPy 2.0</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0055-string_dtype.html">NEP 55 — Add a UTF-8 variable-width string DType to NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0056-array-api-main-namespace.html">NEP 56 — Array API standard support in NumPy's main namespace</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="deferred.html">Deferred and Superseded NEPs</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0002-warnfix.html">NEP 2 — A proposal to build numpy without warning with a big set of warning flags</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0003-math_config_clean.html">NEP 3 — Cleaning the math configuration of numpy.core</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0004-datetime-proposal3.html">NEP 4 — A (third) proposal for implementing some date/time types in NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0006-newbugtracker.html">NEP 6 — Replacing Trac with a different bug tracker</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0008-groupby_additions.html">NEP 8 — A proposal for adding groupby functionality to NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0009-structured_array_extensions.html">NEP 9 — Structured array extensions</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0011-deferred-ufunc-evaluation.html">NEP 11 — Deferred UFunc evaluation</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0012-missing-data.html">NEP 12 — Missing data functionality in NumPy</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0021-advanced-indexing.html">NEP 21 — Simplified and explicit advanced indexing</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0024-missing-data-2.html">NEP 24 — Missing data functionality - alternative 1 to NEP 12</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0025-missing-data-3.html">NEP 25 — NA support via special dtypes</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0026-missing-data-summary.html">NEP 26 — Summary of missing data NEPs and discussion</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0030-duck-array-protocol.html">NEP 30 — Duck typing for NumPy arrays - implementation</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0031-uarray.html">NEP 31 — Context-local and global overrides of the NumPy API</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0037-array-module.html">NEP 37 — A dispatch protocol for NumPy-like modules</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0047-array-api-standard.html">NEP 47 — Adopting the array API standard</a></li>
</ul>
</details></li>
<li class="toctree-l1 has-children"><a class="reference internal" href="rejected.html">Rejected and Withdrawn NEPs</a><details><summary><span class="toctree-toggle" role="presentation"><i class="fa-solid fa-chevron-down"></i></span></summary><ul>
<li class="toctree-l2"><a class="reference internal" href="nep-0016-abstract-array.html">NEP 16 — An abstract base class for identifying "duck arrays"</a></li>
<li class="toctree-l2"><a class="reference internal" href="nep-0017-split-out-maskedarray.html">NEP 17 — Split out masked arrays</a></li>
</ul>
</details></li>
</ul>
</div>
</nav></div>
</div>
<div class="sidebar-primary-items__end sidebar-primary__section">
<div class="sidebar-primary-item">
<div id="ethical-ad-placement"
class="flat"
data-ea-publisher="readthedocs"
data-ea-type="readthedocs-sidebar"
data-ea-manual="true">
</div></div>
</div>
</div>
<main id="main-content" class="bd-main" role="main">
<div class="bd-content">
<div class="bd-article-container">
<div class="bd-header-article d-print-none">
<div class="header-article-items header-article__inner">
<div class="header-article-items__start">
<div class="header-article-item">
<nav aria-label="Breadcrumb" class="d-print-none">
<ul class="bd-breadcrumbs">
<li class="breadcrumb-item breadcrumb-home">
<a href="content.html" class="nav-link" aria-label="Home">
<i class="fa-solid fa-home"></i>
</a>
</li>
<li class="breadcrumb-item"><a href="index.html" class="nav-link">Roadmap & NumPy enhancement proposals</a></li>
<li class="breadcrumb-item"><a href="finished.html" class="nav-link">Finished NEPs</a></li>
<li class="breadcrumb-item active" aria-current="page"><span class="ellipsis">NEP 52 — Python API cleanup for NumPy 2.0</span></li>
</ul>
</nav>
</div>
</div>
</div>
</div>
<div id="searchbox"></div>
<article class="bd-article">
<section id="nep-52-python-api-cleanup-for-numpy-2-0">
<span id="nep52"></span><h1>NEP 52 — Python API cleanup for NumPy 2.0<a class="headerlink" href="#nep-52-python-api-cleanup-for-numpy-2-0" title="Link to this heading">#</a></h1>
<dl class="field-list simple">
<dt class="field-odd">Author<span class="colon">:</span></dt>
<dd class="field-odd"><p>Ralf Gommers <<a class="reference external" href="mailto:ralf.gommers%40gmail.com">ralf<span>.</span>gommers<span>@</span>gmail<span>.</span>com</a>></p>
</dd>
<dt class="field-even">Author<span class="colon">:</span></dt>
<dd class="field-even"><p>Stéfan van der Walt <<a class="reference external" href="mailto:stefanv%40berkeley.edu">stefanv<span>@</span>berkeley<span>.</span>edu</a>></p>
</dd>
<dt class="field-odd">Author<span class="colon">:</span></dt>
<dd class="field-odd"><p>Nathan Goldbaum <<a class="reference external" href="mailto:ngoldbaum%40quansight.com">ngoldbaum<span>@</span>quansight<span>.</span>com</a>></p>
</dd>
<dt class="field-even">Author<span class="colon">:</span></dt>
<dd class="field-even"><p>Mateusz Sokół <<a class="reference external" href="mailto:msokol%40quansight.com">msokol<span>@</span>quansight<span>.</span>com</a>></p>
</dd>
<dt class="field-odd">Status<span class="colon">:</span></dt>
<dd class="field-odd"><p>Final</p>
</dd>
<dt class="field-even">Type<span class="colon">:</span></dt>
<dd class="field-even"><p>Standards Track</p>
</dd>
<dt class="field-odd">Created<span class="colon">:</span></dt>
<dd class="field-odd"><p>2023-03-28</p>
</dd>
<dt class="field-even">Resolution<span class="colon">:</span></dt>
<dd class="field-even"><p><a class="reference external" href="https://mail.python.org/archives/list/numpy-discussion@python.org/thread/QLMPFTWA67DXE3JCUQT2RIRLQ44INS4F/">https://mail.python.org/archives/list/numpy-discussion@python.org/thread/QLMPFTWA67DXE3JCUQT2RIRLQ44INS4F/</a></p>
</dd>
</dl>
<section id="abstract">
<h2>Abstract<a class="headerlink" href="#abstract" title="Link to this heading">#</a></h2>
<p>We propose to clean up NumPy’s Python API for the NumPy 2.0 release.
This includes a more clearly defined split between what is public and what is
private, and reducing the size of the main namespace by removing aliases
and functions that have better alternatives. Furthermore, each function is meant
to be accessible from only one place, so all duplicates also need to be dropped.</p>
</section>
<section id="motivation-and-scope">
<h2>Motivation and scope<a class="headerlink" href="#motivation-and-scope" title="Link to this heading">#</a></h2>
<p>NumPy has a large API surface that evolved organically over many years:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="n">objects_in_api</span> <span class="o">=</span> <span class="p">[</span><span class="n">s</span> <span class="k">for</span> <span class="n">s</span> <span class="ow">in</span> <span class="nb">dir</span><span class="p">(</span><span class="n">np</span><span class="p">)</span> <span class="k">if</span> <span class="ow">not</span> <span class="n">s</span><span class="o">.</span><span class="n">startswith</span><span class="p">(</span><span class="s1">'_'</span><span class="p">)]</span>
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">objects_in_api</span><span class="p">)</span>
<span class="go">562</span>
<span class="gp">>>> </span><span class="n">modules</span> <span class="o">=</span> <span class="p">[</span><span class="n">s</span> <span class="k">for</span> <span class="n">s</span> <span class="ow">in</span> <span class="n">objects_in_api</span> <span class="k">if</span> <span class="n">inspect</span><span class="o">.</span><span class="n">ismodule</span><span class="p">(</span><span class="nb">eval</span><span class="p">(</span><span class="sa">f</span><span class="s1">'np.</span><span class="si">{</span><span class="n">s</span><span class="si">}</span><span class="s1">'</span><span class="p">))]</span>
<span class="gp">>>> </span><span class="n">modules</span>
<span class="go">['char', 'compat', 'ctypeslib', 'emath', 'fft', 'lib', 'linalg', 'ma', 'math', 'polynomial', 'random', 'rec', 'testing', 'version']</span>
<span class="gp">>>> </span><span class="nb">len</span><span class="p">(</span><span class="n">modules</span><span class="p">)</span>
<span class="go">14</span>
</pre></div>
</div>
<p>The above doesn’t even include items that are public but have
been hidden from <code class="docutils literal notranslate"><span class="pre">__dir__</span></code>.
A particularly problematic example of that is <code class="docutils literal notranslate"><span class="pre">np.core</span></code>,
which is technically private but heavily used in practice.
For a full overview of what’s considered public, private or a bit in between, see
<a class="github reference external" href="https://github.com/numpy/numpy/blob/main/numpy/tests/test_public_api.py">numpy/numpy</a>.</p>
<p>The size of the API and the lacking definition of its boundaries
incur significant costs:</p>
<ul>
<li><p><strong>Users find it hard to disambiguate between similarly named
functions.</strong></p>
<p>Looking for functions with tab completion in IPython, a notebook, or an IDE
is a challenge. E.g., type <code class="docutils literal notranslate"><span class="pre">np.<TAB></span></code> and look at the first six items
offered: two ufuncs (<code class="docutils literal notranslate"><span class="pre">abs</span></code>, <code class="docutils literal notranslate"><span class="pre">add</span></code>), one alias (<code class="docutils literal notranslate"><span class="pre">absolute</span></code>), and three
functions that are not intended for end-users (<code class="docutils literal notranslate"><span class="pre">add_docstring</span></code>,
<code class="docutils literal notranslate"><span class="pre">add_newdoc</span></code>, <code class="docutils literal notranslate"><span class="pre">add_newdoc_ufunc</span></code>). As a result, the learning curve for
NumPy is steeper than it has to be.</p>
</li>
<li><p><strong>Libraries that mimic the NumPy API face significant implementation barriers.</strong></p>
<p>For maintainers of NumPy API-compatible array libraries (Dask, CuPy, JAX,
PyTorch, TensorFlow, cuNumeric, etc.) and compilers/transpilers (Numba,
Pythran, Cython, etc.) there is an implementation cost to each object in the
namespace. In practice, no other library has full support for the entire
NumPy API, partly because it is so hard to know what to include when faced
with a slew of aliases and legacy objects.</p>
</li>
<li><p><strong>Teaching NumPy is more complicated than it needs to be.</strong></p>
<p>Similarly, a larger API is confusing to learners, who not only have to <em>find</em>
functions but have to choose <em>which</em> functions to use.</p>
</li>
<li><p><strong>Developers are hesitant to grow the API surface.</strong></p>
<p>This happens even when the changes are warranted, because they are aware of
the above concerns.</p>
</li>
</ul>
<p>The scope of this NEP includes:</p>
<ul class="simple">
<li><p>Deprecating or removing functionality that is too niche for NumPy, not
well-designed, superseded by better alternatives, an unnecessary alias,
or otherwise a candidate for removal.</p></li>
<li><p>Clearly separating public from private NumPy API by use of underscores.</p></li>
<li><p>Restructuring the NumPy namespaces to be easier to understand and navigate.</p></li>
</ul>
<p>Out of scope for this NEP are:</p>
<ul class="simple">
<li><p>Introducing new functionality or performance enhancements.</p></li>
</ul>
</section>
<section id="usage-and-impact">
<h2>Usage and impact<a class="headerlink" href="#usage-and-impact" title="Link to this heading">#</a></h2>
<p>A key principle of this API refactor is to ensure that, when code has been
adapted to the changes and is 2.0-compatible, that code then <em>also</em> works with
NumPy <code class="docutils literal notranslate"><span class="pre">1.2x.x</span></code>. This keeps the burden on users and downstream library
maintainers low by not having to carry duplicate code which switches on the
NumPy major version number.</p>
</section>
<section id="backward-compatibility">
<h2>Backward compatibility<a class="headerlink" href="#backward-compatibility" title="Link to this heading">#</a></h2>
<p>As mentioned above, while the new (or cleaned up, NumPy 2.0) API should be
backward compatible, there is no guarantee of forward compatibility from 1.25.X
to 2.0. Code will have to be updated to account for deprecated, moved, or
removed functions/classes, as well as for more strictly enforced private APIs.</p>
<p>In order to make it easier to adopt the changes in this NEP, we will:</p>
<ol class="arabic simple">
<li><p>Provide a transition guide that lists each API change and its replacement.</p></li>
<li><p>Explicitly flag all expired attributes with a meaningful <code class="docutils literal notranslate"><span class="pre">AttributeError</span></code>
that points out to the new place or recommends an alternative.</p></li>
<li><p>Provide a script to automate the migration wherever possible. This will be
similar to <code class="docutils literal notranslate"><span class="pre">tools/replace_old_macros.sed</span></code> (which adapts code for a
previous C API naming scheme change). This will be <code class="docutils literal notranslate"><span class="pre">sed</span></code> (or equivalent)
based rather than attempting AST analysis, so it won’t cover everything.</p></li>
</ol>
</section>
<section id="detailed-description">
<h2>Detailed description<a class="headerlink" href="#detailed-description" title="Link to this heading">#</a></h2>
<section id="cleaning-up-the-main-namespace">
<h3>Cleaning up the main namespace<a class="headerlink" href="#cleaning-up-the-main-namespace" title="Link to this heading">#</a></h3>
<p>We expect to reduce the main namespace by a large number of entries, on the
order of 100. Here is a representative set of examples:</p>
<ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">np.inf</span></code> and <code class="docutils literal notranslate"><span class="pre">np.nan</span></code> have 8 aliases between them, of which most can be removed.</p></li>
<li><p>A collection of random and undocumented functions (e.g., <code class="docutils literal notranslate"><span class="pre">byte_bounds</span></code>, <code class="docutils literal notranslate"><span class="pre">disp</span></code>,
<code class="docutils literal notranslate"><span class="pre">safe_eval</span></code>, <code class="docutils literal notranslate"><span class="pre">who</span></code>) listed in
<a class="reference external" href="https://github.com/numpy/numpy/issues/12385">gh-12385</a>
can be deprecated and removed.</p></li>
<li><p>All <code class="docutils literal notranslate"><span class="pre">*sctype</span></code> functions can be deprecated and removed, they (see
<a class="reference external" href="https://github.com/numpy/numpy/issues/17325">gh-17325</a>,
<a class="reference external" href="https://github.com/numpy/numpy/issues/12334">gh-12334</a>,
and other issues for <code class="docutils literal notranslate"><span class="pre">maximum_sctype</span></code> and related functions).</p></li>
<li><p>The <code class="docutils literal notranslate"><span class="pre">np.compat</span></code> namespace, used during the Python 2 to 3 transition, will be removed.</p></li>
<li><p>Functions that are narrow in scope, with very few public use-cases,
will be removed. These will have to be identified manually and by issue triage.</p></li>
</ul>
<p>New namespaces are introduced for warnings/exceptions (<code class="docutils literal notranslate"><span class="pre">np.exceptions</span></code>) and
for dtype-related functionality (<code class="docutils literal notranslate"><span class="pre">np.dtypes</span></code>). NumPy 2.0 is a good opportunity
to populate these submodules from the main namespace.</p>
<p>Functionality that is widely used but has a preferred alternative may either be
deprecated (with the deprecation message pointing out what to use instead) or
be hidden by not including it in <code class="docutils literal notranslate"><span class="pre">__dir__</span></code>. In case of hiding, a <code class="docutils literal notranslate"><span class="pre">..</span>
<span class="pre">legacy::</span></code> directory may be used to mark such functionality in the
documentation.</p>
<p>A test will be added to ensure limited future growth of all namespaces; i.e.,
every new entry will need to be explicitly added to an allow-list.</p>
</section>
<section id="cleaning-up-the-submodule-structure">
<h3>Cleaning up the submodule structure<a class="headerlink" href="#cleaning-up-the-submodule-structure" title="Link to this heading">#</a></h3>
<p>We will clean up the NumPy submodule structure, so it is easier to navigate.
When this was discussed before (see
<a class="reference external" href="https://github.com/numpy/numpy/pull/18447">MAINT: Hide internals of np.lib to only show submodules</a>)
there was already rough consensus on that - however it was hard to pull off in
a minor release.</p>
<p>A basic principle we will adhere to is “one function, one location”. Functions
that are exposed in more than one namespace (e.g., many functions are present
in <code class="docutils literal notranslate"><span class="pre">numpy</span></code> and <code class="docutils literal notranslate"><span class="pre">numpy.lib</span></code>) need to find a single home.</p>
<p>We will reorganize the API reference guide along main and submodule namespaces,
and only within the main namespace use the current subdivision along
functionality groupings. Also by “mainstream” and special-purpose namespaces:</p>
<div class="highlight-default notranslate"><div class="highlight"><pre><span></span><span class="c1"># Regular/recommended user-facing namespaces for general use. Present these</span>
<span class="c1"># as the primary set of namespaces to the users.</span>
<span class="n">numpy</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">exceptions</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">fft</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">linalg</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">polynomial</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">random</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">testing</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">typing</span>
<span class="c1"># Special-purpose namespaces. Keep these, but document them in a separate</span>
<span class="c1"># grouping in the reference guide and explain their purpose.</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">array_api</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">ctypeslib</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">emath</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">f2py</span> <span class="c1"># only a couple of public functions, like `compile` and `get_include`</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">lib</span><span class="o">.</span><span class="n">stride_tricks</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">lib</span><span class="o">.</span><span class="n">npyio</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">rec</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">dtypes</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">array_utils</span>
<span class="c1"># Legacy (prefer not to use, there are better alternatives and/or this code</span>
<span class="c1"># is deprecated or isn't reliable). This will be a third grouping in the</span>
<span class="c1"># reference guide; it's still there, but de-emphasized and the problems</span>
<span class="c1"># with it or better alternatives are explained in the docs.</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">char</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">distutils</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">ma</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">matlib</span>
<span class="c1"># To remove</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">compat</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">core</span> <span class="c1"># rename to _core</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">doc</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">math</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">version</span> <span class="c1"># rename to _version</span>
<span class="n">numpy</span><span class="o">.</span><span class="n">matrixlib</span>
<span class="c1"># To clean out or somehow deal with: everything in `numpy.lib`</span>
</pre></div>
</div>
<div class="admonition note">
<p class="admonition-title">Note</p>
<p>TBD: will we preserve <code class="docutils literal notranslate"><span class="pre">np.lib</span></code> or not? It only has a couple of unique
functions/objects, like <code class="docutils literal notranslate"><span class="pre">Arrayterator</span></code> (a candidate for removal), <code class="docutils literal notranslate"><span class="pre">NumPyVersion</span></code>,
and the <code class="docutils literal notranslate"><span class="pre">stride_tricks</span></code>, <code class="docutils literal notranslate"><span class="pre">mixins</span></code> and <code class="docutils literal notranslate"><span class="pre">format</span></code> subsubmodules.
<code class="docutils literal notranslate"><span class="pre">numpy.lib</span></code> itself is not a coherent namespace, and does not even have a
reference guide page.</p>
</div>
<p>We will make all submodules available lazily, so that users don’t have to type
<code class="docutils literal notranslate"><span class="pre">import</span> <span class="pre">numpy.xxx</span></code> but can use <code class="docutils literal notranslate"><span class="pre">import</span> <span class="pre">numpy</span> <span class="pre">as</span> <span class="pre">np;</span> <span class="pre">np.xxx.*</span></code>, while at the
same time not negatively impacting the overhead of <code class="docutils literal notranslate"><span class="pre">import</span> <span class="pre">numpy</span></code>. This has
been very helpful for teaching scikit-image and SciPy, and it resolves a
potential issue for Spyder users because Spyder already makes all submodules
available - so code using the above import pattern then works in Spyder but not
outside it.</p>
</section>
<section id="reducing-the-number-of-ways-to-select-dtypes">
<h3>Reducing the number of ways to select dtypes<a class="headerlink" href="#reducing-the-number-of-ways-to-select-dtypes" title="Link to this heading">#</a></h3>
<p>The many dtype classes, instances, aliases and ways to select them are one of
the larger usability problems in the NumPy API. E.g.:</p>
<div class="highlight-python notranslate"><div class="highlight"><pre><span></span><span class="gp">>>> </span><span class="c1"># np.intp is different, but compares equal too</span>
<span class="gp">>>> </span><span class="n">np</span><span class="o">.</span><span class="n">int64</span> <span class="o">==</span> <span class="n">np</span><span class="o">.</span><span class="n">int_</span> <span class="o">==</span> <span class="n">np</span><span class="o">.</span><span class="n">dtype</span><span class="p">(</span><span class="s1">'i8'</span><span class="p">)</span> <span class="o">==</span> <span class="n">np</span><span class="o">.</span><span class="n">sctypeDict</span><span class="p">[</span><span class="s1">'i8'</span><span class="p">]</span>
<span class="go">True</span>
<span class="gp">>>> </span><span class="n">np</span><span class="o">.</span><span class="n">float64</span> <span class="o">==</span> <span class="n">np</span><span class="o">.</span><span class="n">double</span> <span class="o">==</span> <span class="n">np</span><span class="o">.</span><span class="n">float_</span> <span class="o">==</span> <span class="n">np</span><span class="o">.</span><span class="n">dtype</span><span class="p">(</span><span class="s1">'f8'</span><span class="p">)</span> <span class="o">==</span> <span class="n">np</span><span class="o">.</span><span class="n">sctypeDict</span><span class="p">[</span><span class="s1">'f8'</span><span class="p">]</span>
<span class="go">True</span>
<span class="go">### Really?</span>
<span class="gp">>>> </span><span class="n">np</span><span class="o">.</span><span class="n">clongdouble</span> <span class="o">==</span> <span class="n">np</span><span class="o">.</span><span class="n">clongfloat</span> <span class="o">==</span> <span class="n">np</span><span class="o">.</span><span class="n">longcomplex</span> <span class="o">==</span> <span class="n">np</span><span class="o">.</span><span class="n">complex256</span>
<span class="go">True</span>
</pre></div>
</div>
<p>These aliases can go: <a class="reference external" href="https://numpy.org/devdocs/reference/arrays.scalars.html#other-aliases">https://numpy.org/devdocs/reference/arrays.scalars.html#other-aliases</a></p>
<p>All one-character type code strings and related routines like <code class="docutils literal notranslate"><span class="pre">mintypecode</span></code>
will be marked as legacy.</p>
<p>To discuss:</p>
<ul class="simple">
<li><p>move <em>all</em> dtype-related classes to <code class="docutils literal notranslate"><span class="pre">np.dtypes</span></code>?</p></li>
<li><p>canonical way to compare/select dtypes: <code class="docutils literal notranslate"><span class="pre">np.isdtype</span></code> (new, xref array API
NEP), leaving <code class="docutils literal notranslate"><span class="pre">np.issubdtype</span></code> for the more niche use of numpy’s dtype class
hierarchy, and hide most other stuff.</p></li>
<li><p>possibly remove <code class="docutils literal notranslate"><span class="pre">float96</span></code>/<code class="docutils literal notranslate"><span class="pre">float128</span></code>? they’re aliases that may not exist,
and are too easy to shoot yourself in the foot with.</p></li>
</ul>
</section>
<section id="cleaning-up-the-niche-methods-on-numpy-ndarray">
<h3>Cleaning up the niche methods on <code class="docutils literal notranslate"><span class="pre">numpy.ndarray</span></code><a class="headerlink" href="#cleaning-up-the-niche-methods-on-numpy-ndarray" title="Link to this heading">#</a></h3>
<p>The <code class="docutils literal notranslate"><span class="pre">ndarray</span></code> object has a lot of attributes and methods, some of which are
too niche to be that prominent, all that does is distract the average user.
E.g.:</p>
<ul class="simple">
<li><p><code class="docutils literal notranslate"><span class="pre">.itemset</span></code> (already discouraged)</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">.newbyteorder</span></code> (too niche)</p></li>
<li><p><code class="docutils literal notranslate"><span class="pre">.ptp</span></code> (niche, use <code class="docutils literal notranslate"><span class="pre">np.ptp</span></code> function instead)</p></li>
</ul>
</section>
</section>
<section id="api-changes-considered-and-rejected">
<h2>API changes considered and rejected<a class="headerlink" href="#api-changes-considered-and-rejected" title="Link to this heading">#</a></h2>
<p>For some functions and submodules it turned out that removing them would cause
too much disruption or would require an amount of work disproportional to the
actual gain. We arrived at this conclusion for such items:</p>
<ul class="simple">
<li><p>Removing business day functions: <code class="docutils literal notranslate"><span class="pre">np.busday_count</span></code>, <code class="docutils literal notranslate"><span class="pre">np.busday_offset</span></code>, <code class="docutils literal notranslate"><span class="pre">np.busdaycalendar</span></code>.</p></li>
<li><p>Removing <code class="docutils literal notranslate"><span class="pre">np.nan*</span></code> functions and introducing new <code class="docutils literal notranslate"><span class="pre">nan_mode</span></code> argument to the related base functions.</p></li>
<li><p>Hiding histogram functions in the <code class="docutils literal notranslate"><span class="pre">np.histograms</span></code> submodule.</p></li>
<li><p>Hiding <code class="docutils literal notranslate"><span class="pre">c_</span></code>, <code class="docutils literal notranslate"><span class="pre">r_</span></code> and <code class="docutils literal notranslate"><span class="pre">s_</span></code> in the <code class="docutils literal notranslate"><span class="pre">np.lib.index_tricks</span></code> submodule.</p></li>
<li><p>Functions that looked niche but are present in the Array API (for example <code class="docutils literal notranslate"><span class="pre">np.can_cast</span></code>).</p></li>
<li><p>Removing <code class="docutils literal notranslate"><span class="pre">.repeat</span></code> and <code class="docutils literal notranslate"><span class="pre">.ctypes</span></code> from <code class="docutils literal notranslate"><span class="pre">ndarray</span></code> object.</p></li>
</ul>
</section>
<section id="related-work">
<h2>Related work<a class="headerlink" href="#related-work" title="Link to this heading">#</a></h2>
<p>A clear split between public and private API was recently established
as part of SciPy 1.8.0 (2021), see
<a class="reference external" href="https://github.com/scipy/scipy/issues/14360">tracking issue scipy#14360</a>.
The results were beneficial, and the impact on users relatively modest.</p>
</section>
<section id="implementation">
<h2>Implementation<a class="headerlink" href="#implementation" title="Link to this heading">#</a></h2>
<p>The implementation has been split over many different PRs, each touching on
a single API or a set of related APIs. Here’s a sample of the most impactful PRs:</p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/numpy/numpy/pull/24634">gh-24634: Rename numpy/core to numpy/_core</a></p></li>
<li><p><a class="reference external" href="https://github.com/numpy/numpy/pull/24357">gh-24357: Cleaning numpy/__init__.py and main namespace - Part 2</a></p></li>
<li><p><a class="reference external" href="https://github.com/numpy/numpy/pull/24376">gh-24376: Cleaning numpy/__init__.py and main namespace - Part 3</a></p></li>
</ul>
<p>The complete list of cleanup work done in the 2.0 release can be found by searching a dedicated label:</p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/numpy/numpy/labels/Numpy%202.0%20API%20Changes">Numpy 2.0 API Changes:</a></p></li>
</ul>
<p>Some PRs has already been merged and shipped with the <cite>1.25.0</cite> release.
For example, deprecating non-preferred aliases:</p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/numpy/numpy/pull/23302">gh-23302: deprecate np.round_; add round/min/max to the docs</a></p></li>
<li><p><a class="reference external" href="https://github.com/numpy/numpy/pull/23314">gh-23314: deprecate product/cumproduct/sometrue/alltrue</a></p></li>
</ul>
<p>Hiding or removing objects that are accidentally made public or not even NumPy objects at all:</p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/numpy/numpy/pull/21403">gh-21403: remove some names from main numpy namespace</a></p></li>
</ul>
<p>Creation of new namespaces to make it easier to navigate the module structure:</p>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/numpy/numpy/pull/22644">gh-22644: Add new np.exceptions namespace for errors and warnings</a></p></li>
</ul>
</section>
<section id="alternatives">
<h2>Alternatives<a class="headerlink" href="#alternatives" title="Link to this heading">#</a></h2>
</section>
<section id="discussion">
<h2>Discussion<a class="headerlink" href="#discussion" title="Link to this heading">#</a></h2>
<ul class="simple">
<li><p><a class="reference external" href="https://github.com/numpy/numpy/issues/23999">gh-23999: Tracking issue for the NEP 52</a></p></li>
<li><p><a class="reference external" href="https://github.com/numpy/numpy/issues/24306">gh-24306: Overhaul of the main namespace</a></p></li>
<li><p><a class="reference external" href="https://github.com/numpy/numpy/issues/24507">gh-24507: Overhaul of the np.lib namespace</a></p></li>
</ul>
</section>
<section id="references-and-footnotes">
<h2>References and footnotes<a class="headerlink" href="#references-and-footnotes" title="Link to this heading">#</a></h2>
</section>
<section id="copyright">
<h2>Copyright<a class="headerlink" href="#copyright" title="Link to this heading">#</a></h2>
<p>This document has been placed in the public domain.</p>
</section>
</section>
</article>
</div>
<dialog id="pst-secondary-sidebar-modal"></dialog>
<div id="pst-secondary-sidebar" class="bd-sidebar-secondary bd-toc"><div class="sidebar-secondary-items sidebar-secondary__inner">
<div class="sidebar-secondary-item">
<div
id="pst-page-navigation-heading-2"
class="page-toc tocsection onthispage">
<i class="fa-solid fa-list"></i> On this page
</div>
<nav class="bd-toc-nav page-toc" aria-labelledby="pst-page-navigation-heading-2">
<ul class="visible nav section-nav flex-column">
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#abstract">Abstract</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#motivation-and-scope">Motivation and scope</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#usage-and-impact">Usage and impact</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#backward-compatibility">Backward compatibility</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#detailed-description">Detailed description</a><ul class="nav section-nav flex-column">
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#cleaning-up-the-main-namespace">Cleaning up the main namespace</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#cleaning-up-the-submodule-structure">Cleaning up the submodule structure</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#reducing-the-number-of-ways-to-select-dtypes">Reducing the number of ways to select dtypes</a></li>
<li class="toc-h3 nav-item toc-entry"><a class="reference internal nav-link" href="#cleaning-up-the-niche-methods-on-numpy-ndarray">Cleaning up the niche methods on <code class="docutils literal notranslate"><span class="pre">numpy.ndarray</span></code></a></li>
</ul>
</li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#api-changes-considered-and-rejected">API changes considered and rejected</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#related-work">Related work</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#implementation">Implementation</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#alternatives">Alternatives</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#discussion">Discussion</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#references-and-footnotes">References and footnotes</a></li>
<li class="toc-h2 nav-item toc-entry"><a class="reference internal nav-link" href="#copyright">Copyright</a></li>
</ul>
</nav></div>
</div></div>
</div>
<footer class="bd-footer-content">
</footer>
</main>
</div>
</div>
<!-- Scripts loaded after <body> so the DOM is not blocked -->
<script defer src="_static/scripts/bootstrap.js?digest=8878045cc6db502f8baf"></script>
<script defer src="_static/scripts/pydata-sphinx-theme.js?digest=8878045cc6db502f8baf"></script>
<footer class="bd-footer">
<div class="bd-footer__inner bd-page-width">
<div class="footer-items__start">
<div class="footer-item">
<p class="copyright">
© Copyright 2017-2025, NumPy Developers.
<br/>
</p>
</div>
<div class="footer-item">
<p class="sphinx-version">
Created using <a href="https://www.sphinx-doc.org/">Sphinx</a> 7.2.6.
<br/>
</p>
</div>
</div>
<div class="footer-items__end">
<div class="footer-item">
<p class="theme-version">
<!-- # L10n: Setting the PST URL as an argument as this does not need to be localized -->
Built with the <a href="https://pydata-sphinx-theme.readthedocs.io/en/stable/index.html">PyData Sphinx Theme</a> 0.16.1.
</p></div>
</div>
</div>
</footer>
</body>
</html>