
CHAPTER 2

Applied Linear-Systems Theory

Ian A. Cunningham

John P Robarts Research Institute, and London Health Sciences Centre

CONTENTS

2.1	Introduction / 82

2.2	Background concepts / 83

2.2.1 Images and their units / 83

2.2.1.1	Analog image / 84

2.2.1.2	Digital image / 84

2.2.1.3	Quantum image / 84

2.2.2 The Dirac S function, sampling, and the sifting property / 85

2.2.3 Generalized functions / 86

2.2.4 Distribution theory / 87

2.2.5 Transfer theory / 87

2.2.5.1	Signals: large-area contrast transfer / 87

2.2.5.2	Noise: variance transfer / 89

2.3 Introduction to linear-systems theory / 91

2.3.1 Linear systems / 91

2.3.1.1 Impulse-response function, IRF / 92

2.3.2 Linear and shift-invariant (LSI) systems / 93

2.3.2.1 The convolution integral / 93

2.3.2.2 System characteristic function, T(u) l 94

2.3.2.3 Modulation-transfer function, MTF / 97

2.3.2.4 Line-spread function, LSF / 99

2.3.2.5 The correlation integral / 100

2.4 The spatial-frequency domain / 100

2.4.1 The Fourier transform / 100

2.4.1.1 The two-dimensional fourier transform / 102

2.4.2 The discrete fourier transform / 103

2.4.3 Sampling and aliasing / 104

79

Downloaded From: http://ebooks.spiedigitallibrary.org/ on 09/18/2013 Terms of Use: http://spiedl.org/terms



80 Applied Linear-Systems Theory

2.4.3.1 The sampling theorem / 107

2.4.3.2 Recovering a continuous function from sample

values / 107

2.5 Stochastic processes in linear systems / 108

2.5.1 Deterministic versus stochastic systems / 109

2.5.2 Expected value and variance / 109

2.5.3 Autocorrelation and autocovariance / 109

2.5.4 Wide-sense stationary (WSS) random processes / 110

2.5.4.1 Noise power spectrum of a WSS random process / 110

2.5.5 Ergodic WSS random processes / 111

2.5.5.1 Noise power spectrum of an ergodic WSS random

process / 112

2.5.6 Ergodic wide-sense cyclostationary (WSCS) random

processes / 113

2.5.6.1 Noise-power spectrum of an ergodic WSCS random

process / 114

2.6	Metrics of system performance / 115

2.6.1 Rose model signal-to-noise ratio / 115

2.6.2 Noise-power spectrum (NPS) and variance / 117

2.6.2.1	NPS in one and two dimensions / 117

2.6.2.2	The zero-frequency value of the NPS / 118

2.6.2.3	NPS, autocovariance and variance of a distribution of

uncorrelated quanta / 120

2.6.3 Noise-equivalent number of quanta (NEQ) / 121

2.6.4 Detective quantum efficiency (DQE) / 123

2.7	Noise transfer in cascaded imaging systems / 126

2.7.1 Quantum amplification / 127

2.7.1.1	Binomial selection / 128

2.7.2 Deterministic blur / 128

2.7.3 Quantum scatter / 129

2.8	Cascaded DQE and quantum sinks / 131

2.8.1 Particle-based approach / 131

2.8.2 Fourier-based Approach / 133

2.8.3 General criteria to avoid a secondary quantum sink / 134

2.8.4 Quantum accounting diagrams (QAD) / 134

2.9 Metrics of digital-system performance / 137

2.9.1 Detector-element size and the aperture MTF / 137

2.9.2 Digital MTF: presampling MTF and aliasing /, 140

2.9.3 Digital NPS: presampling NPS and noise aliasing / 141

2.9.3.1 Digital NPS in two dimensions / 143

2.9.3.2 Digital-detector noise variance / 144

2.9.4 Digital NEQ / 144

Downloaded From: http://ebooks.spiedigitallibrary.org/ on 09/18/2013 Terms of Use: http://spiedl.org/terms



Contents 81

2.9.5 Digital DQE / 145

2.9.6 Signal aliasing / 145

2.10 Analysis of a simple digital detector array / 145

2.10.1 Cascaded model / 146

2.10.1.1 Stage 1: selection of x-ray quanta that interact in

screen / 146

2.10.1.2 Stage 2: conversion to optical quanta in screen / 148

2.10.1.3 Stage 3: scattering of optical quanta in screen / 148

2.10.1.4 Stage 4: selection of light quanta that interact / 149

2.10.1.5 Stage 5: spatial integration of interacting light quanta in

elements / 149

2.10.1.6 Stage 6: output from discrete detector elements / 150

2.10.2 Detector DQE / 151

2.10.3 Noise aliasing, detector fill factor and variance / 152

2.10.3.1 Low-resolution scintillator (correlated quantum noise on

detector array) / 152

2.10.3.2 High-resolution scintillator (uncorrelated quantum noise

on detector array) / 153

2.11 Summary / 155

References / 156

Downloaded From: http://ebooks.spiedigitallibrary.org/ on 09/18/2013 Terms of Use: http://spiedl.org/terms



82 Applied Linear-Systems Theory

2.1 Introduction

A wide variety of both digital and nondigital medical-imaging systems are now

in clinical use and many new system designs are under development. These are all

complex systems, with multiple physical processes involved in the conversion of

an input signal (e.g., x rays) to the final output image viewed by the interpreting

physician. For every system, a high-quality image is obtained only when all pro-

cesses are properly designed so as to ensure accurate transfer of the image signal

and noise from input to output.

An important aspect of imaging science is to understand the fundamental

physics and engineering principles of these processes, and to predict how they

influence final image quality. For instance, it has been known since the work of

Rose [1-4], Shaw [5], and others that the image signal-to-noise ratio (SNR) is

ultimately limited by the number of quanta used to create the image. This is illus-

trated in Figure 2.1, showing the improvement in image quality as the number of

x-ray quanta used to produce images of a skull phantom is increased from 45 to

6720 quanta/mm2 . Negligible image noise was added by the imaging system.

The view that an imaging system must faithfully transfer the input image sig-

nal to the output suggested the use of foundations laid out by scientists and en-

gineers studying communications theory, and in particular, use of the Fourier-

Figure 2.1: Image quality is dependent on the number of quanta used to create an image

as illustrated in this example. The average detector x-ray exposure per image is approxi-

mately: a) 0.16 AR, b) 1.6 AR, c) 16 AR, and d) 24 AR.
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Table 2.1: Summary of incident detector ex-
posure and number of quanta per mm 2 used to
create the images shown in Figure 2.1

Detector Exposure Quanta per mm 2

a) 0.16µR	45

b) 1.6R	450

c) 16 tcR	 4500

d) 24 tiR	 6720

transform linear-systems approach [6]. Linear-systems theory was initially applied

in the imaging sciences by Rossmann and co-workers [7, 8], including use of the

modulation-transfer function (MTF) and related concepts. General works have sub-

sequently been published by Dainty and Shaw [5], Gaskill [9], Papoulis [10], Doi,

Rossmann and Haus [11], Metz and Doi [12], and others. Possibly the most exten-

sive use of linear-systems theory in the medical-imaging field is the comprehensive

text by Barrett and Swindell [13] who use this approach to describe fundamental

principles and characteristics of many imaging systems in radiography, computed

tomography (CT), nuclear medicine, ultrasound, and other areas.

In this chapter, principles of linear-systems theory as it pertains to the anal-

ysis of medical-imaging systems are described. The linear-systems approach is

used to describe both signal and noise transfer, for both digital and nondigital

systems. The link is made to metrics of image and system quality including the

modulation-transfer function (MTF), noise-equivalent number of quanta (NEQ),

quantum sinks, and detective quantum efficiency (DQE). For background read-

ing, see Bracewell [14] for an excellent description of the Fourier transform, and

Brigham [15] for a description of the discrete Fourier transform. General refer-

ences for stochastic processes are Bendat and Piersol [16] and Papoulis [17]. The

noise-power spectrum is described by Dainty and Shaw [5] and Blackman and
Tukey [ 18].

2.2 Background concepts

2.2.1 Images and their units

The input to an x-ray imaging system is always a distribution of x-ray quanta.

The output may be approximated as an analog image such as the optical density

of a film transparency, or a digital image consisting of an array of digital values

stored in computer memory. The term "image" may be used to represent each of

these three types of quantities, giving rise to three different types of images: (1) an

analog image, d(r); (2) a digital image, d; and (3) a distribution of quanta forming

a quantum image, q (r). These particular names are the author's preference, but the

distinctions are necessary as they have different units and physical meanings, and

must therefore be treated differently mathematically.
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84 Applied Linear-Systems Theory

Transfer theory provides a description of the relationships between these three

quantities. In particular, it is used here to describe the relationship between an input

quantum image (generally a distribution of x-ray quanta incident on a detector) and

an output analog or digital image. In this section, these three types of images and

their physical bases are described.

2.2.1.1 Analog image

The term analog image will be used to describe a spatially-varying sample

function d(r). It is expressed as a function of the continuous variable r represent-

ing position in an n-dimensional image. The units of d(r) are arbitrary. Examples

include the voltage from a video camera as a function of position along a trace, op-

tical density in a radiographic film, or mean emitted intensity from a CRT monitor.

2.2.1.2 Digital image

A digital image generally consists of an n-dimensional array of discrete nu-

merical values. For example, d,^ X ,,^, represents image intensity at a particular pixel

(picture element) in a two-dimensional image identified by the coordinate n, n v .

These values may be used as an index into a "look-up table" to produce the desired

image brightness according to a specified display level and window. The values

dn ,,,^ Y are dimensionless, as are the digital values produced by an analog-to-digital

converter (ADC).

2.2.1.3 Quantum image

A quantum image is a spatial distribution of quanta. For example, x rays trans-

mitted through a patient and incident on an imaging detector form an x-ray quan-

tum image. Each quantum has negligible spatial extent, and may be considered to

be a point or impulse object represented as a single Dirac delta function 8 (r — r0)

where r0 is a vector describing the location of the quantum. Therefore, a quantum

image may be represented as the sample function q(r) consisting of the superpo-

sition of a large number of spatially-distributed S functions.

There are two important reasons why manipulating quantum images is more
complicated than manipulating analog or digital images. The first is that they must

be interpreted as distributions in the mathematical sense, having dimension area 1

for a two-dimensional image. Some implications of this are described in more de-

tail below. The second reason is that image quanta have fundamental statistical

properties that cannot be ignored. It is therefore necessary to interpret q (r) as a

sample function of a random process. For instance, we describe the position of

each quantum in an image using the random vector variable r" which has the set

of values {r, } and where each value describes the position of one quantum. The

quantum image q (r) is a particular realization of these random variables, and can

be expressed as the sample distribution

Nq

q(r)_>8(r—ri). (2.1)

t—i
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While it is not possible to know precisely where the x-ray quanta are in a particular

distribution because of the uncertainty principle, q(r) represents a particular pos-

sible distribution. That is, a sample image, where the quanta may be statistically

correlated—or not—in some specified way. The expected value (i.e., an ensemble

average of many such realizations, see Section 2.5.2) of q(r) will be written as

E{q(r)}, and describes the expected distribution of quanta per unit area at posi-

tion r. If the image consists only of a Poisson distribution of quanta, r is randomly

distributed and uncorrelated over the image area, and E{q(r)} is a constant inde-

pendent of position.

Quantum images are generally two dimensional. However, it will be conve-

nient, particularly for illustrations, to consider a one-dimensional quantum im-

age consisting of a distribution of quanta along a line, q(x), having dimension

length'.

2.2.2 The Dirac S function, sampling, and the sifting property

The Dirac 8 function, or impulse function, is so important in the application of

linear-systems theory, both for the representation of quantum images as described

above and in the analysis of digital systems, that it is appropriate to describe its

properties explicitly. The symbol S (x — xo) represents an impulse at position xo

with the property that [14]

{ 0	for x ^ xo
	S (x — xo) = 

undefined for x = xo,	
(2.2)

and with the constraint that

J 
S(x — xo) dx = 1.	 (2.3)

The S function always has a dimension corresponding to the inverse of its argument

(x —I in this case). In addition, for any function f (x) that is continuous at x = xo,

f
b

 f(x)&(x —xo)dx=
{f(xo) ifa<xo<b

	(2.4)
 0	otherwise,

and from which comes the sifting property,

f f(x)5(x — xo) dx = f (xo) f 3(x — xo) dx = f (xo) = f(x)Ix=x o . (2.5)

The sifting property provides a mechanism whereby the process of sampling,

that is, evaluating a function at a specified position x = xo, can be expressed in

terms of the linear operation of multiplication with a S function:

f(x)S(x — xo) = f(xo)3(x — x o ).	 (2.6)
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86 Applied Linear-Systems Theory

It is important to note that multiplication with the 6 function does not result in the

sample value alone—it results in a 8 function scaled by the sample value f (xo).

The sample value may be dimensionless, but the 8 function is not.

The 8 function is a generalized function in the mathematical sense as opposed

to a "well-behaved" function. For this reason it is sometimes referred to as the 8

symbol rather than the 8 function. While it is tempting to manipulate the 8 function

as if it were well behaved, it is really defined only in terms of its properties, such as

those given by Eqs. (2.2) to (2.5), and must be treated accordingly, and with great

care.

In addition to the sifting property, other important properties of the 8 function

include [14]

1
S(ax) =	 ^8(x),	 (2.7)

a

8(—x) = S(x),	 (2.8)

x8(x) = 0.	 (2.9)

The Dirac 8 function should not be confused with the Kronecker 8 function, defined

as

	

_ 1 for m = 0	
(2.10)

s'n— 0 form=0,	
2.10

often used in the description of discrete systems.

2.2.3 Generalized functions

While use of the 8 function is often convenient, it must again be emphasized

that it is a generalized function, and must be treated with care. The 8 function

was first used by physicists for the description of momentum impulses and point

objects such as point charges. While the 6 function is not a real function, it was

often manipulated as if it were. With the subsequent development of generalized

functions, it is known now that the 8 function can often be manipulated as a real

function but only evaluated within an integral as expressed by the sifting property

in Eq. (2.5).

The class of generalized functions used here can be defined as the limit of a

sequence of well-behaved functions. The one-dimensional 8 function can be ex-

pressed in terms of many such limits, two being

sin(nrx)
S(x) = lim	= lim rsinc(irrx),	 (2.11 )

r-->00	7rx	r-^ oo

and

s ing (ir ix)	 2
S(x) = lim	= lim rsinc (ntx).	(2.12)

r- 00 7r 2 1x2	r-+00
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Refer to Bracewell [ 14] or Gaskill [9] for a description of 8 functions, distributions,

and generalized functions in linear-systems theory.

2.2.4 Distribution theory

Images consisting of a distribution of quanta must be interpreted using distri-

bution theory. A distribution can be measured only through the use of a sampling

function, çb (x) which describes the measurement process. The sampling function is

sometimes called an aperture function when used to describe the sensitivity profile

of a detector. Do not confuse it with the sampling operation where a waveform is

multiplied with a 3 function (Section 2.2.2), or a sample function of a stochastic

process (Section 2.5). For example, if a measure of the one-dimensional quantum

image q (x) is obtained with a detector of width a, producing a signal proportional

to the number of interacting quanta, the result d may be expressed as the integral

0o

d=kf q(x)dx=k[ q(
xo+a/2	

x)^
( x _xo 	

(2.13)
.x o a/2	 00 	a

where the detector is centered at x = xo and k is a constant relating the number

of interacting quanta to the detector output signal that might be a voltage, or an

analog-to-digital converter (ADC) value (assuming ADC quantization errors can

be ignored). In this example, the sampling function is O(x) = II(x/a) which is a

rectangle of unity height and width a.

Note that while q(x) is a generalized function, the expected value of q(x),

E{q(x)), is a well-behaved function having the same units.

2.2.5 Transfer theory

One way of characterizing an imaging system is to describe the input-output

relationships of parameters useful in the description of image signals and noise.

For instance, Figure 2.2 shows input and output images, qin (r) and gout (r) respec-

tively, of a hypothetical imaging system in which there has been a degradation of

image contrast.

2.2.5.1 Signals: large-area contrast transfer

Contrast is a measure of the relative brightness difference between two loca-

tions in an image. Relative brightness is often a more important parameter than

absolute brightness because the absolute brightness of a displayed image is often

dependent on the display hardware (e.g., video monitor brightness setting or view-

box intensity), and may therefore have no particular significance in an absolute

sense. The contrast between locations rl and r2 of q, (r) in Figure 2.2 is C1n ,

defined as

Cmn = 
E{qm n (r2) } — E {gin (ri) }
	

(2.14)

2[E{gin(r2)} +E{gin(rl)}]
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An alternative definition of contrast used by some omits the factor 1/2 but is not

used in this chapter. The corresponding contrast in the output image is Cout where

Cout —_ 
E{g0ut(r2)} —  E {gout(rl)} ,	

(2.15)

2 [E{gout(r2)} +E{gout(rl)}}

and the large-area contrast-transfer factor is therefore defined as the ratio

Lout
T^ _	 (2.16)

Cin

The concepts of signal transfer are related to the spatial resolution of a system.

This is illustrated in Figure 2.3 where the input-output relationship is shown for a

system that transfers large-area (relative to the measurement area) contrast fairly

well, but small-area contrast poorly. The result is an output image in which the

contrast of fine details (small lesions and edges) is reduced, giving rise to an image

that appears to be "blurred" by the system.

Transfer theory must therefore be tied somehow to concepts of both image-

structure size and system spatial resolution. One way of doing this is to express

Figure 2.2: Transfer theory describes relationships between the input and output images

of an imaging system. In this illustration of a deterministic system, an image is transferred

accurately except for a degradation in contrast.

Figure 2.3: A system with poor spatial resolution transfers large-area contrast better than

small-area contrast. As a result, the contrast of fine detail is reduced and the transferred

image appears "blurred."
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transfer relationships in the spatial-frequency domain and to make extensive use of

the Fourier transform and related theorems. The uniqueness of the Fourier trans-

form means that any problem can be solved equivalently in either the spatial (r)

or the spatial-frequency (k) domains. It is often easier to find a solution in one do-

main than in the other, and so every imaging problem should be examined in both.

In addition, important insight is often obtained when the solution to any problem

is expressed in each domain. For instance, the harmful effect of signal and noise

aliasing is easier to predict in the spatial-frequency domain, but it may be neces-

sary to understand aliasing in the spatial domain to develop a physical intuition

of the outcome. The importance of being able to move fluently between the two
domains cannot be overstated, and in the opinion of some, is one of the important

distinguishing skills of an imaging scientist.

2.2.5.2 Noise: variance transfer

Contrast transfer says nothing about the transfer of image noise as illustrated in

Figure 2.4. Image noise is defined here as stochastic variations in image signals (see

Section 2.5.2). For instance, an image of a uniform object might have a uniform

intensity over a specified region of interest if not for these random variations. One

way of describing noise is to calculate the variance in measurements of the image

signal over a specific region of interest which has a uniform expected value. Noise

variance is then given as [10]

a3 = E{ IOdj 21, (2.17)

where Od = d — E{d}. Units of the variance 6d are the same as units of the squared

signal d2 .

The variance is defined in Eq. (2.17) in terms of the expected value of I Ad I 2
which may be obtained from an average of many images (many realizations) at

a particular location r. This is called an ensemble average. In practice, it may be

necessary to use a spatial average of I Ad 1 2 as an estimate of the ensemble aver-

age. A system for which the ensemble and spatial averages are equivalent is called

ergodic. Ergodic systems are discussed later in Section 2.5.5.

Figure 2.4: Noise in the output image is related to both the noise in the input image and
the noise-transfer characteristics of the system. In this example, the image is transferred
both with a reduction of image contrast and an increase in image-noise variance.
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Figure 2.5: A system that degrades spatial resolution and also increases noise will severely

compromise image quality as illustrated here, particularly for the visualization of small de-

tails.

Figure 2.6: One-dimensional profiles may have the same noise variance but look very

different as shown here. The noise in b) is correlated over a greater distance than the noise

in a).

Figure 2.5 illustrates the input-output relationship of a system that passes con-

trast in a manner identical to that in Figure 2.3, but increases noise as well. The

resulting image quality is severely compromised, and small structures are barely

detectable, if at all.

Some insight into system performance could be obtained if a definable relation-

ship existed between the noise variance at the input and output, and the ratio of the

two would be the "noise-variance transfer" factor. However, the concept of noise-

variance transfer has little meaning for the description of x-ray imaging systems

for two reasons. The first is that the variance of an input x-ray quantum image is

undefined as described in Section 2.6.2.3. The second is that the variance generally

does not describe noise adequately in an analog or digital image. This is illustrated

in Figure 2.6. Both profiles have unity noise variance; however, they look very dif-

ferent because the noise in a) is correlated over only a very short distance while

noise in b) is correlated over a greater distance. The Fourier transform can be used

to describe image noise in the presence of these correlations.
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Figure 2.7: The two-dimensional images shown here have the same background noise

variance but look very different as the noise in b) is correlated over a greater distance than

the noise in a). The same two-dimensional sinusoidal pattern has been added to each im-

age.

2.3 Introduction to linear-systems theory

In this section, linear-systems theory is introduced including a description

of important principles and relationships required to characterize system perfor-

mance in the spatial-frequency domain. While most results are expressed in one-

dimensional geometry in terms of the position x and spatial frequency u, similar

relationships hold true using two-dimensional geometry in terms of the position

vector r and spatial-frequency vector k.

2.3.1 Linear systems

A linear-system response is generally necessary before a linear-systems ap-

proach can be used to analyze or characterize system performance. Thus, the first

step in any analysis is to ensure the system under study is indeed linear. Essen-

tially, this means the output must be proportional to the input. Thus, if a system

has a transfer characteristic described by S{ } such that an input h(x) produces an

output S {h(x)}, then for any two inputs h1 (x) and h2(x), the system is linear if and

only if

S {h1(x) + h2(x)} = S{hi(x)} + S {h2(x)},	(2.18)

and

S {ah(x)} =aS{h(x)},	(2.19)
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irf(x,xo)
S(x-x o)

X	 x
xo	xo

impulse	 impulse response

Figure 2.8: An impulse input at x = xo, E(x — xp), produces the impulse-response out-

put irf(x, xo).

	8(x-x1) 8(x-x 2 )	irf(x,x1)+irf(x,x2)

	x 	x
xi x2	 xl x2

Figure 2.9: For linear systems, the output corresponding to two impulse inputs is the su-
perposition of two impulse-response functions.

for any real constant a. Many systems that are not linear can be linearized with an

appropriate calibration, or exhibit small-signal linearity. For instance, radiographic

film-screen systems are not linear in their response, but can be linearized if the

H&D curve (the relationship between film optical density and x-ray exposure) is

known. See references [5], [9], and [20] for further discussions on using linear-

systems theory for modeling radiographic systems. In general, no system is com-

pletely linear, and as such the linear-systems approach is always an approximation.

The analysis of non-linear systems may be limited to their behavior with small am-

plitude signals [21]. In the following, we will assume a linear system except where

specifically noted.

2.3.1.1 Impulse-response function, IRF

When a linear system is presented with the input 8(x — x0), an impulse lo-

cated at x = xo, the corresponding output will be S {8(x — xo)} which is called the

impulse-response function (IRF), i.e.,

irf(x,x0) = S {8(x — xo) }.	 (2.20)

The real utility of using the IRF is that for any input expressed as a superposi-

tion of many such impulse functions, the output of a linear system will consist of

the superposition of one IRF for each input impulse, as shown in Figure 2.8. For

instance, if the input is the two impulses shown in Figure 2.9, the output will be

S{S(x— xi)+S(x—x2)}=irf(x,xt)+irf(x,x2).	(2.21)
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There is no requirement that the IRF be isotropic. The IRF is sometimes called

the point-spread function (PSF) when used to describe a two-dimensional imaging

system.

2.3.2 Linear and shift-invariant (LSI) systems

A system must also have a shift-invariant (isoplanatic) response before a

Fourier-based analysis can be used. This requires that the system impulse-response

function be shift invariant so that a particular structure in the image will appear the

same, regardless of where in the image it is placed. In practice, analysis of sys-

tems that are not shift invariant, such as image-intensifier based systems, may be

restricted to a central region where the response is approximately shift invariant.

A system that is both linear and shift invariant in its response is sometimes re-

ferred to as an "LSP' system. Because the shape of the IRF in an LSI system is

independent of position, it can be written in the form

irf(x, xo) = irf(x — xo).	 (2.22)

2.3.2.1 The convolution integral

If a function h (x) can be approximated as a large number of narrow rect-

angles having width Ax (see Figure 2.10), the rectangle centered at x = jAx,

where j is an index identifying the rectangle, has a height h (j Ax) and therefore

an area h (j Ax) x Ax. If Ax is small relative to the width of the IRF, the shape of

the rectangle is unimportant (only the area is significant) and thus each rectangle

can in turn be represented as a S function, positioned at x = j Ax, and scaled by

h(j Ax) Ax. The output S{h(x)} of a system having an IRF described by irf(x, xo)

can then be expressed approximately as the superposition of an IRF for each delta

function:

00

S{h(x)}	E h(jAx)irf(x,jAx)Ax.	 (2.23)

.i =-oo

In the limit of Ax -^ 0, the summation becomes the integral

S{h(x)} = J	h(x') irf(x, x') dx',	 (2.24)

which is called a superposition integral.

When the IRF is shift invariant, the superposition integral can be simplified to

S{h(x) } = J h(x') irf(x — x') dx',	 (2.25)
00

which is called the convolution integral (see Figure 2.11). The convolution integral
is of fundamental importance in the imaging sciences (and in many other areas of
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—Axe_

0 Ax 2Ax 3Ax 4Ax 5Ax

Figure 2.10: An input signal is divided into a large number of narrow rectangles or scaled

delta functions, each with area h(jAx)Ax.

physics, communications theory and engineering). It describes the output signal

obtained when the input h(x) is passed through a linear and shift-invariant (LSI)

system. The order of the integrands h (x) and irf(x) can be reversed without affect-

ing the outcome. The convolution integral is often expressed in short form as

S{h(x)} = h(x) * irf(x). (2.26)

Selected properties of the convolution integral are listed in Table 2.2. These should

be learned as one learns addition or multiplication, so that they can be used with

ease.

It should be noted here that although the convolution integral (Eq. (2.25)) is

a standard way of describing the response of an LSI system to an input signal, it

describes a deterministic system only. That is, a system that has an IRF given ex-
actly by irf(x). When the system has a stochastic component in its response, which

includes all x-ray imaging systems, it must be viewed as a stochastic system (see

Section 2.5.1) and the linear-systems approach using the convolution integral de-

scribes only the expectation value of the system response. Image noise can only be

described using the linear-systems approach once stochastic theories are included

as described in Section 2.5.

2.3.2.2 System characteristic function, T(u)

The IRF contains all the information about a system necessary to determine the

expected response in any given situation. However, numerical solutions to the con-

volution integral are often required in practical situations, and these generally offer

little physical insight toward an understanding of system performance. A useful

alternative is to examine the special case of an input that varies sinusoidally with

position, expressed in terms of the complex exponential

h(x) = ei2""x = cos(2nux) + i sin(27rux),	(2.27)

Downloaded From: http://ebooks.spiedigitallibrary.org/ on 09/18/2013 Terms of Use: http://spiedl.org/terms



Introduction to linear-systems theory 95

h (x') S(x-x')ox
h(x )	h ut(x)

x	̂ x
x'	 X.

Figure 2.11: For linear and shift-invariant systems the convolution integral describes the

superposition of an infinite number of IRF's weighted by the input h(x).

Table 2.2: Properties of the convolution integral

Commutative:

f (x) * h(x) = h(x) * f (x)

Distributive over Addition:

f(x)*[hl(x)+h2(x)J=f(x)*hi(x)+f(x)*h2(x)
Associative:

f(x)*hi(x)*h2(x)=f(x)*[hl(x)*h^(x)]
Multiplication with a constant:

a[f(x)*h(x)]=af(x)*h(x)= f(x)*ah(x)

Addition with a constant:

a + [f(x) * h(x)] = [a + f(x)] * h(x) = f(x)*[a+h(x)]

Convolution with an impulse:

f(x)*8(x — xo)=f(x — xo)

where u is the "spatial" frequency (cycles/mm). The output d(x) is given by the

convolution integral

d (x) = 
TOO 

irf(x')e  i27ru(x—x) dx'	 (2.28)

00
= e'2n"xT irf(x')e—t2nux' dx ' ,	(2.29)

00

where the final integral is recognized as being the Fourier transform of irf(x),

which we call T(u). Therefore,

d(x) = S{e`2""x } 
= T(u)e`2X,	

(2.30)

showing that the output is identical to the input scaled by the frequency-dependent

factor T(u). That is, a sinusoidal input will produce a sinusoidal output at the same

frequency, scaled by T(u), as illustrated in Figure 2.12. Complex exponentials of

the form ei 2""x are called eigenfunctions of the imaging system, and T(u), which is

complex in general, describes the eigenvalues. The factor T(u) is called the char-
acteristic function of the system. The impulse-response function and the system

characteristic function are Fourier pairs:
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SYSTEM 
Input	 Output

T(u)

White

Black

u

White

Black

u

Spatial Frequency	 Spatial Frequency

Figure 2.12: A sinusoidal signal at the input of an LSI system will produce a sinusoidal

output signal with the same frequency, scaled by the frequency-dependent factor T(u) which

is complex in general. This illustration is approximate as the input is not a pure sine wave.

T(u) = F{irf(x)}.	 (2.31)

This makes it very convenient to use sinusoidal input waveforms to characterize

imaging systems.

The Fourier transform expresses a function in terms of its complex sinusoidal-

basis components. If a specified input h(x) has the Fourier transform H(u), then

h(x) can be expressed as the inverse Fourier transform of H(u) and the cone-

sponding output is

d(x) = S{h(x)j =S J H(u)e` 2n uxdx}	(2.32)

= f H(u)T(u)ei 2 du.	 (2.33)

However, because d(x) can also be expressed as the inverse Fourier transform of

D(u) where

f
00

d(x) = 
	

D(u)ei2""x du,	 (2.34)
00

we get

D(u) = H(u)T(u).	 (2.35)
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	Spatial Domain	Spatial-Frequency Domain

a) (magnitude)

	h(x) 	H(u)

X	 U

b) *irf(x)	 xT(u)

i
i

C)	 = d(x)	 _ D(u)

Figure 2.13: Signal-transfer characteristics can be represented either as convolution with

irf(x) in the spatial domain (left column) or as multiplication with T(u) in the spatial-

frequency domain (right column).

This is a very interesting result because it shows that the Fourier components H (u)
of the input are passed unchanged through the system other than a scaling by T(u).

Thus, the signal-transfer characteristics of an LSI system can be expressed either as

convolution with irf(x) in the spatial domain, or equivalently as multiplication with

T(u) in the spatial-frequency domain. This relationship is illustrated graphically in

Figure 2.13. In many situations it is more convenient to express imaging problems

in the spatial-frequency domain than in the spatial domain, and the ability to move

fluently between the two domains is critical to being able to easily solve many

imaging problems.

2.3.2.3 Modulation-transfer function, MTF

As shown previously, the contrast-transfer factor, T, is not very useful for the

description of imaging systems because it is not explicitly related to the size of

image structures or to the spatial resolution characteristics of the system. However,

the situation changes when we consider the transfer of sinusoidal signals. Consider

the input h (x) where

h(x)=a  + be`Zx ,	 (2.36)

and where the real component of h(x) corresponds to the real (measurable) input

signal. Because of the sinusoidal nature of this input, it is more meaningful to

characterize it in terms of its modulation than its contrast. The modulation of h(x)
in Figure 2.14 is given by

hmax I — I hmin I (a + b) — (a — b) b

=	

_	
=	 (2 37)

Min 	hmax I + Ihmin I (a + b) + (a — b) a
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x

Figure 2.14: A sinusoidal signal expressed in complex exponential form as h(x) = a +
bei z . The sinusoidal waveform is the real component of h(x).

The output signal d(x) is given by

d(x) = S{h(x)}=S{a+be` 2""x }	 (2.38)

= S{a} + S {be` 2"ux }	 (2.39)

= aS{e`2n(u=o)x } + bS{e
i2"" x }	 (2.40)

= aT(0) +bT(u)e i2
" uX ,	

(2.41)

where T(u) is complex in general but T(0), which is equal to the area under the

IRF, must be real only. The output modulation is therefore given by

IdmaxI — Idminl =__	 (2.42)
	b  IT(u)I	IT(u)I
	Mout 

= I dmax I + I dmin I a T(0)	
Min T(0)

Similar to our definition above of the contrast-transfer factor, the ratio Mout/Min
is defined here as the modulation transfer function (MTF), given by

MTF(u) = 
IT(u)I
	(2.43)

T(0)

where MTF(u) has by definition a value of unity at u = 0.

The MTF is not as complete a description of a system as the characteristic func-

tion T(u) because phase information and a scaling constant have been discarded.

However, if irf(x) is real only (i.e., has no imaginary component), which is gen-

erally true for x-ray imaging systems, both T(u) and MTF(u) are even functions

and can be expressed in terms of positive frequencies only without loss of general-

ization. If irf(x) is real and even, T(u) is also real and even, and no phase-transfer

information is lost going to the MTF. The MTF is always real.

The function OTF(u) given by

OTF(u) = T(u)	(2.44)
T(0)
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is sometimes called the optical transfer function (OTF). It is related to the MTF as

MTF(u) = IOTF(u)I, and is similar to the MTF although it retains phase-transfer

information.

In general the MTF is a two-dimensional function, expressed in terms of either

a two-dimensional frequency vector k as MTF(k), or orthogonal frequencies u and

v as MTF(u, v).

2.3.2.4 Line-spread function, LSF

The LSF describes the response of the system to a "line" delta function, normal-

ized to unity area. This is seen if we consider a line impulse positioned at x = xo

extending forever in the y direction as the line delta function 8(x — xo). The system

response along a line in the perpendicular x direction is therefore the LSF given by

Isf(x — xo) _

DO
b (x — xo) psf(x, y) dx dy

FW o0

0 °°
psf(x, y) dx dy

J-00 i—oo  
[00

 psf(x — xo, y) dy
J o0
0 fDO

psf(x, y) dx dyfoo —c

(2.45)

For shift-invariant systems this relationship simplifies to

lsf(x) _
roo psf(x, y) dy

Ifoo'o'
 psf(x, y) dx dy

(2.46)

where lsf(x) is the LSF in the x direction. The LSF describes the response of a

system in one direction when details of the response in the orthogonal direction

have been "integrated out" as shown by Eq. (2.46).

The one-dimensional OTF in Eq. (2.44) and the line-spread function are Fourier

pairs [5]:

OTF(u) = F{lsf(x)}, (2.47)

where u is the spatial frequency in the x direction. Integration of psf(x, y) in the

y direction in Eq. (2.46) corresponds to evaluation of MTF(u, v) along the v = 0

axis. Therefore,

MTF(u) = MTF(u, V)1„ 0.	(2.48)
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For systems with a rotationally symmetric IRF, MTF(u, v) is also rotationally sym-

metric and can be expressed in terms of a single radial spatial frequency u without

loss of generality.

2.3.2.5 The correlation integral

A quantity closely related to the convolution integral that will also be used

later is the correlation integral, not to be confused with the statistical correlation

function described in Section 2.5. The correlation integral of two functions f (x)

and h(x) is given as

d(x',x'+x)= f 0 f(x')h(x' + x) dx'.	 (2.49)
J ^

When f (x) and h(x) are stationary in x, then this relationship simplifies to

d(x) =
	

f(x')h(x' + x) dx',	 (2.50)

which is written in short form as

d(x) = f(x)*h(x). 	 (2.51)

The correlation integral is not commutative, and so

f(x)*h(x) h(x)*f(x),	 (2.52)

in general. It can also be shown that

f (x) * h(x) = f (x) * h*(—x) = h(x) * f *(—x),	(2.53)

where h*(x) is the complex conjugate of h(x).

2.4 The spatial-frequency domain

Great emphasis has been placed on being able to solve imaging-physics prob-
lems in either the spatial or spatial-frequency domain. The choice is determined by

which is easier, and it is often necessary to solve parts of a problem in one domain

and other parts in the conjugate domain. In this section, properties of the Fourier

transform are described which are invaluable to successfully use this approach.

2.4.1 The Fourier transform

There are several excellent texts describing the Fourier transform including

Bracewell [14] and Brigham [15]. See Peters and Williams [22] for a description

of the Fourier transform as applied to several concepts in medical imaging.
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Original

1 term

+	 2 terms

1N = 1N

+	 3 terms

1_N = 1N
+	 4 terms

+	 5 terms

Figure 2.15: The sum of the Fourier components of a function looks more and more like

the original function (shown at the top of the figure) as more and more components are

added with increasing frequencies. In this figure, five such components are shown in the

left-hand column, and the accumulated sum of the components are shown in the right-hand

column. In this example, the imaginary terms are all zero.

The Fourier transform of d(x) is D(u), and the inverse Fourier transform of

D(u) is again d(x). This reciprocal relationship is expressed by

D(u) 
= J 

d(x)e_ t2n "x dx	 (2.54)

d(x) = 
roo 

D(u)e i2""X du,	 (2.55)

where u is the spatial frequency along the x axis. It is seen that the units of D(u)

will always be those of d(x) x x.

The Fourier transform of d(x) exists for any well-behaved function d(x). Thus,

D(u) always exists when d (x) represents some sort of physical quantity, or at least

a function which could represent a physical quantity, such as image brightness.

The Fourier transform of generalized functions also exists, albeit possibly as gen-

eralized functions. Thus, the transform of a distribution of quanta exists when each

quantum is represented as a 6 function, which will be used a great deal later. In

general, both d(x) and D(u) are complex, and may be expressed either as a real
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Table 2.3: Summary of Fourier-transform relationships in one and two

dimensions for LSI systems. MTF(u) = IOTF(u) I

Spatial Domain Fourier Transform Spatial-Frequency Domain

irf(x)	1D T(u)

lsf(x)	ID OTF(u)

psf(x, y)	2D T(u, v)

and imaginary pair, or as a magnitude and phase pair,

D(u) = Re{D(u)} +i Im{D(u){	 (2.56)

= ID(u)le`"' ) ,	 (2.57)

where J(u) is the spatial-frequency-dependent phase angle given by

^(u) = tan -1

( Im I D (u ))
Re{D(u)))'	

(2.58)

through the Euler-angle relation et o = cos (P + i sin 0.

The Fourier transform expresses the fact that d(x) can be written as the sum

of a distribution of sinusoidal components (Figure 2.15). As more components are

included, the sum looks more and more like the original function. If all non-zero

components are included, the sum is identical to the original.

2.4.1.1 The two-dimensional fourier transform

The two-dimensional Fourier transform of d(x, y), D(u, v), is given by

f
lP 00

D(u, v) = 	l	d(x, y)e_L2 t X+uy) dx dy,	 (2.59)
J 00 

and the inverse Fourier transform by

	d(x, y) = f j D(u, v)ei2rrtux+Uy) du du.	(2.60)
00

These integrals can also be written as vector integrals in terms of the position and

frequency vectors r and k as

00

D(k)I	d(r)e— i z "k 'T der,	 (2.61)
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and

d(r) 
= 11: D(k)e` 2rrk-r d2k.	 (2.62)

The product k • r is a vector dot product such that k • r = ux + vy.

2.4.2 The discrete fourier transform

Manipulation of digital image data in the Fourier domain requires the use of a

numerical implementation of the Fourier transform, called a discrete Fourier trans-

form (DFT), which differs from the Fourier transform in subtle ways. The fast

Fourier transform (FFT) refers to a number of implementations of the DFT which

make use of clever programming to increase computational efficiency. Several im-

plementations of the FFT are available which differ in sophistication, the allowable

size and form (real or complex) of the input data sequence, speed of execution, and

sometimes a scaler constant.

One commonly used form for the DFT of a sequence of N values do for 0

n < N — 1 is given by

N-1

Dm = DFT{dn } _	dne — i 2nnmmN	 (2.63)

n=0

which consists of a sequence of the N complex values Dm for 0 < m <, N — 1. The

inverse DFT is given by

N-1

do = DFT— ' {Dm } = N'1— Dmei2nnmIN	 (2.64)

m=0

Other forms of the DFT exist, differing primarily by a scaler constant of N or ^.

The user of any DFT should be aware of what DFT algorithm is being used before

attempting any quantitative work. We shall use Eqs. (2.63) and (2.64) as definitions

of the DFT.

The dimensions of do and Dm must necessarily be the same, and they are often

dimensionless. This is one way in which the Fourier transform and the discrete

Fourier transform differ. Another important consideration when using any DFT

is to know which index value (which value of n or m) corresponds to the zero

positions x = 0 and u = 0. In many DFT implementations, the central position

x =0 corresponds to n = N/2 — 1, while the central frequency u =0 corresponds

to m = 0. Erroneous placement of the zero position in one domain results in errors

in the phase angle of the complex value in the conjugate domain as known from

the shift theorem.

When the sequence d, represents the function d(x) evaluated at uniform spac-

ings x0, it is sometimes written as d(nxo) to retain this spatial relevance. However,
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this relationship is not as simple in the spatial-frequency domain, as the sequence

D„z is not equivalent to samples of D(u) at uniform spatial-frequency spacings of

1/Nxo, D(m/Nxo). While it may be tempting to view the DFT as a numerical

implementation of the Fourier integral in Eq. (2.55) and write

__)D( Nx	D(u)Iu=NCo ^ xoDm,	 (2.65)
0

or

	Dm 1 D 1 m f,	 (2.66)
xp	Nx0 j

extreme care must be used as the DFT is really a separate transform in its own right.

The practical problems associated with this interpretation become clear when the

DFT is viewed as a special case of the Fourier transform and is understood in the

two domains (Brigham [15]). The problems include:

(a) aliasing;

(b) spectral leakage and side lobes;

(c) truncation and windowing;

(d) zero-position and phase errors (mentioned above);

(e) frequency wrap-around; and,

(f) scaling factors and units (particularly in the frequency domain).

They have been described by various authors. Excellent general works are given

by Brigham [15], Bracewell [14], and Peters and Williams [22].

2.4.3 Sampling and aliasing

Many imaging systems of practical importance produce digital images in which

image brightness is represented as a sequence of numerical values. In this section,

the relationship between a function and its "sampled" (discrete) representation is

described in a way that is still amenable to the analytic graphical techniques used

previously.

When the function d(x) is represented numerically with the N discrete values

d, for 0 s n (N — 1, each value corresponds to d(nx0) = d(x)Ix=,,O , an evalua-

tion of d(x) at x = nxo. The process of evaluating a function is called "sampling".

One way of describing the sampling process is by making use of the sifting prop-

erty of the 8 function, which says that if d (x) is continuous at x = xo, it has a value
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Figure 2.16: Sampling the function d(x) is represented as dt(x) = d(x) ^n 	6(x —

nxo) and consists of a sequence of 6 functions scaled by the discrete values d„ where n

is an integer over —oo < n <, oo. Spectral aliasing occurs when the aliases overlap in the

spatial-frequency domain. Only the magnitude is shown in the frequency domain.

at xo given by

d(x)Ix=xo = f 0 d(x)6(x —xo)dx =d(xo) f^ 6(x — xo)dx=d(xo). (2.67)
00

Following Brigham [15], we adopt a graphical representation of this sampling pro-

cess as shown in Figure 2.16, where each horizontal pair of figures represents a

Fourier-transform pair. Sampling d(x) at x = xo is represented as multiplication

with S (x — xo) with the result being an impulse at x = xp having an undefined
amplitude and area equal to d(xo):

d(x)8(x — xo) = d(xo)S(x — xo).	 (2.68)

This use of the S function is important because it provides a mechanism whereby

sampling can be represented as the linear process of multiplication. This makes

it relatively straightforward to interpret the effects of sampling in the conjugate

domain.

Note that multiplication with the S function is not equivalent to sampling the

function. Rather, multiplication with S(x — xo) results in a S function positioned

at x = xo that is scaled by the sample value of the function. The distinction is

important and the S function cannot be omitted. In addition, the S function carries

the positional information associated with the numerical value.
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If a function of infinite extent is sampled at points with uniform spacing xo,

this gives an (infinite) sequence of sample values, d(nxo) or equivalently d, cor-

responding to values of d(x) at positions x = nxo where n is an integer. The sam-

pling of a function is therefore represented as multiplication of d(x) with an infinite

array of S functions (Figure 2.16) resulting in dt (x) where

00 00

dt(x) = d(x) E 6(x — nxp) _ Y, d(nxp)S(x — nxo) (2.69)

n=—oo n=—oo

00_ E dn8(x —nxp). (2.70)

n=—oo

We use Eqs. (2.69) and (2.70) as our definition of sampling, where d(x) is called

the "presampling" signal and dt(x) is a sequence of scaled S functions. Note that

this definition of sampling does not represent a physical measurement process,

only the evaluation of a function. A physical measurement would require the use

of a sampling function having finite spatial extent that would reflect the spatial

sensitivity of the detector as used in Section 2.2.4 in the description of distribution

theory. The 6 function can be interpreted as an "ideal" sampling function having

infinitesimal width.

The function dt(x) is also referred to as a pulse-amplitude modulated (PAM)

signal, consisting of a sum of modulated pulses at uniform spacings xp. Many

important concepts used to describe digital images come from the electronic com-

munication field, where signals are sampled at uniform time intervals rather than

uniform space intervals.

A comment on units is warranted here. A 6 function has units equal to the

inverse of its argument—see Eq. (2.11). In Eq. (2.69), 6(x — nxo) therefore has

dimensions of length -1 and hence dt(x) has dimensions equal to those of d(x) x
x -1 which are different from those of d(x).

The effect of spatial sampling in both the spatial and spatial-frequency do-

mains is shown in Figure 2.16, where each graph in the right column is the Fourier
transform of the corresponding graph in the left. Multiplication in the x domain

corresponds to convolution in the u domain. Thus, the Fourier transform of dt(x),
as shown in the lower right of Figure 2.16, is given by

F{dt(x)} = D(u) * 0 S(u — col, (2.71)

n--oo \ /

where D (u) is the Fourier transform of d(x). The Fourier transform of dt (x) there-

fore consists of D (u) scaled by 1/xo and superimposed with an infinite number of

similarly scaled aliases of D(u) centered at frequencies u = n/xo. As shown in

Figure 2.16, the aliases may overlap if D(u) extends beyond u = ±1/2xo where

1 /xo is the "sampling frequency," and 1 /2xo is called the sampling "cutoff fre-

quency." If aliasing occurs, the true Fourier transform D(u) cannot be determined
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from the aliased Fourier transform alone. This is equivalent to saying that the orig-

inal function d(x) cannot be determined from the sample values d (nx0) alone once

aliasing has occurred.

2.4.3.1 The sampling theorem

The above considerations lead directly to a statement of the sampling theorem,

adapted from Bracewell [14]:

Any band-limited function having infinite extent and no component frequencies

at frequencies greater than u = u max can be fully determined from an infinite set

of discrete samples if sampled at a frequency greater than UN, = 2umax where

UN y is called the Nyquist sampling frequency.

This is just the condition to prevent overlap of the aliases in Figure 2.16. An even

function (e.g., a cosine wave relative to the sampling grid) can be fully determined

when sampled right at the Nyquist frequency, but an odd function (e.g., a sine

wave relative to the sampling grid) must be sampled slightly above the Nyquist

frequency. As a rule of thumb, it is wise to sample at a frequency greater than the

Nyquist sampling frequency, such as u s given by

Us = .fk X UNy = A X 2umax,	(2.72)

where fk ti 1.2 is an empirically determined constant called the "Kell" factor.

2.4.3.2 Recovering a continuous function from sample values

The question should be asked whether the original presampling function d(x)

can be recovered exactly from the sample values dn . In the conjugate domain this

question is equivalent to asking whether D(u) can be recovered exactly from the

aliased spectrum F{dt(x)} in the lower right of Figure 2.16. In the absence of

aliasing such that there is no overlap of the aliases, the original primary spectral
component can indeed be isolated from its aliases by multiplication with the rect-
angular function xo Ii (xpu) having a value xo over —1 /2xp < u < 1 /2xp and zero
elsewhere where xo is the sample spacing. This rectangular function has an inverse
Fourier transform sinc(lrx/xo), and hence the recovered signal d(x) is obtained as

a convolution of dt (x) with the sine-function

d(x) = dt(x) * sinc(Jrx/xo)
	

(2.73)

= J dn S (x' — nxo) sinc ^n x — x! I dx'	(2.74)
0o n=_^	 xo

°O	r0O	 — x '
_ E do J 3(x' — nxo) sinc(rr 

x
	) dx'	(2.75)

n=-00	00	 xo
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	Spatial Domain	Spatial-Frequency Domain

a) (magnitude)

d(x)

x	 u
—2x p —x„ p x o 2;

b) *sinc(nx /x„)	 x

X	—1/2xo	1/2xo	u

c)	= d(x)	= D(u)

\ i

Figure 2.17: The recovered function d(x) is obtained by convolving dt(x) with

sinc(7rx/xo), resulting in the superposition of a scaled sinc function for each sampled point

as indicated by the dashed lines in c). Only the magnitude is shown in the frequency domain.

x — nxp
_	do sins (r	 (2.76)

n=—oo
xp

again using the sifting theorem. Convolution of the sample values with the sinc

function is sometimes referred to as sine interpolation.

Thus, as illustrated in Figure 2.17, recovering the continuous function is

achieved by the superposition of a series of scaled sins functions corresponding

to each sampled valued. Each sins function has a value of zero at positions corre-

sponding to all other sample locations, and hence the value of d(x) is still equal

to d(x) for x = nxo. Use of the sampled function dt(x) with S functions is key to
enabling this elegant representation.

The recovered continuous function d(x) is exactly equal to the original presam-

pling function d(x) only if there is no aliasing resulting from the sampling process.

Aliasing would correspond to an overlap of the central component with the shifted

spectral aliases (as illustrated in Figure 2.16) which could therefore not normally

be isolated from the aliases.

2.5 Stochastic processes in linear systems

A random (stochastic) process can be viewed here as any mechanism giving rise

to random fluctuations in a signal, generally represented as a random variable. It is

not possible to precisely predict the future values of a random variable, but it may

be possible to determine its statistical properties. Excellent general references for

a description of stochastic processes are Papoulis [17] or Bendat and Piersol [16].
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In this section, the mathematical tools required to characterize noise in medical

imaging systems are summarized.

2.5.1 Deterministic versus stochastic systems

A distinction can be made between deterministic systems and stochastic sys-

tems [17]. A deterministic system, when presented with two identical inputs, will

produce exactly the same output both times. There will be absolutely no difference,

even under close examination. On the other hand, a stochastic system, when pre-

sented with two identical inputs, may produce similar outputs but they will not be

exactly the same. There are many reasons why the two sample outputs may differ.

For instance, some systems may use secondary image quanta (e.g., light gener-

ated in a screen, electron-hole pairs in a detector, etc.) to transfer the image from

input to output, and the statistical properties of these quanta may introduce a ran-

dom component in the output image. These systems are therefore fundamentally

stochastic systems, independent of the statistical properties of the incident x-ray

quanta.

2.5.2 Expected value and variance

The simplest way of characterizing a random variable is in terms of its expected

value and variance. The expected value of the random variable a is E{a} given

by [17]

E{a} = J aAa (a) da,	 (2.77)

where A a (a) is the probability of a having the value a. The variance expresses the

expected value of the squared deviation from the expected value, given by [17]

QQ = E {IAaI 2 } = E {la — E{a }I Z } = E{a 2 } — IE {a }I 2 ,	(2.78)

where La = a — E{a}.

2.5.3 Autocorrelation and autocovariance

If a (x) is a complex random variable expressed as a function of x, the autocor-

relation of a(x) is RQ (x',x'+x) given by [17]

Ra (x',x'+x)=EIa(x')a*(x'+x) },	 (2.79)

where * indicates a complex conjugate. When a (x) is a real-only value, a* (x) =

a (x). The autocorrelation describes the correlation of a (x') with itself at a location

displaced by x.
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The autocovariance describes the correlation of a (x') with itself at a location

displaced by x about the expected values. Thus, the autocovariance of the random

variable a (x) is [ 17]

	I ,(x',x'+x) = EIAa(x')Aa*(x'+x)}	 (2.80)

= Ra (x',x'+x)—E{a(x')}E{a*(x'+x)}.	(2.81)

2.5.4 Wide-sense stationary (WSS) random processes

If a is a real-valued random variable for which the expected value and variance

are stationary, that is, have fixed values, the expected value E{a} is given by the

sample mean in the limit of N oc,

N
E{a} = lim —	an ,	 (2.82)

N—oo N
n=1

where an is the nth value of a, and the variance by

N

	a = lim 	 (an — E{a }) 2	(2.83)
N—*oo N

n =1

N	 N

Noo N 1 E an N
an

) 2] .	

(2.84)

n =1	 n =1

A random process in x having all statistical properties stationary with x is

called strict-sense stationary (SSS). A process having at least the expected value

and autocorrelation stationary in x is called wide-sense stationary (WSS). For in-

stance, if a (x) is a WSS random process, the autocorrelation in Eq. (2.79) depends

on the separation x, but not on the position x'. This simplification means that [17]

	Ra(x', x' + x) = Ra(x),	 (2.85)

and

Ka (x', x' + x) = I,, (x)•	 (2.86)

If a (x) is a real process, Ra (x) and Ka(X) are real and even.

2.5.4.1 Noise power spectrum of a WSS random process

The autocovariance of a WSS random process, K,, (x), provides a complete de-

scription of the second-order second-moment statistics in the spatial domain. In

the spatial-frequency domain, the same statistics are described by the Wiener spec-

trum, equal to the Fourier transform of the autocovariance function. The Wiener
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spectrum describes the spectral decomposition of the noise variance of a WSS

random process. That is, it describes the contribution to the variance from spatial

frequencies between u and (u + du).

For historical reasons, the Wiener spectrum is also called the noise-power spec-

trum (NPS). This resulted from the fact that if a (t) represents a random (in time)

voltage fluctuation across a pure resistance of one ohm, the expected average power

dissipated by the resistance is given by the variance of a(t). Thus, the spectral de-

composition of the variance is called the power spectrum, or noise power spectrum,

or sometimes the covariance spectrum [ 17].

In an imaging context, the NPS of a random process a(x), NPSQ (u), is ex-

pressed as a function of spatial frequencies (u) rather than temporal frequencies (t),
and can be written in terms of the autocovariance as

NPSQ (u) =F{Ka (x)}.	 (2.87)

Thus, the NPS and the autocovariance of a WSS random process are Fourier-

transform pairs. If a(x) is a real function, NPSa (u) is real and even.

2.5.5 Ergodic WSS random processes

Use of Eqs. (2.80) to characterize image noise requires the expected values

E{a(x)) and E{a(x')a*(x + x)) for each x value, which may be difficult or im-

possible to obtain in practice. Fortunately, many random processes responsible for

noise in medical imaging systems are ergodic or can be approximated as being er-

godic. Being ergodic means that expected values can be determined equivalently

from ensemble averages or spatial averages [17]. Thus, while the autocovariance

is given by Eq. (2.80) based on true expectation values, an estimate of the autoco-

variance for a WSS mean ergodic random process is given by the sample autoco-
variance, I,X(x), which is a spatial average,

1 fKa ,x(x) = XAa(x)D.a * (x'+x)dx'	 (2.88)

In the limit of X —> oo, the sample covariance gives the autocovariance:

K,3 (x) = X  ^Ka,x(x)
	

(2.89)

= lim P 1 J a(x')a*(x'+x)dx'
X-+o0 X x

— 1 J a (x') dx'  J a * (x' + x) dx']	(2.90)
X X	X X

= lim 1 f Aa(x)Da*(x'+x)dx'	 (2.91)
X-+ oo X x

= Da(x) * Da*(x),	 (2.92)

where * represents the correlation operation.
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2.5.5.1 Noise power spectrum of an ergodic WSS random process

The NPS of a WSS random process is given by Eq. (2.87), and K (x) for a

WSS ergodic random process is given by Eq. (2.91). From this it can be shown

that the NPS of a WSS ergodic random process is given by

f	2

NPSQ (u) = lim 1 E I J Da(x)e- i2"uxdx 
j	

(2.93)
x->oo X	x

= lim i EI Fx {Aa(x) }I 2 },	 (2.94)
x- X

where Fx {Da(x)} is the Fourier transform of the zero-mean function Da(x) trun-

cated to the region -X/2 <, x < X/2. Equations (2.87) and (2.94) can each be used

to determine the NPS of a WSS ergodic random process. The units of NPS Q (u) are

equal to those of a2 (x) x x.

The variance of an ergodic WSS random process a(x) is given by

Qn = E{a(x)a*(x)} - E {a(x) }E {a*(x)}	 (2.95)

= E{Da(x)Da*(x)}	 (2.96)

= Ka(x)Ix=o,	 (2.97)

and therefore the Fourier DC theorem shows that the variance of a (x) can also be

written in terms of the NPS as

QQ f NPS Q (u)du.	 (2.98)

In summary, use of Fourier-based descriptions of image noise requires two im-

portant assumptions. The first is that processes responsible for noise both in the

input signal and within the imaging chain be wide-sense stationary (WSS). This

means that the mean and autocovariance of the noise processes, and the second-

order noise-transfer characteristics of the imaging system, are stationary in x. This

condition is often satisfied for the analysis of noise in low-contrast imaging tasks.

The second assumption is that the system be ergodic. While it can be difficult

to prove ergodicity, many systems of practical importance can be considered er-

godic if practical approximations are made. For instance, the expectation values of

image-intensifier-based video systems can be determined from multiple sequential

video frames and the system can be considered ergodic if the analysis is restricted

to central regions of the image. Stimulable phosphor or film-screen-based systems

have grain noise that is not ergodic, and which may have to be addressed as a

separate noise source.
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2.5.6 Ergodic wide-sense cyclostationary (WSCS) random processes

Another important category of stochastic processes are those that exhibit some

periodic behavior but which have statistical properties that are still invariant to

a shift of any multiple of that period (Papoulis [17], Gardner and Franks [23]).

A process is called strict-sense cyclostationary (SSCS) with period xa if all its

statistical properties are invariant to a shift of nxp for any integer n, and wide-sense

cyclostationary (WSCS) if only the mean and correlation are invariant. Thus, a (x)

is WSCS with period xo if

E{a(x+nxp)} =E{a(x)},	 (2.99)

and

RQ (x' +nxo, x' +x +nxo) = Rn (x', x' +x),	(2.100)

for any integer n. In imaging, an important type of cyclostationary process is that

which can be written in the form

00

a(x) _ E an s(x — nxo),	 (2.101)

n=-oo

where s (x) is called the sensing function of the WSCS process. The expected value

of a(x) is given by

00

E{a(x)} = E{a n} Y s(x — nxo),	 (2.102)

n=—oo

where E{an } is the expected value of a n . For WSCS ergodic random processes, the

autocorrelation is given by

1	°O
RQ (x) _	E Ra (nx0)t(x),	 (2.103)

n=—oo

where

r(x)= f 00 

s(x')s (x' + x) dx' = s(x) * s(x).	(2.104)

Wide-sense cyclostationary ergodic random processes are important in the

description of digital-imaging systems. For instance, if a(x) is a WSS ergodic

stochastic process that is represented with the digital samples a n = a (nxo) obtained
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using impulse sensing functions at uniform spacing xo, s (x) = YO  6 (x — nxo),

then at(x), given by

00

at(x) = Y, a n 8(x — nx0),	 (2.105)

n=—oo

is an infinite train of amplitude-modulated 6 functions and is a WSCS ergodic

random process with period xo. The expected value of at(x) is given by [17, 23]

	E{at(x)j = E{an }	8(x — nxo).	 (2.106)

n=—oo

The autocorrelation of at (x), R u t (x), is given by

R^,t (x) = xo E R n (nxo)3 (x — nxo) = xo Ru (x)	3 (x — nxo), (2.107)
n=—o0	 n=—oo

where Ra (x) is the autocorrelation of a (x). Similarly, the autocovariance, Kt (x),

is given by

Kut (x) = 1
00	

00

 Y KQ (nxo)8 (x — nxo) = 1 Ka (x)	8 (x — nxo), (2.108)

x0 n=—oc	 x0	n=—oo

where Ka(X ) is the autocovariance of a(x). The units of Ka t (x) are equal to those

of a2 (x) x x -2 .

2.5.6.1 Noise power spectrum of an ergodic WSCS random process

In the previous section, NPS Q (u) was introduced as the NPS of a WSS random

process, given by the Fourier transform of the autocovariance of that random pro-

cess. Following Gardner and Franks [23], we introduce NPS a t(u) as the Fourier
transform of Ka t(x), the autocovariance of the WSCS random process a(x) is
given by

	

NPSat(u) = F{Ka t(x)}	 (2.109)

00

_- NPSQ (u) * > 3 I u — xo	(2.110)
0	 n=—oc

with units of a2 (x) x x -1 . It is important to note that these units are different from

those of NPS Q (u), which are a2 (x) x x.

This result shows that the NPS of a random-process periodic in the spatial

domain with period xo is periodic also in the spatial-frequency domain with pe-

riod 1 /xo. This has important implications when used to describe noise in digital-

imaging systems which may suffer from noise aliasing (Section 2.9.3).
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2.6 Metrics of system performance

The stochastic nature of image quanta imposes a fundamental limitation on the

performance of imaging systems, and gives rise to stochastic fluctuations in the

image signals contributing to image formation. In this section, metrics developed

to describe image quality in terms of signal and noise are described within a linear-

systems framework.

2.6.1 Rose model signal-to-noise ratio

The importance of the statistical nature of image quanta to imaging was first

recognized in 1948 by Rose [2, 3] and his contemporaries [24-26], and their work

forms the basis of many introductory texts on the nature of signal and noise in

radiography. The relationship between the number of image quanta and perception

of detail is embodied in the "Rose Model," as it has come to be known, describing

the signal-to-noise ratio (SNR) for the detection of a uniform object in a uniform

background having a mean qb quanta per unit area. If qo is the mean number of

quanta per unit area in the region of the object, the resulting contrast C can be

written as

C = ( — go)/9b. (2.111)

Rose defined "signal" to be the incremental change in the number of image quanta

caused by to the object integrated over the area of that object. This is different from

the definition of signal used elsewhere in this chapter, and hence we will call his

signal the "Rose signal," ASRose,  or difference signal, where

ASRose = ( qb — 0)A, (2.112)

for a uniform object of area A. The noise in Rose's signal is the standard deviation

in the number of quanta in an equal area of uniform background, a. For the special

case of uncorrelated background quanta, noise is described by Poisson statistics

and orb = Aqb so that the Rose SNR, ASNRRose,  is given by

OSNR A(b —  =c/A.o)
(2.113)Rose = Aqb46

Rose showed that ASNRRose must have a value of approximately five or greater

for reliable detection of a uniform object under these conditions.

This result led to the general expectation that lesion detectibility should be

proportional to object contrast and to the square root of object area and radiation

dose (at a single x-ray energy). Under the Rose conditions (uniform object, uni-

form background, and uncorrelated Poisson-distributed noise), this relationship is

found to be approximately correct. For instance, Figure 2.18 shows an image of

a contrast-detail phantom obtained using a prototype digital x-ray mammography

detector. Examination of this image shows that detectibility of these low-contrast
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lesions increases with lesion diameter (square root of area) and contrast, consistent

with the Rose model.

Some implications and limitations of the Rose model are described in terms

of modem detection theory by Burgess [27]. He shows that the Rose model corre-

sponds to the very specific detection task called "signal known exactly" (SKE) and

"background known exactly" (BKE) detection task [27, 28].

The Rose model played an essential role in establishing the fact that image

quality is ultimately limited by the statistical nature of image quanta. However, its

limitations quickly become apparent when used to assess image quality in many

practical situations. The primary restriction is the definition of noise used by Rose

in Eq. (2.113), which is valid only for uncorrelated Poisson-distributed noise. In

general, noise in a recorded image is neither uncorrelated nor Poisson distributed.

This may be because of the presence of additive system noise (e.g., electronic or

film noise), quantum amplification stages in a cascaded system (described later), or

statistical correlations introduced into the image signals by the scatter of x rays or

secondary image quanta in the detector system (e.g., light in a radiographic screen).

For all of these reasons, the original Rose model needs appropriate extension and

elaboration to be of practical value in the analysis of most modem medical-imaging

systems. The use of Fourier-based metrics of image signal and noise facilitates this

extension.

Figure 2.18: Image of a contrast-detail test phantom obtained with a prototype digital x-ray

mammography detector. Lesion contrast increases in the horizontal direction and lesion

diameter increases in the vertical direction (courtesy M. Yaffe).

Downloaded From: http://ebooks.spiedigitallibrary.org/ on 09/18/2013 Terms of Use: http://spiedl.org/terms



Metrics of system performance 117

2.6.2 Noise power spectrum (NPS) and variance

The NPS of a one-dimensional random process d(x), NPSd(u), is given by

Eq. (2.87) for a WSS random process, and by Eqs. (2.87) or (2.93) for an ergodic

WSS random process. Thus, NPSd(u) has units of d2 (x) x x.

The NPS of a two-dimensional ergodic WSS random process d(x, y),

NPSd(u, v), is given by

NPSd(u, v)
	r r	1

lim 	E ^ JJ Od(x, y)e — `
27r("X+Uy }

dx dy	(2.114)
X,Y-^00,00 XY	X Y

=	lim	1 EljFx , y {od(x, y )}^ 2 }	 (2.115)
X,Y—>oo,00 XY

=	lim	E{Sod,X,y(u, v)},	 (2.116)
x,Y--*00,00

where Fx,y{d(x, y)} is the Fourier transform of d(x, y) truncated to the region

—X/2 <, x <, X/2, —Y/2 <, y < Y/2, and Sod,X,y(u, v) is the two-dimensional

sample spectrum of Od(x, y) over the same range. The units of NPSd(u, v) are

equal to those of d 2 (x, y) x x 2 .

2.6.2.1 NPS in one and two dimensions

While a two-dimensional analysis of the NPS is sometimes necessary [29],

visualization in two dimensions can be problematic. In many situations it is ade-

quate to examine the two-dimensional NPS in only one specified direction at a time

(which we will call the x direction with corresponding spatial frequency u), where

the dependence in the perpendicular direction has been removed by integration.

For instance, if we define dy (x) as the integral of d (x, y) over a distance Y in the

y direction, then

dy(x) = fy d(x, y)dy,	 (2.117)

and the NPS of dy (x), NPSd (u), is given by

NPSdy (u)

fX

lim E 1 IAdy(x)e- `2x dXl	 (2.118)
	x,Y— ,00	XY 

I	2
=	lim E 1 I 	dd (x, y)e - `

2" ("X+"y ) dy^	dx 1 , (2.119)
	X,Y->Oo,^	X Y I X y	 „-o
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which is the two-dimensional NPS of d(x, y) evaluated along the v = 0 axis.

Therefore,

	

NPSdy (u) = NPSd(u, v)I U_o.	 (2.120)

Thus, the NPS of a two-dimensional random process, d (x, y), whether expressed as

a one-dimensional or two-dimensional NPS, will have the units of Id(x, y)1 2 x x2 .

The NPS of both analog and digital images is generally expressed in units of mm 2 .

The NPS and the autocovariance are Fourier pairs. The autocovariance of dy (x)

is therefore related to that of d(x, y) by

Kd (x) Y Y f Kd(x, y) dy,	 (2.121)

as a direct consequence of the central-slice theorem.

2.6.2.2 The zero frequency value of the NPS

The value of NPS Q (u) for u = 0 is called the zero-frequency, or scale, value of

the NPS. Using the Fourier DC theorem and Eq. (2.87), the zero-frequency value

can be written as the autocovariance integrated over all x:

NPSa (u)I ti,=o = J	l ,(x)dx	 (2.122)

	f: EIAa(x')Aa(x'+x)Idx.	(2.123)

The zero-frequency value of NPS Q (u) therefore depends on the extent to which

Aa(x) may be correlated.

To facilitate further analysis, it is useful to define an average correlation length

of the random process a (x), X . 0, . It is defined such that if a (x) has the autocovari-

ance I , (x), the area of the rectangle formed by X cor and K a (0) is the same as that

Spatial Domain	Spatial-Frequency Domain

Autocovariance	 NPS

6 2a

x	 u

xcor

Figure 2.19: The average correlation length of a(x) is defined as X, o,., the effective width

of the autocovariance function K a (x) forming a rectangle with the same area as K a (x).
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of I, (x), as illustrated in Figure 2.19. That is,

	J=XcorK.(0).	 (2.124)

The value I, (0) is equal to the variance a,, and hence combining this result with

Eq. (2.122) gives

NPSa(u)lu=o = Xcorcr. .	 (2.125)

In an analogous way, the zero-frequency value of a two-dimensional NPS is given

as

	

NPS, (u, v)lu,,,=o,o = JJAcor
 a dxdy = Ac."rcu,	(2.126)

where A.., is the two-dimensional average correlation area.

An important special case occurs when measurements are made of a random

process, such as variations in optical density of an exposed film. For instance, if

OD(x, y) describes the "true" optical density at position (x, y), measurements of

film density obtained using a rectangular aperture (sampling function) with dimen-

sions X by Y and area A = X Y can be written as d(x, y) where

1 fX-X12

x+X/2 fy+ Y/2

d(x, y) = — 
	

OD(x,y) dxdy'
A 	—Y/2

	= AOD(x,y)*H(X, yl.	(2.127)

As will be shown in Section 2.7.2, the NPS of d(x, y) is therefore given by

	NPSd(u, v) = NPSOD(u, v)Isinc(irXu)sinc(irYv)I 2 ,	(2.128)

where NPSOD(U, v) is the NPS of OD(x, y), and therefore,

	

NPSd(0, 0) = NPSOD(0, 0).	 (2.129)

If both dimensions of the measurement area X and Y are large with respect to any

correlation distance in OD(x, y), NPSOD(u, v) can be approximated as a constant

value for all frequencies at which the sinc functions have a non-negligible value.

The variance in d(x, y) can then be written as

Qd = f-00

 NPSd(u, v) du dv	 (2.130)

NPSOD(0, 0) foo Isinc(rrXu)sinc(rYv)1 2 du dv	(2.131)

= NPSd(0, 0) XY  ,	 (2.132)
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and therefore

NPSd(0, 0) AQd,	 (2.133)

where A = XY is the measurement area. Equation (2.133) is in the form expressed

on page 222 of Dainty and Shaw [5]. It shows that for this special case where mea-

surements are made with an aperture (the sampling function) that is large relative to

any correlation distance in the quantity being measured, the zero-frequency value

is approximately equal to the measured variance multiplied by the measurement

area.

This result may be useful when an accurate measure of the zero-frequency

value is required. In practice, if Eq. (2.114) is used to calculate the NPS, a zero-

frequency value of zero (or some other erroneous value) may be obtained when

the sample mean is used as an estimate of the expectation value. It is important

to note that the zero-frequency value is generally non-zero, and that its value can

be affected by the measurement process. See the next section and Eq. (2.252) for

additional specific implications of the zero-frequency value.

2.6.2.3 NPS, autocovariance and variance of a distribution of uncorrelated

quanta

An uncorrelated two-dimensional distribution of image quanta q (x, y), such as

a uniform distribution of x rays, has an NPS given by [5]

NPSq (u, v) = E{q(x, y)} = E{q},	 (2.134)

which is equal to E {q}, the expected number of quanta per mm 2 , and is independent

of spatial frequency. Note that the units of the NPS of a quantum image are dif-

ferent from that of an analog or digital image (which are mm 2 , see Section 2.2.1).

This is because quantum images are distributions, requiring distribution theory for

interpretation, while analog images and digital images are not.

The corresponding autocovariance is given by

Kq (x, y) = E {Aq(x', y')Aq(x' +x, y'+ y)}	 (2.135)

= I EIIAq(x, 
Y)121

 forx=0, y=0	(2.136)
0	 forx#0, y:0

= E{q }S(x, y),	 (2.137)

which is a S function scaled by E{q}. The fact that the autocovariance is propor-

tional to a S function is equivalent to stating that the image quanta are uncorrelated.

That is, there is no statistical correlation of quanta at any position x, y with any

other position x', y'.
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For this special case of a distribution of uncorrelated quanta, the zero-frequency

value of the NPS is obtained by combining Eqs. (2.122) and (2.137), giving

"	NPSq (u, v)Iu,U=o,o = J 	FOO K
q (u, v) du dv	(2.138)

— f^ f^

	J 	J	
E{q}S(x,y)dudv	(2.139)

Do

= E{q}.	 (2.140)

The variance of this distribution of image quanta, given by

	Qy = 
II 

NPSq (u, v) du dv = ro, J Eq} du dv,	(2.141)
cc

is undefined.

In practice, a uniform distribution of x rays coming from a medical x-ray tube

will be uncorrelated and as a result have a flat NPS as given by Eq. (2.134) [5].

However, it should be noted that while a distribution of secondary quanta (such

as light from a radiographic screen) will always have an uncorrelated component,

they may also be partially correlated. Thus, the NPS of a distribution of secondary

quanta may not be flat but will always have a non-zero component extending to

essentially infinite frequencies.

2.6.3 Noise-equivalent number of quanta (NEQ)

As indicated above, units of the NPS depend on the physical basis of the image

signal d(x) and may be arbitrary or specific to a particular imaging system. Thus,

use of the NPS for quantifying image noise brought the practical problem of abso-

lute scaling of signal and noise-power spectra. By expressing image noise in terms

of the number of Poisson-distributed input photons per unit area at each spatial fre-

quency, Shaw obtained a common absolute scale of noise—the noise-equivalent

number of quanta (NEQ) [5, 30]. The NEQ of a linear system can be defined as

NEQ(, u) = 
IgT(u)12

,	 (2.142)
NPS(u)

for an average input of q quanta per unit area where T(u) is the system character-

istic function describing signal transfer from input to output of an imaging system

(Section 2.3.2.2). The numerator describes the (squared) expected output signal

in terms of the spatial-frequency response of the system, I T (u)1 2 . The denom-

inator describes the corresponding output noise power. In general, if the average

output signal from a linear system is d, corresponding to an average uniform in-

put of q quanta per unit area, the system large-area gain factor is G = d/q and
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T(u)ff = GMTF(u). Therefore,

NEQ(, u) = 
g2G2MTF2(u)

	(2.143)
NPSd(u)

MTF2(u)
	 (2.144)

NPSd(u) /d2

where NPSd (u) is the output image NPS. The units of NEQ are equal to those of .

Equation (2.144) is particularly convenient to use in many practical situations

as it only requires MTF2 (u) and the NPS normalized by the mean signal squared,

NPSd (u) /d2 , both of which are readily determined experimentally from measured

image data.

Some systems have a nonlinear response and exhibit only small-signal linearity.

A more general form of the NEQ that is still valid for these systems can be written

as [28]

NEQ(, u) =

2 2	2q ad MTF (u)
aq
NPSd(u)

(2.145)

where ad/aq is the incremental change in average output signal d attributable to

an incremental change in the average input signal q at an average input level q. For

example, film-screen systems have a nonlinear response to x-ray exposure. Using

Eq. (2.145), the NEQ for these systems can be written as [5]

NEQ(, u) = g 2 IY logto(e)(1/q)I2MTF2(u)	
(2.146)

NPSOD(u)

(y log10 e) 2MTF2 (u)

NPSOD(u)
(2.147)

where y is the slope of the characteristic optical density versus log-exposure curve

(and therefore the system gain factor is G = y log, 0 (e)(1 /q) ) corresponding to the

same exposure level (and therefore mean optical density, OD) as the optical-density

NPS measurement, and the MTF corresponds to a small-signal MTF.

The NEQ concept expresses image quality on an absolute scale, independent

of specific system parameters. It gives the number of Poisson-distributed quanta

that would produce the same SNR given an ideal detector. It can be measured for

specific systems at specified exposure levels in various laboratories, and the results

can be directly compared. An image with a greater NEQ corresponds to lower

image noise. An ideal system that transfers both signal and noise with only a scaler

gain factor G results in an NEQ given by
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NEQ(, u) = G
2q = q,
G12	(2.148)

which has no frequency dependence and is the best possible NEQ for an input q.
Interpretation of the NEQ often requires considerable thought, but provides a

great deal of insight regarding the information content of an image. It is a measure

of the density of quanta the image is "worth" [311. Wagner and co-workers [31-34]

have shown that the NEQ concept can be generalized to other imaging modalities

including computed tomography (CT), magnetic resonance imaging (MRI), and

ultrasound imaging. They introduced the concept of a "system aperture," aap , and

showed that it is related to the NEQ through the equation

a_I I NEQ(k)
 d2k(2.149)

oo NEQ(0)

The system aperture is the fundamental measure of resolution in a noise-limited

imaging system [31]. They also showed that for the detection of an object As(x)

having frequency components AS(u), the NEQ is directly related to the "ideal

observer SNR," SNR, according to

SNRi _ foo IAS(u)I 2NEQ(u) du. (2.150)

The ideal observer detects all of the information in the image for the required task,

and SNR, determines the performance of the observer in detection tasks.

Decision-making theory is a complex subject. A summary of important aspects

of image quality, observer performance and detection theory, including the NEQ,

is available as an ICRU report [28] "Medical imaging—the assessment of image

quality" written by some of the most important figures in this field, including Bar-

ber, Brown, Burgess, Metz, Myers, Taylor, and Wagner.

2.6.4 Detective quantum efficiency (DQE)

The NEQ describes the effective number of Poisson-distributed x-ray quanta

contributing to image SNR. Using a similar approach, the detective quantum effi-

ciency (DQE) is a measure of the effective fraction of incident Poisson-distributed

quanta contributing to image SNR. Thus, the NEQ is a measure of image quality

while the DQE is a similar measure of system performance. The spatial-frequency-

dependent DQE was first used during the mid-seventies in an attempt to develop

measures of system performance common to a variety of imaging technologies

by Shaw, Wagner, and co-workers [35, 36], with Wagner and co-workers [28, 36]

deserving much of the credit for championing the widespread application of the

noise-equivalent approach and providing some of the first absolute sets of DQE

measurements. The DQE is defined as [30]

DQE(, u) = 
NEQ(, u)

	(2.151)
q
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l
2

a_ MTFZ (u )

=	q	(2.152)
NPSd (u )

A practical expression for use when measuring the DQE of a linear system is given

by

DQE(, 
u) = gG2MTF2(u)

	(2.153)
NPSd(u)

d2MTF2(u)
	(2.154)

gNPSd(u)

In the absence of additive system noise or multiplicative noise such as fixed-pattern

noise, the DQE is independent of q and DQE(, u) = DQE(u) for a linear imaging

system. The DQE also depends on q for nonlinear systems such as film-screen

systems. The DQE is always dimensionless, and can have a value no greater than

unity.

The term q in Eq. (2.154) is normally interpreted as the total number of incident

quanta per unit area, independent of energy of the quanta. It can be estimated from a

measurement of the actual exposure X at the detector input (excluding backscatter)

with the expression

	q=X X	(2.155)

where X is the measured exposure (in roentgens), and ((D/X) is the x ray fluence

per R for the particular spectrum used. X-ray tube manufacturers may provide this

factor for particular test conditions. Alternatively, if the incident spectrum 0 (E)

(quanta mm -2 keV — ') can be either measured or calculated, ((D/X) can be esti-

mated for that spectrum as

c

fX Ore! (E) I ^, (E)
l

J dE, (2.156)
 L

where cTei(E) is the normalized incident x-ray spectrum, and ((D/X)(E) is the

fluence per unit exposure for a mono-energetic beam with energy E and is given

by [37]

X (E) _ WQ

C µen(E) 1 
Ee108

P l air

(2.157)

where (µen/P)air  is the mass energy absorption coefficient (cm 2 /g) for air, E is

the x-ray energy (keV), e is the electronic charge (1.6022 x 10 -19 Coul), W is
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Figure 2.20: The conversion factor (D/X (quanta mm -2 R-1 ) is shown: a) as a function

of mono-energetic keV; b) as a function of beam HVL for a mono-energetic beam; c) as a

function of kVp for a poly-energetic beam with various thicknesses of added aluminum; and

d) as a function of HVL for the same poly-energetic beams with added aluminum.

the work function of air (33.97 eV), and Q is the charge liberated in air by one

Roentgen (exactly 2.580 x 10 -4 Coulkg -1 R-1 ). Values of (0/X) obtained with

Eq. (2.157) are shown in Figure 2.20(a) for mono-energetic beams with energies

between 20 and 120 keV, and in Figure 2.20(b) as a function of half-value layer

(HVL) in mm of Al for the same beams.

Knowing an actual spectrum accurately is difficult or impractical in most sit-

uations. However, spectra can be calculated theoretically for specific situations

and used to estimate ((D/X) as a function of kVp. Figure 2.20(c) shows values

of (4/ X) calculated using Eq. (2.157) for various thicknesses of added aluminum

and spectra generated using the method of Tucker [38]. It is clear that the actual

value of ( (D/X) is specific to details of the spectrum used, but insensitive to both

kVp and thickness of added aluminum when expressed as a function of the beam

HVL as shown in Figure 2.20(d). Thus, an estimate of (4)/X) with sufficient ac-

curacy can often be obtained using Figure 2.20(d) if the HVL can be measured for

the particular test conditions.
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The DQE is sometimes written as

DQE(u) _
- SNR(u)

	(2.158)
SNR n (u)

although this form must be used with caution. It is only correct if the squared

output SNR is given by SNR (u) = d2MTF2 (u)/NPSd(u) and the squared in-

put SNR by SNR n (u) = SNR.d eat (u) = q where SNR tideal (u) corresponds to a

photon-counting detector rather than any other type of detector such as an energy-

integrating detector. Equation (2.152) should be taken as the general definition of

the DQE.

2.7 Noise transfer in cascaded imaging systems

As discussed in the previous section, image quality is directly tied to the num-

ber of image quanta interacting with the imaging system. However, there may be

additional factors degrading image quality if the imaging system is not optimally

designed. For instance, when input quanta are converted to secondary quanta, such

as the conversion of interacting x rays into optical quanta in a scintillating phos-

phor, image quality may also be influenced by the number of secondary quanta.

One way of understanding the effect of these conversions is to represent the sys-

tem as a "cascade" of multiple processes, and use transfer theory to describe the

transfer of signals and noise through the system.

In addition to understanding the different approaches available for specifying

system performance as described in the previous section, it is often necessary to

determine whether a particular imaging system is performing at a level close to

what can be expected for a particular design. In this section, methods are described

which can be used to predict system performance based on design parameters. The

approach is based on transfer theory, in which a system is modeled as a serial

cascade of many stages. Transfer of signal and noise through the entire system is

predicted from an understanding of the transfer properties of each stage.

In many systems, input x-ray quanta are converted to other forms of energy be-

fore producing a final image. For instance, x rays may be converted to light quanta

in a radiographic screen, which may subsequently be converted to electron-hole

carrier pairs in a detector. In an image intensifier, x rays are converted to light and

then to photo-electrons which are accelerated before being converted to light again

in the output phosphor. In some cases, the number of quanta transferred through

each stage, as well as statistical correlations introduced into the distributions of

these quanta, play critical roles in determining the final image quality. For instance,

an inadequate number of quanta may result in a secondary "quantum sink" (see be-

low) which will degrade image quality. In this section, methods of representing a

complex system as a cascade of elementary stages are described. Transfer relation-

ships are given for the transfer of signal and noise through these stages, and can be

combined to predict the overall system DQE.
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There are three elementary processes that play an important role in under-

standing noise transfer: (a) quantum amplification; (b) deterministic blurring; and,

(c) quantum scattering. They can be cascaded in appropriate serial combinations

where the output of one stage forms a virtual input to the next. Many systems of

practical importance can be modeled, and overall system signal-and-noise trans-

fer determined to a good approximation. In most cases, the input and output of

each stage is a distribution of quanta. These quanta may be of any form, including

x rays, light, and other forms, as long as they can be considered to be independent

of each other. The input and output may even represent the spatial distribution of

some type of event, such as interacting quanta or just photo-electric interactions. In

the following section, noise-transfer characteristics through each elementary pro-

cess and methods of cascading multiple stages to predict system performance are

described.

2.7.1 Quantum amplification

The first elementary process represents a conversion of quanta from one form

to another, such as the conversion of x-ray quanta to optical quanta in a radio-

graphic screen. Both the input and output of this stage are quantum images (Sec-

tion 2.2.1.3). Each input quantum is converted to g output quanta where g is a

random variable characterized in terms of a mean gain factor, g, and variance,

o . Thus, if qin (r) is a sample function describing a sample distribution of input

quanta,

gour(r) = Sgin(r).	 (2.159)

Rabbani, Shaw and Van Metter [39] showed that the mean number of quanta in a

quantum image passing through this amplification stage is transferred according to

Rout = 84in'	 (2.160)

where qi  is the expected number of quanta per unit area in the input and gout is

the expected number in the output. They also showed that the NPS is transferred

according to

NPS0u1(k)=g2NPS1n(k)+gina .	 (2.161)

These expressions can be used to describe the transfer of a uniform distribution

of image quanta through an amplification process as represented graphically in

Figure 2.21, and can be combined with signal-and-noise transfer expressions for

other elementary processes described below to predict the performance of complex

systems.
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gin(r)	 gout(r)

NPSin(k	2	NPSout(k)
9. ag

Quantum Amplification or Selection

Figure 2.21: The process of quantum amplification (and binomial selection) is represented

as shown here, characterized by a mean gain g and variance a.

2.7.1.1 Binomial selection

The amplification stage described above can also be used to represent a bi-

nomial selection process, such as the quantum efficiency of a detector. This is a

special case of the amplification process in which g is a random variable that can

have a value of 1 or 0 only. That is, each quantum incident on this selection stage

is either transferred (probability g), or not (probability 1 — g), to the output where

the average value g is the quantum efficiency of the process. As a consequence of

the binomial theorem, the variance Q becomes [17]

ab =(1 — g).	 (2.162)

Noise transfer through a quantum selection process is therefore given by

NPSout(k) = g2NPSin(k) -f- RinB( 1 —)	 (2.163)

= g2 [NPS (k) — qin] +Ring•	(2.164)

The component NPS, (k) — q i„ is called the correlated noise component, and q i ,^

is called the uncorrelated noise component. As shown by Eq. (2.164), it is some-

times said that the correlated component is "passed through" the squared conver-

sion gain k2 in keeping with the ideal of a transfer model, while the uncorrelated

component is passed though g. A significant correlated component occurs when

NPS,, (k) << ?j. When the input quanta are uncorrelated, in other words, ran-

domly distributed, then NPSi (k) = q j . This corresponds to the smallest value

that NPS, (k) can have, and results in an output NPS given by

NPSout (k) = 4ing,	 (2.165)

which is the expected result.

2.7.2 Deterministic blur

The second elementary process is called deterministic blurring (Figure 3.22),

describing situations where image blur is accurately expressed as a convolution of
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q(r)	 4out(r)

NPSin(k)	 NPSout(k)
. p(r)	_̂

Deterministic Blur (Convolution)

Figure 2.22: Deterministic blur is represented as a convolution (linear filter). It occurs when

the input signal is redistributed with a weighting given by the PSF.

the input with a point-spread function. The input can be either a quantum image

q(r) or an analog signal, but the output can only be an analog signal d(x) where

d (r) = q (r) * psf(r),	 (2.166)

and psf(r) is the blur PSF. When the PSF is normalized to unity area,

dour = gin ,	( 2.167)

and

NPS011t (k) = NPSin (k)MTF2 (k),	 (2.168)

where psf(r) and MTF(k) are the PSF and MTF describing the weighting of the

blur. Thus, the NPS is passed through the squared MTF. An example of determin-

istic blur is given later in the description of the integration of image quanta in a

digital detector element (Section 2.9.1).

2.7.3 Quantum scatter

Most image-blurring mechanisms, including blur caused by the scattering of

optical quanta in a radiographic screen, are fundamentally scattering processes.

That is, each quantum is randomly relocated to a new location with a probability

described by the normalized PSF of the blur (Figure 2.23). This differs from de-

terministic blur which can be viewed as a redistribution of signal by weights (as

described by the convolution integral), while scatter must be viewed as a redistri-

bution by probabilities. This distinction has been recognized for some time (e.g.,

Dainty and Shaw [5], Wagner [32], Metz [12], Sandrik and Wagner [34], Metz and

Vyborny [40], and Barrett and Swindell [13]). It was first expressed by Shaw and

Van Metter [19], derived theoretically by Rabbani, Shaw and Van Metter [39], and

derived again more recently using point-process theory by Barrett [41].

The output of a scatter stage must necessarily be a sample quantum image and

can be written as

gour (r) = qin (r) *S psf(r),	 (2.169)
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gin(r)	 90t(r)

NPSin (k)	 NPSou t(k)
*s p(r)	—o

Quantum Scatter

Figure 2.23: Scatter was described by Rabbani et al. [39] and occurs when individual

quanta are redistributed with a probability given by the normalized PSF. It is represented as

a scatter operator in this transfer-theory formalism.

Figure 2.24: Quantum amplification and scatter operators are cascaded to describe pro-

cesses involving image quanta. An amplification stage followed by a scattering stage as

illustrated here is used to represent the conversion of x rays to light in a radiographic screen.

where psf(r) is the scatter PSF normalized to unity area and *,s represents a scat-

ter operator [42]. Rabbani et al. [39] showed that q and NPS(k) are transferred

through a scatter process according to

Rout = qin ,	( 2.170)

and

NPSout (k) = [NPSin (k) — 4 in ]MTF2 (k) + 4in,	(2.171)

where psf(x) and MTF(k) are the PSF and MTF describing the scattering proba-

bilities normalized to unity area.

It is worth noting other differences (and similarities) between deterministic

blur (Eq. (2.168)) and quantum scatter (Eq. (2.171)). For instance, deterministic

blur will always pass the NPS through the squared MTF. This blur corresponds

to the linear filter described in many standard texts on linear systems and Fourier

transforms. Scatter is a stochastic translated point process and will pass the corre-

lated component of the NPS through the squared MTF, resulting in a frequency-

dependent noise term. The frequency-independent term corresponds to the uncor-

related noise component, and is not passed through the MTF [39]. Other properties
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of this scatter operator, which has also been called a "stochastic convolution," are

described elsewhere [42].

The three elementary processes, amplification, convolution, and scatter, can be

cascaded to represent a wide variety of physical process. Of particular importance

is the simple cascade of an amplification stage followed by a scattering stage as

illustrated in Figure 2.24. This combination can be used to represent the conversion

of x rays into light in a radiographic screen, including the scatter of light within the

screen.

2.8 Cascaded DQE and quantum sinks

2.8.1 Particle-based approach

Noise transfer through a cascaded system was first examined for the analysis

of cascaded multi-stage photo-multiplier detectors by Shockley and Pierce [43]. In

particular, Zwieg [25] showed that the DQE of a system consisting of M Poisson

gain stages is given by

	

DQE(u) _	 (2.172)

1+= +__ + +_ _
S1	g1g2	81	gM

	= 	1	1	1	
(2.173)

1+—+—+•••+
Pl P2	PM

where P3 is the product of the gains for all stages preceding and including the jth

stage:

J

Pi = H gi •	 (2.174)

i=1

Equation (2.173) is particularly useful. It shows that the system DQE is degraded

if the value of P 3 for any stage is less than approximately one. P gives the number

of quanta at the jth stage normalized to the number of input quanta and, if this

number is less than one, the system is said to have a "quantum sink" at that stage.

In this type of analysis, the first factor P1 is generally the quantum efficiency of

the detector, which is always less than unity. This is sometimes called the primary

quantum sink. It is particularly important during the design of any system to ensure

that an adequate number of quanta will exist at each subsequent stage to avoid

any secondary quantum sinks. In general, Eq. (2.173) suggests that a secondary

quantum sink would be avoided so long as the condition

P3 > 10,	 (2.175)
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Figure 2.25: Particle-based QAD analysis showing Pi as a function of stage number j.

is satisfied. However, as shown in the next section, this condition is not restrictive

enough to be useful in practice.

This simple quantum-sink analysis can be performed for an imaging system

based on design parameters by representing the system as a simple cascade of

amplification stages. The factors P can be illustrated graphically as a function of

the stage number j as illustrated in Figure 2.25, clearly showing the existence of

a quantum sink if any of the factors is less than, or close to, unity. It is often the

first step in assessing the potential of any system design for producing high-quality

images [44-48].

This type of analysis in imaging can be traced directly to Albert Rose in the

nineteen-forties. He published what is thought to be the first analysis of this type in

which he assessed a video chain using a model that included the television pickup

tube and lenses, video amplifiers and CRT display, and the retina in an observer.

He plotted the number of image quanta at each stage and showed that two quantum

sinks were predicted: one at the photo cathode of the pickup tube and the other at

the photo surface of the retina [3].

This approach is useful for "back-of-the-envelope"-type calculations of the

DQE. However, it is now known to be overly simplistic and responsible for much

wasted effort in the development of some new designs because of its failure to

predict quantum sinks at non-zero spatial frequencies. Even today, Eq. (2.173) is

sometimes used to predict a high DQE for system designs that have no chance of

success. For this reason, it is labeled as a "particle approach," and must be inter-

preted with caution.
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2.8.2 Fourier-based Approach

The particle-based Zwieg-type model was generalized to include second-order

statistics by Cunningham et al. [49] using the noise-transfer relationships of Rab-

bani et al. [39]. They showed that the frequency-dependent DQE of a cascaded

system consisting of M amplification and scattering stages is described by

DQE(u)

1 + Eg, MTFi (u)	 1 + EgM MTFM (u)

1+ g1MTFi(u) + +g1 g,N MTF1(u)...MTF 2 (u)

(2.176)

where E g1 is called the amplification Poisson excess of the jth stage given by

Q 2

(2.177)
J

The amplification Poisson excess is the relative amount by which the variance ex-

ceeds that of Poisson amplification. Poisson amplification corresponds to a vari-

ance og2 = g  and excess Eg1 = 0. Deterministic gain (a gain with no random

variability) corresponds to a variance o = 0 and excess Egg = —1. MTFJ (u) is

the MTF resulting from the scattering process at the jth stage. Each stage can rep-

resent only an amplification or scattering process, but not both. For amplification

at the jth stage, MTFJ (u) = 1. For a scattering jth stage, g^ = 1 and Egj = —1.

In practice, the excess terms are often small enough to be neglected and

Eq. (2.176) then simplifies to

DQE(u) N 
1	 1	

(2.178)

l + _	2 + + _ 	MTF2 u MTF2 ugiMTFI(u)	gt ...gM	1( )...	M( )

1

—	1	1
1 + Pi 

(u) + ... + PM(U)

(2.179)

where P1 (u) is the product of all gains and squared MTF's for all stages preceding

and including the jth stage:

P3 (u) _	g^ MTF? (u).	 (2.180)

t—t

The Fourier-based Eq. (2.179) has a pleasing symmetry with the particle-based

Eq. (2.173), although it differs in an important respect. It shows that scattering
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stages degrade the DQE dramatically when the MTF value drops with increasing

spatial frequency. The simpler particle-based analysis may not predict a secondary

quantum sink when in fact image quality is being degraded for that reason at non-

zero spatial frequencies.

Additive noise may, in principle, be added to the image by components in the

imaging chain. This source of noise is ignored here for simplicity, but can be in-

corporated into an estimate of the DQE if necessary [49]. In addition, it should

be noted that for systems that may incorporate geometric magnification or demag-

nification of the image (such as with an image-intensifier based system), q and

NPS(u) must be expressed relative to a fixed plane of reference. For convenience,

that plane of reference is often the input surface of the detector.

2.8.3 General criteria to avoid a secondary quantum sink

A general criteria can be developed to ensure that a secondary quantum sink

does not degrade the DQE for any frequency of interest. If the maximum fre-

quency of interest u max is taken as the maximum frequency passed correspond-

ing to MTF(u max) 0.33, then MTF2 (u,nax ) 0.1 and the following statement

applies:

A secondary quantum sink can be avoided if the condition PJ (u) > 10 is satisfied

at each stage in a cascaded system for all spatial frequencies of interest. This

can generally be achieved if all quantum amplification factors subsequent to the

primary selection stage are sufficiently large to ensure that

P1(0)> 100. (2.181)

Specific values will depend on system particulars, but it is clear that the frequency

dependence of this type of analysis results in a much more stringent condition as

given by Eq. (2.181) than that predicted by the simpler particle approach given by

Eq. (2.175).

2.8.4 Quantum accounting diagrams (QAD)

The significance of P (u) is so great in an analysis of system performance that

it is informative to plot P (u) as a function of stage number j for any spatial fre-

quency of interest. These graphs have been called "quantum accounting diagrams"

(QADs) [49]. They illustrate an "effective number of quanta" (not to be confused

with the noise-equivalent number of quanta, NEQ [5, 28, 32]) at each stage of the

system as a function of spatial frequency.

The QAD for the hypothetical system (assuming typical values for the various

parameters) is shown in Figure 2.26. The abscissa is the stage number, j, for j =

0... M (stage 0 corresponds to the x rays incident on stage 1). The ordinate is the

value of P (u). Multiple lines are drawn indicating multiple spatial frequencies of
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Figure 2.26: Quantum Accounting Diagram of the hypothetical system and simulated im-

ages using a Monte Carlo calculation illustrating the visual impact of the non-zero spatial-

frequency quantum sink.

interest. The lines all start at P0(u) = 1, corresponding to a single incident x-ray

quantum.

The first step is detection of the incident x rays to select those x rays which

interact assuming a quantum efficiency a = 0.5. The QAD lines for all frequencies

therefore decrease from 1.0 to 0.5.

This is followed by conversion of the interacting x rays to optical quanta, as-

suming a conversion factor g = 1000. This value is of course x-ray energy depen-

dent. Therefore, the value chosen is the appropriate average for the actual spectrum

of interacting (not incident) x rays.

The third stage describes the spatial spreading of light in the screen attributable

to geometric considerations and scattering. Details of what causes the spread are

unimportant as long as the MTF of the blur is known, and all optical quanta are

independent. The lines corresponding to each spatial frequency diverge as each

line is decreased to a new value according to the square of the MTF (for that stage)

at each frequency. Thus, at a frequency corresponding to MTF r. (u) = 0.1, the QAD

value is reduced by a factor of 0.01 while the QAD value at u = 0 is not decreased

at all. This separation of the various frequency lines may cause a large decrease in

the DQE at high spatial frequencies, with little or none at low spatial frequencies.

The final stage in the model is selection of those optical quanta that escape

from the screen and are coupled from the screen to the detector by the lens as-
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sembly, and are detected by the imaging detector. It may be noted that this process

could also be reasonably represented as several individual selection stages, corre-

sponding to escape from the screen, collection by the lens (solid angle consider-

ations), transmission through the lens, detection by the detector, etc. However, it

has been shown [42] that multiple selection stages can be combined into a single

stage and, in fact, the relative order of selection and stochastic spreading stages

can be reversed without affecting the resulting DQE. Thus, the physicist has some

discretion in choosing how the system is to be represented. The coupling efficiency

giving the probability that an optical quantum exiting from the screen is detected

by the optical detector in the hypothetical system is 0.02.

Examination of Eq. (2.176) shows that if a single stage has a P (u) value much

less than both unity and all other stages, that value will effectively determine the

DQE of the system. That limiting stage is sometimes called the dominant "quan-

tum sink" because it is the stage with the fewest number of quanta. Figure 2.26

shows that for this system, the dominant quantum sink is frequency dependent.

For example, when u = 0, there is not one single dominant quantum sink, but the

system DQE will be determined largely by the number of x-ray quanta interacting

in the screen (stage 1) with a minor additional degradation due to the number of

optical quanta at stage 4. It is said that a minor secondary quantum sink exists in

the number of optical quanta coupled to the detector. At higher spatial frequen-

cies, the picture changes. For instance, when u i 6.0 cycles/mm or more, there is

a dominant secondary quantum sink at stage 4.

The visual effect of quantum sinks in images is illustrated in Figure 2.26.

A Monte Carlo study was performed [50] to simulate the images produced by a sys-

tem with the QAD shown. Images are shown for each step in the cascaded model to

illustrate how they are degraded while transferred through the system. The images

contain 10 two-dimensional sinusoidal patterns with frequencies of 1.0, 1.1, 1.25,

1.4, 1.7, 2.0, 2.5, 3.3, 5.0, and 10.0 cycles/mm. Image 0 is an image composed of

the quanta incident on the system, and represents the best possible image that could

be produced with any system. Image 1 is composed of the detected quanta assum-

ing a quantum efficiency of 0.5. The noise in this image has increased by a factor

of the square root of two. Image 3 is composed of the optical quanta as they exit

the screen. Spatial blurring of the light degrades the MTF, and the high-frequency

patterns are harder to distinguish. Noise in this image has also been smoothed by

the effect of optical blur. The large number of light quanta generated for each in-

teracting x ray causes the stochastic blur to behave much like a deterministic blur.

Image 4 is composed of the optical quanta that are coupled through a lens system to

an optical detector. The light collection efficiency of the lens is not enough to avoid

a secondary quantum sink at this stage for spatial frequencies above approximately

2.5 cycles/mm (as shown in the QAD). As a result, image noise masks patterns

above this frequency, corresponding to a degraded DQE. The quantum sink also

changes the appearance of noise in the image, which becomes more uniform for all

spatial frequencies because of the frequency-independent term in Eq. (2.171). This

represents the component of noise resulting from the uncorrelated optical quanta.
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The secondary quantum sink makes this noise component dominant. Details of

the appearance of the images depends on system parameters as well as the value

chosen for q; however, it is clear that image quality in this example is degraded

because of the secondary quantum sink. This system also clearly fails the above

condition expressed by Eq. (2.181) required to avoid a secondary quantum sink.

Image quality (at high frequencies) is therefore being compromised by an in-

adequate number of secondary quanta, and can only be improved by increasing

the value of P4(u). This could be achieved by changing the screen to increase the

number of optical quanta generated per interacting x ray (if that is possible with-

out significantly degrading the screen MTF), or by increasing the optical collection

efficiency by increasing the size (and therefore cost) of the lens assembly. See ref-

erence [50] for more simulated images illustrating the effect of quantum sinks.

The QAD analysis must be considered a "first approximation" to noise analysis,

and reflects only the fundamental noise limitations imposed by Poisson statistics.

It does not reflect noise limitations imposed by additive noise sources such as elec-

tronic amplifier noise. In addition, it will be noted that the gain variances do not

appear in a calculation of the QAD. This is another reason why the QAD is a less

accurate measure of image quality than an evaluation of the DQE with Eq. (2.176)

which can include additive noise [49]. The utility of the QAD approach is that it

is simple, visual, physically intuitive, and clearly identifies where quantum sinks

may exist and what must be done to avoid them.

2.9 Metrics of digital-system performance

An analysis of noise in digital imaging systems is more complex, and the

Fourier-based approach is almost always required. In this section, concepts of the

digital MTF and digital NPS are introduced. These are then used to describe one

way in which the NEQ and DQE of digital systems might be expressed.

A digital-imaging detector is viewed as a two-dimensional array of discrete

detector elements. (Physical detector elements are called "dels" by Dr. Martin Yaffe

to make a distinction from picture elements—"pixels"—as often they are not the

same thing.) The detector produces a signal that is proportional to the number

of quanta interacting in each detector element (Figure 2.27). Thus, each element

functions as a spatial integrator of image quanta.

2.9.1 Detector -element size and the aperture MTF

Integration of quanta in each detector element can be represented as convolu-

tion with an aperture function in the spatial domain, giving rise to a corresponding

"aperture MTF" in the spatial-frequency domain. This is illustrated in Figure 2.28,

where a sample distribution of x-ray quanta q (x) are incident on a detector. The left

column shows q (x) in one dimension, and the right column shows I Q (u) I where

Q(u) is the Fourier transform of q(x).
In the following it is assumed that each detector element has unity quantum

efficiency and a width of ax . The signal from the nth element centered at x = nxo,
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q(x,y)

Ly

ay

ax

Lx

Figure 2.27: The detector array consists of an array of detector elements. Each element

produces a signal proportional to the number of quanta interacting in the element.

d, is therefore given by the integral

fo —ax 12

xp+ax/2

	d o =k	 q(x) dx,	 (2.182)

where k is a constant relating the number of interacting quanta to the detector

output as a digital value. This integral can also be written as

f
x — nxo

	2.183do=k 	q(	 (	)x)^
	0o 	ax

where

1-I 
()

x _ 1 for — ax /2 < x <, ax /2

ax — 1 0 otherwise.	
(2.184)

Equation (2.183) is recognized as being a correlation integral evaluated at the cen-
ter of the element, x = nxo, and hence

dn=kq(x)*f( x^	,	 (2.185)
ax x=nxp

or similarly as the convolution of q(x) with II(—x/a x ),

dfl=kq(x)*fl (

 \ x /I —	
d(x)lx=nxa,	(2.186)

ax x=nxo

where

d(x) = kq(x) * fl(—x/a x ).	 (2.187)
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Figure 2.28: Integration of quanta in detector elements of width ax is represented as con-

volution of q(x) with kII (x/ax ) in the spatial domain, and multiplication with kax sinc(rrax u)

in the frequency domain.

The function d(x) is called the detector presampling signal. It is a sample func-

tion that, when evaluated at positions corresponding to the center of each element,

gives the detector output values for each element. Thus, d(x) describes the detector

signal for all possible detector-element positions, physical and non-physical.

This is a general result, showing that the effect of integrating quanta in a detec-

tor element can be represented as a convolution integral. The function II (—x/a x )

is the sampling function in the sense of distribution theory (Section 2.2.4), describ-

ing the measurement of q(x). Convolution in the spatial domain corresponds to

multiplication in the spatial-frequency domain, and Eq. (2.187) can therefore be

expressed in the spatial-frequency domain as

D(u) = Q(u)Tax(u), (2.188)

where D(u) is the Fourier transform of d (x) and Tax (u) is a characteristic function

given by the Fourier transform of II(—x/a x ). The aperture MTF, or "del" MTF,

describes how spatial frequencies are passed through the detector elements. When

quanta are integrated in elements of width ax , the aperture MTF is given by

MTFax (u) = I T  °x (u) = Isinc(7rax u) I. (2.189)
Tax (0)

As the widths of detector elements are decreased, the bandwidth of the aperture

MTF is increased.
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2.9.2 Digital MTF: presampling MTF and aliasing

The quantity d(x) is the presampling detector signal as described in the previ-

ous section, and evaluation of d(x) at the centers of each detector element gives

the detector signal for each element. The process of evaluating a function is called

sampling (Section 2.2.2). Evaluating d(x) at positions x = nxo for all n can be

represented as multiplication with the comb function 8(x — nxo) giving dt(x),

where

dt(x) = d(x)	b(x — nxo) = E dn S(x — nx0),	(2.190)

n=—oo	 n=—oo

which consists of an infinite train of 6 functions scaled by the detector values

d,,. This process is illustrated in the two domains in Figure 2.29. Multiplica-

tion with ^n° 	8(x — nxo) in the spatial domain corresponds to convolution

with (1/xo) Fn° 	5(u — 1/nxo) in the spatial-frequency domain. Therefore, the

Fourier transform of dt(x) is given by

1	(	1 1	
(2.191 )

xo	 nxo
n=—oo

as illustrated in Figure 2.29 where D(u) is the Fourier transform of d(x). This

illustration shows that sampling d(x) at uniform spacings of xo corresponds to

Figure 2.29: Sampling a function at uniform spacing xo results in spectral aliasing if the

presampling signal d(x) has frequency components above the sampling cut-off frequency

u C = 1 /2xo.
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the production of aliases of D(u) at spacings of u = 1/xo. If the aliases over-

lap, aliasing occurs, resulting in a distortion of the image signal at frequencies be-

low the sampling cut-off frequency, u, = 1 /(2xo). Excellent descriptions of sam-

pling and aliasing in medical-imaging systems are given elsewhere by Barrett and

Swindell [13], and Metz and Doi [12] among others.

In this section, the effect of the digital detector has been described as a two-

step process: (1) integration of interacting input quanta in each element to produce

a presampling detector signal; and, (2) evaluation (sampling) of the presampling

detector signal to generate the individual detector-element values d. In the spatial-

frequency domain, these two processes are described in terms of: (1) the presam-

pling MTF, MTFpr- e (u); and, (2) aliasing as determined by the sample spacing X.

The overall effect of the detector in the Fourier domain therefore is to attenuate spa-

tial frequencies by the presampling MTF and to introduce aliasing if frequencies

remain that are greater than the sampling cut-off frequency given by u, = 1 /(2xo).

Both steps are required for the description of digital detectors. The presampling

MTF can be measured on real systems using techniques such as the slanted-edge

method [29, 51, 52]. Dobbins et al. [53] describe the effects of aliasing and Fourier-

domain phase errors resulting from an inadequate sampling frequency that may be

encountered with digital detectors.

Of particular importance is the case of ideal dels of width xo with no spaces

between the active regions of each del, corresponding to a unity detector fill factor.

The presampling MTF is given by MTFpr- e (u) = Isinc(7rx/xo)I which has the first

zero at u = 1 /xo, twice the sampling cut-off frequency, and aliasing may be hard to

avoid. If the detector fill factor is less than unity, the bandwidth of the presampling

MTF is increased further, resulting in more aliasing. Aliasing can sometimes be

reduced with the appropriate use of a spatial "anti-aliasing" filter of some sort, such

as the scattering of light in the scintillating screen of indirect flat-panel detector.

2.9.3 Digital NPS: presampling NPS and noise aliasing

The NPS has been defined in Sections 2.5.5 and 2.5.6 for only WSS and WSCS

random processes. However, a digital image consists of an array of discrete val-
ues, d, which represent neither a WSS nor a WSCS random process. This minor
dilemma is avoided with the linear-systems approach by noting that do are sam-
ples of the detector presampling signal d (x) where d(x) describes a WSS random
process, and the resulting sampled signal dt(x), an array of 3 functions scaled by

the values d, represents a WSCS random process. The NPS of dt(x) is therefore

given by Eq. (2.110) as

NPSdt (u) = 1 NPSd(u) * E 3 u — n (2.192)
2

xo n=—oo xo

= 1 NPSd(u) + NPSd^u ± n I (2.193)
x^	n_1	x0
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as illustrated in Figure 2.30(c). It is clear from Eq. (2.193) that the NPS of dt(x)

consists of a fundamental presampling NPS, NPSd(u), plus aliases centered at the

frequencies u = n /xo, scaled by the factor 1 /xo. If the aliases overlap, noise alias-

ing takes place, potentially increasing image noise at all frequencies below the

sampling cut-off frequency.

The sampling theorem states that frequencies above the cut-off frequency u, _
1/(2xp) cannot be represented with samples obtained with a uniform sampling

frequency of u,s = 1/xo. We therefore introduce NPSd(u) which is truncated to

this frequency range, and is the NPS of d(x). Truncation in the frequency domain

corresponds to convolution with a sinc function in the spatial domain, and hence

d(x) is given by

x—nxo)
d(x) = E do sinc (n	 (2.194)

n=—eo
xp

= dt(x) * sinc(Trxou),	 (2.195)

which is an estimate of d(x), equal to a "sinc" interpolation of the digital values

d, as illustrated in Figure 2.30(e). The NPS of d(x) is NPSd(u) given by

NPSd(u) = NPSdt (u)xo fl(xou).	 (2.196)

The functions d(x) and d(x) are equal only if there is no aliasing of d(x).

When the DFT is defined by Eq. (2.63), the NPS estimated from one-

dimensional digital data can be written as

NPSdig(u)In_ 
m = N E {IDFT{Ad n }I Z },	 (2.197)

where Adn = do — E {dn } and is called here the digital NPS. It is defined only

for the frequencies evaluated by the DFT, which are u = m /Nxo for —N /2 < m
N/2 —1. At these frequencies it is also equal to NPS d (u), and therefore NPSdi g (u)
is related to the presampling NPS, NPSd(u), by

NPSdi g (U) = NPSa(u)	 (2.198)

= xoNPSdt(u)	 (2.199)

= NPSd(u) +ENPSd(u± 
),
	(2.200)

n-1
xo 

explicitly stating the undesirable effects of noise aliasing with the second term. It

is satisfying to note that Eq. (2.197) can be viewed as a numerical estimate of the

NPS of d(x) given by Eq. (2.93). Equation (2.200) for the digital NPS was first

described to the medical imaging community by Giger [54].

Downloaded From: http://ebooks.spiedigitallibrary.org/ on 09/18/2013 Terms of Use: http://spiedl.org/terms



Metrics of digital-system performance 143

Figure 2.30: Schematic illustration describing the NPS of a digital image in terms of

the Fourier transform. Left: spatial domain. Center: magnitude, spatial-frequency domain.

Right: NPS.

2.9.3.1 Digital NPS in two dimensions

The digital NPS for a one-dimensional noise process is given by Eq. (2.197).

However, digital images represent two-dimensional noise processes and hence it

is necessary to make use of the two-dimensional digital NPS for image analyses

which is given by

NPSdi g (U, u) =
 x0Y0

 E { IDFT21) {Od„ x , ny }I 2
}, 

(2.201)
Nx Ny

for the frequencies evaluated by the two-dimensional DFT, DFT2D , where xo and

yo are the x and y spacings of the discrete values respectively. The one-dimensional

NPS of the two-dimensional noise process represented by a digital image is given
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by

2( Ny -1

NPSdi g (u) = x^y^ E DFT E OdnX , ny	(2.202)

NX Ny	my=o

Equation (2.202) should be considered a working definition of the digital NPS

for systems analysis after ensuring that the DFT being used is consistent with

Eq. (2.63). The expectation value of the squared DFT can be estimated by squaring

and averaging the DFT of many digital noise images.

2.9.3.2 Digital-detector noise variance

The noise variance in d(x) is conserved by the process of noise aliasing so that

2 f^of = 	NPSd(u) du
	

(2.203)

1/2x0

= xo J	NPSdt (u) du	 (2.204)
1 /2xo

f_ l/ 2xo /

1/2x0	00

=	 NPSd(u) ^- 	NPSd (u ± n) du.	(2.205)
x0

n=1

Noise aliasing cannot be undone once it has occurred. It can be prevented only by

implementing a spatial anti-aliasing filter which would reduce the bandwidth of the

presampling NPS, NPSd(u), such that negligible noise power exists at frequencies

above the sampling cut-off frequency. The calculated pixel variance is given by

N-1

6d= N 1 1 YIAdn I 2 .	 (2.206)

n=0

2.9.4 Digital NEQ

The NEQ as given by Eq. (2.145) applies to digital systems although made

more complicated by the potential presence of signal and noise aliasing. The nu-

merator describes the system transfer of signals from the input to the output, and

thus the MTF for digital systems is the presampling MTF which includes the aper-

ture MTF. Noise in a digital image is given by Eq. (2.200) and so the digital NEQ

is given by

q2)

	2

ad MTFp"(u)

NEQdig(q , u) =	
NPSdig(u)	

(2.207)
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for u = m/Nxo and —N/2 < m <_ N/2 — 1, where xo is the center-to-center spac-

ing of detector elements. Thus, for linear digital systems, the NEQ can be calcu-

lated using

_	MTFPre(u)
NEQdig(R, u) __Z ,	(2.208)

NPSdi g (u)/d

for u = m/Nxo and —N/2 < m < N/2 — 1 when using a DFT given by Eq. (2.63)
and where NPSdig (u) is given by Eq. (2.202). Interpretation of the digital NEQ is

possibly easier when expressed in the form

_	 d2MTF2 (u)
NEQdig(4, u) _	P	(2.209)

NPSd(u) + NPSd U ± n
-)n=1	x0

for u = m/Nxo and —N/2 <, m < N/2 — 1. The NEQ is a measure of the noise-

equivalent number of quanta, and is affected by noise aliasing. Signal aliasing adds

an additional artifact that is not included in the NEQ. The digital NEQ is defined

only for frequencies less than the sampling cut-off frequency, u, = 1 /2xo.

2.9.5 Digital DQE

Similar to the digital NEQ, the digital DQE is defined here as

NEQdig(q , u)

	

DQEd ig (q, u) _	 (2.210)
q

d2MTFPre (u)
	_ 	 (2.211)

)]

q NPSd (u) + NPSdI of

n=1	\	x0
foru=m/Nxo and —N/2<m<N/2— 1.

2.9.6 Signal aliasing

Signal aliasing can also be viewed as a form of image noise, but depends on

specifics of particular images and is not WSS or WSCS. It is therefore not included

in the calculations presented in this chapter. However, it is still important to remem-

ber that signal aliasing may result in additional artifacts and image degradation.

2.10 Analysis of a simple digital detector array

The DQE of a (hypothetical) simple digital detector is described here as an

illustrative example of principles presented here. The detector is illustrated in Fig-

ure 2.31. It consists of a thin scintillating screen bonded to an optical detector array.
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Figure 2.31: Schematic illustration of the hypothetical simple digital detector. The linear-

systems model consists of 6 stages.

While this model is not intended to represent any particular imaging system, it is

essentially a simple model of a hypothetical flat-panel thin-film-transistor (TFT)

array detector, similar to any of several designs being developed elsewhere for ra-

diographic and fluoroscopic applications [55, 56].

2.10.1 Cascaded model

The detector array is modeled as a cascade of six linear stages (Figure 2.31).

The input is a uniform distribution of x-ray quanta represented as the quantum

image qo(x, y) (Section 2.2.1.3) with an expected value of q o quanta/mm2 . The

NPS of this input quantum image is therefore NPS0(k) = q o (see Section 2.6.2.3).

Transfer of the expected value and NPS through stage 5 and 6 is illustrated in

Figure 2.32.

2.10.1.1 Stage 1: selection of x-ray quanta that interact in screen

Selection of incident x-ray quanta that interact in the screen is represented as

a quantum selection stage (Section 2.7.1.1), which is a special case of quantum

amplification. If the quantum efficiency is a, a is introduced as a random vari-

able having the values 0 and 1 only with an expected value a. Therefore, using

Eqs. (2.160) and (2.164), the distribution of interacting quanta can be represented

as ql (r) having an expected value of 1 and NPS of NPS1 (k) where

ql (r) = go(r)a,	 (2.212)
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Figure 2.32: Transfer of the expected number of image quanta and corresponding NPS at

each stage of the cascaded model. Left: spatial domain. Center: spatial-frequency domain

(magnitude). Right: NPS.
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q 1 = aqo ,	 (2.213)

and

	NPS1(k) = aqo ,	 (2.214)

in units of mm -2

2.10.1.2 Stage 2: conversion to optical quanta in screen

It is assumed that each interacting quantum produces an average of m optical

quanta per interaction with a variance a,. This variance accounts for all variations

in the conversion gain, including Swank noise and a polychromatic x-ray beam.

The conversion gain (Section 2.7.1) is therefore represented as the random vari-

able m and the resulting distribution of optical quanta, expected value and NPS is

obtained using Eqs. (2.160) and (2.161) giving

q2(r) = go(r)ma,	 (2.215)

	q 2 = am qo ,	 (2.216)

and

NPS2 (k) = am2 g o (1 + ems"_ 	am qo ,	 (2.217)
m

in units of nmf 2

2.10.1.3 Stage 3: scattering of optical quanta in screen

It is assumed that all light quanta scatter (Section 2.7.3) with the same point-

spread function psfs (x, y) normalized to unity area, neglecting variable interaction

depths in the screen. The resulting quantum image, expected value and NPS are

obtained using Eqs. (2.170) and (2.17 1) giving

q3(r) =go(r)ma * S psfs (r),	 (2.218)

q 3 = am qo ,	 (2.219)

and

NPS3(k) =amZ go^l + 

8M

lIMTFS (k)I 2 -I-amgo ,	(2.220)
m J

in units of mm -2 where *S represents the scattering process [42] and MTF, (k) is
the scatter MTF. The gain Poisson excess E m is related to the gain variance as given
by Eq. (2.177).
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2.10.1.4 Stage 4: selection of light quanta that interact

It is assumed that a fraction f of all light quanta will interact somewhere in the

optical detector array. The factor fB must include the coupling efficiency of light

from the screen as well as the quantum efficiency of the detector array. It does not

matter where the light quanta interact, and it does not matter if they interact in an

active or inactive region. The factor ,B describes only the probability of interac-

tion. The expected value and NPS of the distribution of interacting light quanta is

therefore obtained using Eqs. (2.160) and (2.164), giving

q4(r) = go(r)ma * s psf,(r),B,	 (2.221)

q4 = am8go ,	 (2.222)

and

NPS4(k) = dm2 ^B Z g o I 1 + - I IMTF,s (k) I 2 + am,Bgo ,	(2.223)

in units of mm -2

2.10.1.5 Stage 5: spatial integration of interacting light quanta in elements

The detector presampling signal is given by the integral of q4 (r) over rectangles

with width a, and a y corresponding to the width of active regions of the detector

elements, corresponding to a deterministic blur stage (Section 2.7.2). If k is the

scaling factor relating the number of interacting light quanta to the output signal,

the detector presampling signal is given in Cartesian coordinates by

x
d(x, .Y) = k [qo(x, y)ma} *s psfs (x, y)l^ * f(

ax
, Q (2 . 224)
 y

where * represents a two-dimensional convolution integral. The expected detector
signal d is given by

d = kax ay am18go ,	 (2.225)

which is unitless, and the NPS by

_	e
	NPSd(u, v) = k2axay amt fi 2ga I + 	IM'r1 (u, v)1 2 +a i o

m

x Isinc(7rax u)l 2 1sinc(rra y v)1 2 ,	 (2.226)

in units of min Note that it is at this stage, after integration of quanta in detector

elements, one must start representing the image as an analog image rather than as

a quantum image. As a consequence, units of the NPS are mm 2 rather than mm-2•
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2.10.1.6 Stage 6: output from discrete detector elements

The process of obtaining the discrete output signals from each detector element

is represented as a sampling process. If each detector element has a center-to-center

spacing of xo and yo in the x and y directions respectively, the sampled detector

signal dt(x, y) is given by

I x y
dt(x , y) = k [qo(x, Y)ma] *s psfs(x, Y)^ * f(

a, ay

00	00

X	Y, 3 (x — nxxo , Y
— f yYo)	(2.227)

n ., =—cc n y =—oo

The expected value is given by

0"	00

E{d#(x, y)} = ka x av am,g o	3(x — n.x xo, y — n y yo),	(2.228)

nC=- 00 n v =—oo

consisting of two-dimensional 6 functions scaled by the digital values dnx , ny where

	

the expected value of	is

E{dn.C , ny } = kax aam,go .	 (2.229)

The NPS of dt(x, y), obtained using Eq. (2.193) and generalized to two dimen-

sions, is given by

1	^ 	̂nx	nYNPSI (u, v) = 2 2 NPSd (u, v) + E E NPSd (u f —, v f —^ (2.230)

	x0 0	nx=lny=1	
x0	YO

Combining this result with Eqs. (2.199) and (2.226) gives the two-dimensional

digital NPS as

00 00

nXNPSdig (u, v) =NPSd(u > v) +	NPSd u ± —, v f —nY	(2.231 )

nx =1 ny=1	 x0	YO

for frequencies below the sampling cut-off frequencies of u, = 1 /2xo and v, _

1/2yo. The digital NPS has units of mm 2 .

The one-dimensional NPS of this two-dimensional noise process is obtained

by evaluating Eq. (2.231) along the appropriate axis. The NPS in the x direction is

obtained by setting v = 0 and substituting do for dnz , giving
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NPSdig (u) = NPSd (u) + E NPSd I u + n	 (2.232)
x0

n=1

which also has units mm 2 and where NPSd (u) is the presampling NPS of d(x).

2.10.2 Detector DQE

The DQE of this hypothetical detector is evaluated in the x direction only to

simplify the mathematical expressions by setting v = 0. The DQE is given by

Eq. (2.211) where the presampling MTF is given by

MTF p ,.e (u) = MTF,s (u) I sinc(rrax u) ,	 (2.233)

and the presampling NPS by Eq. (2.226). In the absence of additive noise, these

results can be combined, giving

DQE(u) =
aMTFs (u )sinc e (7rax u )

F(u)+YFlu+n^

n=1	
xp

(2.234)

where

F(u) _ (1 + `)MTF(u) + 1 sinc 2 (7rax u)
m 	m$

(2.235)

This result offers little insight into important physical processes without making

some simplifications. For instance, if iii > 100 as required by the QAD condition

(Section 2.8.3) to prevent secondary quantum sinks, then (m,B) -1 << IMTF pre (u)1 2

for all frequencies passed by MTFpre (u) with any significance. If it is further as-

sumed that the conversion gain from X rays to light is approximately Poisson so

that I c„l /m << 1 (a good assumption for many scintillating screens including CsI),

the DQE simplifies to

DQE(u)

aMTF2 (u)sinc2 (Trax u)
(2.236)

MTFS (u)sinc2 (irax u) + MTF (u± n, since (rrax^u + n I
xp	xp

n=1

aMTF pre (u)	
(2.237)

00

MTF pre (u) + MTF pre u f n /
\	xp

n=1
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2.10.3 Noise aliasing, detector fill factor and variance

The effect of noise aliasing on the DQE is given by the second term in the de-

nominator of Eq. (2.237). Noise aliasing can only be avoided if MTF pre (u) << 1 for

all frequencies above the sampling cut-off frequency I u I > u, where u, = 1 /2xo

(Figure 2.32). Two limiting cases are considered as described below.

2.10.3.1 Low-resolution scintillator (correlated quantum noise on detector array)

A "low"-resolution scintillator implies that the system MTF in the x direction

is limited by the screen and not by the detector element size a x . The screen causes

the quantum noise in the optical image incident on the optical detector array to

be correlated, which reduces the noise bandwidth. Thus, sinc2 (nax u) is approx-

imately constant for all frequencies of significance passed by MTFs (u) and the

DQE simplifies to

aMTF2 (u)
DQE(tit)	 (2.238)

MTF (u) + MTF 
( xo

u ± —1

n=1

If the detector elements are sufficiently small and close together that aliasing can

be neglected, that is, MTFs (u) l u=n, << 1 for u, = 1 /2xp, the DQE reduces to

	

DQE(u) ti 
aMTFs(u)

 =a.	 (2.239)
MTFS (u)

Thus, for this special case of a quantum-noise-limited detector with sufficiently

small detector elements and no secondary quantum sink, both image signal and

noise are proportional to the MTF in the same way and the DQE is therefore flat

with frequencies and determined entirely by the quantum efficiency of the screen

a, not by the optical digital detector array. In particular, the DQE is not degraded by

the detector fill factor yx yy , defined by yX = aX /xo and yy = ay / yo, having a value

less than unity. This result is only valid as long as additive detector noise can be

neglected. For instance, if the detector fill factor is decreased, the signal decreases

and there may be a point at which detector noise can no longer be neglected and

where this result is not valid. The DQE of a two-dimensional detector array is given

by the same result.

Image noise measured as the variance o in detector element values do is cal-

culated by

1 N-1

	

cld N — 1 E [d
n — d] 2 .	 (2.240)

n=O
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The variance is also equal to the presampling NPS integrated over all frequencies

(in two dimensions), given by

p00 p00

Qd = Jj NPSd(u, v)dudv	 (2.241)
00

°O f 00_ ( 	k2axay ai 2 ,B2ga (1+E=n 
MTFs

^0	 m

x sinc2 (7rax u)sinc2 (.ra y v)dudv,	 (2.242)

which simplifies to

p00 p00

od	k2axatiam2,B2go JJ MTF2 (u, v) du dv.	(2.243)
00

Thus, for the low-resolution scintillator detector, noise variance is proportional to

the integral of the squared MTF. If the spatial resolution of the scintillator is de-

graded, the width of the MTF is reduced and detector variance decreases. This

means that for a specified detector-element size, less detector noise will be ob-

tained if a lower-resolution scintillator is used and a compromise must be found

between noise and resolution.

2.10.3.2 High-resolution scintillator (uncorrelated quantum noise

on detector array)

A "high"-resolution scintillator implies that the system MTF in the x direction

is limited by the detector-array aperture function rather than by the scintillator. This

corresponds to system designs using very-high-resolution scintillators, and also to

amorphous selenium "direct-detection" flat-panel detectors. Therefore, MTF S (u)

is approximately constant over frequencies passed by sinc2 (irax u) and the DQE

simplifies to

asinc2(lraxu)
DQE(u ) 	 (2.244)

sinc2 (Jrax u) +Esinc2 (7rax Lu f o
fn	\

Zhao et al. [57] have shown that the sum of sine 2 (irax u) and its aliases at harmon-

ics of u = 1 /xp is always equal to a constant given by

00

sinc2 (7rax u) +	sincz (7rax I	
1

u f 
n ) = xo=	1 ,	

(2.245)
n=1	xoJ	ax Yx
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w
0
0

-1/2xo	0	 1/2x0

Spatial Frequency

Figure 2.33: Illustration of the DQE for a two-dimensional detector with a high-resolution

converter and fill-factor values y = yx yv, (for yx = y) equal to 1.0, 0.75, 0.50, and 0.25.

The scintillator quantum efficiency, a, is assumed to be unity.

where yx = ax /xo is the detector fill factor in the x direction. The DQE therefore

reduces to

	

DQE(u) a ax sinc2 (7rax u) = ayx sinc2 (irax u),	(2.246)
x0

for a one-dimensional detector and to

DQE(u, v) ayx yy sinc2 (rax u)sinc2 (rray v),	(2.247)

for a two-dimensional detector. The one-dimensional DQE of this two-dimensional

detector, evaluated along the v = 0 axis of the two-dimensional detector, is there-

fore given by

DQE(u) ayx yy sinc2 (7rax u).	 (2.248)

Thus, for this special case of a quantum-noise-limited detector with a very-high-

resolution converter, the DQE is proportional to the converter quantum efficiency

a, and the detector fill factor yx yy , and always has a shape given by since (rrax u),

which is dependent on the x-direction fill factor. Figure 2.33 illustrates the DQE

for a two-dimensional detector with a high-resolution scintillator for various fill

factor values y = yx yy assuming yx = yy based on Eq. (2.248). As the fill fac-

tor decreases, higher frequencies are passed by the detector-element apertures and

noise aliasing increases. This is directly responsible for the decreasing DQE.

The detector variance is given by

Qd = EEO NPSd(u, v) du dv	 (2.249)
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k 2 axavam2 ,B Z q 
p J FOO 

nc2 (Jrax u)sinc2 (7ray v)dudv (2.250)

= k2axayam 2,2go•
	 (2.251)

Thus, with the inclusion of noise aliasing, the noise variance predicted with this

Fourier-based approach is equal to the variance that would be expected for a simple

photon-counting detector of size a ., x ay .

It should also be noted that for this high-resolution scintillator (uncorrelated

quantum noise incident on the detector array), the variance is related to the zero-

frequency value of the NPS according to

NPSd(0, 0) ,= a,ayod, (2.252)

consistent with Eq. (2.133).

2.11 Summary

In this chapter, principles of linear-systems theory have been summarized, in-

cluding the point-spread function (PSF), line-spread function (LSF), modulation-

transfer function (MTF), and other simple metrics of system performance. It has

been shown how images may be classified as either quantum images (distributions

of quanta), analog images, or digital images. Particular attention has been paid to

the issue of units for each, and an introduction given to the principles of distribution

theory and generalized functions that are essential for the description of quantum

images.

These simple linear-systems metrics can be used to describe the expected, or

noise free, performance of an imaging system. However, they do not describe the

transfer of image noise. The stochastic-theory relationships necessary to describe

noise transfer are a very recent addition to the linear-systems approach, developed

primarily by Shaw, Rabbani, Van Metter, and co-workers. In addition, the intro-

duction of a photon-scatter operator to the linear-systems repertoire has allowed

this approach to be extended to include the description of quantum-based stochas-

tic systems, a necessary step for the description of medical-imaging systems. As a

result, the extended linear-systems approach forms the basis from which compre-

hensive theoretical models of noise transfer through realistic imaging systems can

be developed, and the connection is made to more complex metrics of system per-

formance including the noise-power spectrum (NPS) and noise-equivalent number

of quanta (NEQ).

It has also been shown how the linear-systems approach is used to develop

cascaded-systems models that can be used to predict, based on theoretical design

considerations, metrics of system performance including the spatial-frequency-

dependent detective quantum efficiency (DQE). Complex imaging systems are rep-

resented as serial cascades of multiple "elementary" processes. This approach has

been very successful for the theoretical analysis of many systems, and gives a phys-

ical interpretation to the idea of a spatial-frequency-dependent quantum sink. These
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quantum sinks are responsible for the frequency dependence of the DQE except

where limited by detector-noise sources. The cascaded approach provides a physi-

cally intuitive model that can be very helpful for understanding limitations of sys-

tem performance and particular system designs, a necessary step for understanding

and optimizing system performance in the design of new imaging systems.

Digital imaging systems add additional complexity to a systems analysis, re-

quiring a description of noise aliasing. This has been accomplished using the the-

ories of wide-sense cyclostationary (WSCS) random processes. While the descrip-

tion of WSCS processes has an established basis in communications theory, this

author is unaware of their prior use in linear-systems theory or for the analysis or

description of medical-imaging systems.

An illustrative example is given of the analysis of a hypothetical digital detec-

tor. The detector is essentially a simple model of a flat-panel active matrix detec-

tor similar to any of several designs currently under investigation and commercial

production. The analysis shows how the DQE can be predicted from simple design

parameters, and includes the effects of detector fill factor and noise aliasing on the

DQE.
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