

Introduction to Algorithms
Fourth Edition

Thomas H. Cormen
Charles E. Leiserson
Ronald L. Rivest
Clifford Stein

Introduction to Algorithms
Fourth Edition

The MIT Press
Cambridge, Massachusetts London, England

c 2022 Massachusetts Institute of Technology
All rights reserved. No part of this book may be reproduced in any form or by any electronic or mechanical means
(including photocopying, recording, or information storage and retrieval) without permission in writing from the
publisher.
The MIT Press would like to thank the anonymous peer reviewers who provided comments on drafts of this book.
The generous work of academic experts is essential for establishing the authority and quality of our publications.
We acknowledge with gratitude the contributions of these otherwise uncredited readers.
This book was set in Times Roman and MathTime Professional II by the authors.

Names: Cormen, Thomas H., author. j Leiserson, Charles Eric, author. j
Rivest, Ronald L., author. j Stein, Clifford, author.

Title: Introduction to algorithms / Thomas H. Cormen, Charles E. Leiserson,
Ronald L. Rivest, Clifford Stein.

Description: Fourth edition. j Cambridge, Massachusetts : The MIT Press,
[2022] j Includes bibliographical references and index.

Identiûers: LCCN 2021037260 j ISBN 9780262046305
Subjects: LCSH: Computer programming. j Computer algorithms.
Classiûcation: LCC QA76.6 .C662 2022 j DDC 005.13--dc23
LC record available at http://lccn.loc.gov/2021037260

10 9 8 7 6 5 4 3 2 1

Contents

Preface xiii

I Foundations
Introduction 3

1 The Role of Algorithms in Computing 5
1.1 Algorithms 5
1.2 Algorithms as a technology 12

2 Getting Started 17
2.1 Insertion sort 17
2.2 Analyzing algorithms 25
2.3 Designing algorithms 34

3 Characterizing Running Times 49
3.1 O-notation, �-notation, and ‚-notation 50
3.2 Asymptotic notation: formal deûnitions 53
3.3 Standard notations and common functions 63

4 Divide-and-Conquer 76
4.1 Multiplying square matrices 80
4.2 Strassen’s algorithm for matrix multiplication 85
4.3 The substitution method for solving recurrences 90
4.4 The recursion-tree method for solving recurrences 95
4.5 The master method for solving recurrences 101

? 4.6 Proof of the continuous master theorem 107
? 4.7 Akra-Bazzi recurrences 115

vi Contents

5 Probabilistic Analysis and Randomized Algorithms 126
5.1 The hiring problem 126
5.2 Indicator random variables 130
5.3 Randomized algorithms 134

? 5.4 Probabilistic analysis and further uses of indicator random variables
140

II Sorting and Order Statistics
Introduction 157

6 Heapsort 161
6.1 Heaps 161
6.2 Maintaining the heap property 164
6.3 Building a heap 167
6.4 The heapsort algorithm 170
6.5 Priority queues 172

7 Quicksort 182
7.1 Description of quicksort 183
7.2 Performance of quicksort 187
7.3 A randomized version of quicksort 191
7.4 Analysis of quicksort 193

8 Sorting in Linear Time 205
8.1 Lower bounds for sorting 205
8.2 Counting sort 208
8.3 Radix sort 211
8.4 Bucket sort 215

9 Medians and Order Statistics 227
9.1 Minimum and maximum 228
9.2 Selection in expected linear time 230
9.3 Selection in worst-case linear time 236

III Data Structures
Introduction 249

10 Elementary Data Structures 252
10.1 Simple array-based data structures: arrays, matrices, stacks, queues

252
10.2 Linked lists 258
10.3 Representing rooted trees 265

Contents vii

11 Hash Tables 272
11.1 Direct-address tables 273
11.2 Hash tables 275
11.3 Hash functions 282
11.4 Open addressing 293
11.5 Practical considerations 301

12 Binary Search Trees 312
12.1 What is a binary search tree? 312
12.2 Querying a binary search tree 316
12.3 Insertion and deletion 321

13 Red-Black Trees 331
13.1 Properties of red-black trees 331
13.2 Rotations 335
13.3 Insertion 338
13.4 Deletion 346

IV Advanced Design and Analysis Techniques
Introduction 361

14 Dynamic Programming 362
14.1 Rod cutting 363
14.2 Matrix-chain multiplication 373
14.3 Elements of dynamic programming 382
14.4 Longest common subsequence 393
14.5 Optimal binary search trees 400

15 Greedy Algorithms 417
15.1 An activity-selection problem 418
15.2 Elements of the greedy strategy 426
15.3 Huffman codes 431
15.4 Ofüine caching 440

16 Amortized Analysis 448
16.1 Aggregate analysis 449
16.2 The accounting method 453
16.3 The potential method 456
16.4 Dynamic tables 460

viii Contents

V Advanced Data Structures
Introduction 477

17 Augmenting Data Structures 480
17.1 Dynamic order statistics 480
17.2 How to augment a data structure 486
17.3 Interval trees 489

18 B-Trees 497
18.1 Deûnition of B-trees 501
18.2 Basic operations on B-trees 504
18.3 Deleting a key from a B-tree 513

19 Data Structures for Disjoint Sets 520
19.1 Disjoint-set operations 520
19.2 Linked-list representation of disjoint sets 523
19.3 Disjoint-set forests 527

? 19.4 Analysis of union by rank with path compression 531

VI Graph Algorithms
Introduction 547

20 Elementary Graph Algorithms 549
20.1 Representations of graphs 549
20.2 Breadth-ûrst search 554
20.3 Depth-ûrst search 563
20.4 Topological sort 573
20.5 Strongly connected components 576

21 Minimum Spanning Trees 585
21.1 Growing a minimum spanning tree 586
21.2 The algorithms of Kruskal and Prim 591

22 Single-Source Shortest Paths 604
22.1 The Bellman-Ford algorithm 612
22.2 Single-source shortest paths in directed acyclic graphs 616
22.3 Dijkstra’s algorithm 620
22.4 Difference constraints and shortest paths 626
22.5 Proofs of shortest-paths properties 633

Contents ix

23 All-Pairs Shortest Paths 646
23.1 Shortest paths and matrix multiplication 648
23.2 The Floyd-Warshall algorithm 655
23.3 Johnson’s algorithm for sparse graphs 662

24 Maximum Flow 670
24.1 Flow networks 671
24.2 The Ford-Fulkerson method 676
24.3 Maximum bipartite matching 693

25 Matchings in Bipartite Graphs 704
25.1 Maximum bipartite matching (revisited) 705
25.2 The stable-marriage problem 716
25.3 The Hungarian algorithm for the assignment problem 723

VII Selected Topics
Introduction 745

26 Parallel Algorithms 748
26.1 The basics of fork-join parallelism 750
26.2 Parallel matrix multiplication 770
26.3 Parallel merge sort 775

27 Online Algorithms 791
27.1 Waiting for an elevator 792
27.2 Maintaining a search list 795
27.3 Online caching 802

28 Matrix Operations 819
28.1 Solving systems of linear equations 819
28.2 Inverting matrices 833
28.3 Symmetric positive-deûnite matrices and least-squares approximation

838
29 Linear Programming 850

29.1 Linear programming formulations and algorithms 853
29.2 Formulating problems as linear programs 860
29.3 Duality 866

30 Polynomials and the FFT 877
30.1 Representing polynomials 879
30.2 The DFT and FFT 885
30.3 FFT circuits 894

x Contents

31 Number-Theoretic Algorithms 903
31.1 Elementary number-theoretic notions 904
31.2 Greatest common divisor 911
31.3 Modular arithmetic 916
31.4 Solving modular linear equations 924
31.5 The Chinese remainder theorem 928
31.6 Powers of an element 932
31.7 The RSA public-key cryptosystem 936

? 31.8 Primality testing 942
32 String Matching 957

32.1 The naive string-matching algorithm 960
32.2 The Rabin-Karp algorithm 962
32.3 String matching with ûnite automata 967

? 32.4 The Knuth-Morris-Pratt algorithm 975
32.5 Sufûx arrays 985

33 Machine-Learning Algorithms 1003
33.1 Clustering 1005
33.2 Multiplicative-weights algorithms 1015
33.3 Gradient descent 1022

34 NP-Completeness 1042
34.1 Polynomial time 1048
34.2 Polynomial-time veriûcation 1056
34.3 NP-completeness and reducibility 1061
34.4 NP-completeness proofs 1072
34.5 NP-complete problems 1080

35 Approximation Algorithms 1104
35.1 The vertex-cover problem 1106
35.2 The traveling-salesperson problem 1109
35.3 The set-covering problem 1115
35.4 Randomization and linear programming 1119
35.5 The subset-sum problem 1124

VIII Appendix: Mathematical Background

Introduction 1139
A Summations 1140

A.1 Summation formulas and properties 1140
A.2 Bounding summations 1145

Contents xi

B Sets, Etc. 1153
B.1 Sets 1153
B.2 Relations 1158
B.3 Functions 1161
B.4 Graphs 1164
B.5 Trees 1169

C Counting and Probability 1178
C.1 Counting 1178
C.2 Probability 1184
C.3 Discrete random variables 1191
C.4 The geometric and binomial distributions 1196

? C.5 The tails of the binomial distribution 1203
D Matrices 1214

D.1 Matrices and matrix operations 1214
D.2 Basic matrix properties 1219

Bibliography 1227
Index 1251

Preface

Not so long ago, anyone who had heard the word <algorithm= was almost certainly
a computer scientist or mathematician. With computers having become prevalent in
our modern lives, however, the term is no longer esoteric. If you look around your
home, you’ll ûnd algorithms running in the most mundane places: your microwave
oven, your washing machine, and, of course, your computer. You ask algorithms
to make recommendations to you: what music you might like or what route to
take when driving. Our society, for better or for worse, asks algorithms to suggest
sentences for convicted criminals. You even rely on algorithms to keep you alive,
or at least not to kill you: the control systems in your car or in medical equipment. 1

The word <algorithm= appears somewhere in the news seemingly every day.
Therefore, it behooves you to understand algorithms not just as a student or

practitioner of computer science, but as a citizen of the world. Once you understand
algorithms, you can educate others about what algorithms are, how they operate,
and what their limitations are.

This book provides a comprehensive introduction to the modern study of com-
puter algorithms. It presents many algorithms and covers them in considerable
depth, yet makes their design accessible to all levels of readers. All the analyses
are laid out, some simple, some more involved. We have tried to keep explanations
clear without sacriûcing depth of coverage or mathematical rigor.

Each chapter presents an algorithm, a design technique, an application area, or a
related topic. Algorithms are described in English and in a pseudocode designed to
be readable by anyone who has done a little programming. The book contains 231
ûgures4many with multiple parts4illustrating how the algorithms work. Since
we emphasize efficiency as a design criterion, we include careful analyses of the
running times of the algorithms.

1 To understand many of the ways in which algorithms inüuence our daily lives, see the book by
Fry [162].

xiv Preface

The text is intended primarily for use in undergraduate or graduate courses in
algorithms or data structures. Because it discusses engineering issues in algorithm
design, as well as mathematical aspects, it is equally well suited for self-study by
technical professionals.

In this, the fourth edition, we have once again updated the entire book. The
changes cover a broad spectrum, including new chapters and sections, color illus-
trations, and what we hope you’ll ûnd to be a more engaging writing style.

To the teacher
We have designed this book to be both versatile and complete. You should ûnd it
useful for a variety of courses, from an undergraduate course in data structures up
through a graduate course in algorithms. Because we have provided considerably
more material than can ût in a typical one-term course, you can select the material
that best supports the course you wish to teach.
You should ûnd it easy to organize your course around just the chapters you

need. We have made chapters relatively self-contained, so that you need not
worry about an unexpected and unnecessary dependence of one chapter on an-
other. Whereas in an undergraduate course, you might use only some sections
from a chapter, in a graduate course, you might cover the entire chapter.
We have included 931 exercises and 162 problems. Each section ends with exer-

cises, and each chapter ends with problems. The exercises are generally short ques-
tions that test basic mastery of the material. Some are simple self-check thought
exercises, but many are substantial and suitable as assigned homework. The prob-
lems include more elaborate case studies which often introduce new material. They
often consist of several parts that lead the student through the steps required to ar-
rive at a solution.

As with the third edition of this book, we have made publicly available solutions
to some, but by no means all, of the problems and exercises. You can ûnd these so-
lutions on our website, http://mitpress.mit.edu/algorithms/. You will want to check
this site to see whether it contains the solution to an exercise or problem that you
plan to assign. Since the set of solutions that we post might grow over time, we
recommend that you check the site each time you teach the course.

We have starred (?) the sections and exercises that are more suitable for graduate
students than for undergraduates. A starred section is not necessarily more difû-
cult than an unstarred one, but it may require an understanding of more advanced
mathematics. Likewise, starred exercises may require an advanced background or
more than average creativity.

Preface xv

To the student
We hope that this textbook provides you with an enjoyable introduction to the ûeld
of algorithms. We have attempted to make every algorithm accessible and inter-
esting. To help you when you encounter unfamiliar or difûcult algorithms, we
describe each one in a step-by-step manner. We also provide careful explanations
of the mathematics needed to understand the analysis of the algorithms and sup-
porting ûgures to help you visualize what is going on.

Since this book is large, your class will probably cover only a portion of its
material. Although we hope that you will ûnd this book helpful to you as a course
textbook now, we have also tried to make it comprehensive enough to warrant space
on your future professional bookshelf.
What are the prerequisites for reading this book?

 You need some programming experience. In particular, you should understand
recursive procedures and simple data structures, such as arrays and linked lists
(although Section 10.2 covers linked lists and a variant that you may ûnd new).

 You should have some facility with mathematical proofs, and especially proofs
by mathematical induction. A few portions of the book rely on some knowledge
of elementary calculus. Although this book uses mathematics throughout, Part I
and Appendices A–D teach you all the mathematical techniques you will need.
Our website, http://mitpress.mit.edu/algorithms/, links to solutions for some of

the problems and exercises. Feel free to check your solutions against ours. We ask,
however, that you not send your solutions to us.

To the professional
The wide range of topics in this book makes it an excellent handbook on algo-
rithms. Because each chapter is relatively self-contained, you can focus on the
topics most relevant to you.

Since most of the algorithms we discuss have great practical utility, we address
implementation concerns and other engineering issues. We often provide practical
alternatives to the few algorithms that are primarily of theoretical interest.
If you wish to implement any of the algorithms, you should ûnd the transla-

tion of our pseudocode into your favorite programming language to be a fairly
straightforward task. We have designed the pseudocode to present each algorithm
clearly and succinctly. Consequently, we do not address error handling and other
software-engineering issues that require speciûc assumptions about your program-
ming environment. We attempt to present each algorithm simply and directly with-
out allowing the idiosyncrasies of a particular programming language to obscure its
essence. If you are used to 0-origin arrays, you might ûnd our frequent practice of

xvi Preface

indexing arrays from 1 a minor stumbling block. You can always either subtract 1
from our indices or just overallocate the array and leave position 0 unused.

We understand that if you are using this book outside of a course, then you
might be unable to check your solutions to problems and exercises against solutions
provided by an instructor. Our website, http://mitpress.mit.edu/algorithms/, links
to solutions for some of the problems and exercises so that you can check your
work. Please do not send your solutions to us.

To our colleagues
We have supplied an extensive bibliography and pointers to the current literature.
Each chapter ends with a set of chapter notes that give historical details and ref-
erences. The chapter notes do not provide a complete reference to the whole ûeld
of algorithms, however. Though it may be hard to believe for a book of this size,
space constraints prevented us from including many interesting algorithms.

Despite myriad requests from students for solutions to problems and exercises,
we have adopted the policy of not citing references for them, removing the temp-
tation for students to look up a solution rather than to discover it themselves.

Changes for the fourth edition

As we said about the changes for the second and third editions, depending on how
you look at it, the book changed either not much or quite a bit. A quick look at the
table of contents shows that most of the third-edition chapters and sections appear
in the fourth edition. We removed three chapters and several sections, but we have
added three new chapters and several new sections apart from these new chapters.
We kept the hybrid organization from the ûrst three editions. Rather than

organizing chapters only by problem domains or only according to techniques,
this book incorporates elements of both. It contains technique-based chapters on
divide-and-conquer, dynamic programming, greedy algorithms, amortized analy-
sis, augmenting data structures, NP-completeness, and approximation algorithms.
But it also has entire parts on sorting, on data structures for dynamic sets, and on
algorithms for graph problems. We ûnd that although you need to know how to ap-
ply techniques for designing and analyzing algorithms, problems seldom announce
to you which techniques are most amenable to solving them.

Some of the changes in the fourth edition apply generally across the book, and
some are speciûc to particular chapters or sections. Here is a summary of the most
signiûcant general changes:
 We added 140 new exercises and 22 new problems. We also improved many of

the old exercises and problems, often as the result of reader feedback. (Thanks
to all readers who made suggestions.)

Preface xvii

 We have color! With designers from the MIT Press, we selected a limited
palette, devised to convey information and to be pleasing to the eye. (We are
delighted to display red-black trees in4get this4red and black!) To enhance
readability, deûned terms, pseudocode comments, and page numbers in the in-
dex are in color.

 Pseudocode procedures appear on a tan background to make them easier to spot,
and they do not necessarily appear on the page of their ûrst reference. When
they don’t, the text directs you to the relevant page. In the same vein, nonlocal
references to numbered equations, theorems, lemmas, and corollaries include
the page number.

 We removed topics that were rarely taught. We dropped in their entirety the
chapters on Fibonacci heaps, van Emde Boas trees, and computational geom-
etry. In addition, the following material was excised: the maximum-subarray
problem, implementing pointers and objects, perfect hashing, randomly built
binary search trees, matroids, push-relabel algorithms for maximum üow, the
iterative fast Fourier transform method, the details of the simplex algorithm for
linear programming, and integer factorization. You can ûnd all the removed
material on our website, http://mitpress.mit.edu/algorithms/.

 We reviewed the entire book and rewrote sentences, paragraphs, and sections
to make the writing clearer, more personal, and gender neutral. For example,
the <traveling-salesman problem= in the previous editions is now called the
<traveling-salesperson problem.= We believe that it is critically important for
engineering and science, including our own ûeld of computer science, to be
welcoming to everyone. (The one place that stumped us is in Chapter 13, which
requires a term for a parent’s sibling. Because the English language has no such
gender-neutral term, we regretfully stuck with <uncle.=)

 The chapter notes, bibliography, and index were updated, reüecting the dra-
matic growth of the ûeld of algorithms since the third edition.

 We corrected errors, posting most corrections on our website of third-edition
errata. Those that were reported while we were in full swing preparing this
edition were not posted, but were corrected in this edition. (Thanks again to all
readers who helped us identify issues.)

The speciûc changes for the fourth edition include the following:
 We renamed Chapter 3 and added a section giving an overview of asymptotic

notation before delving into the formal deûnitions.
 Chapter 4 underwent substantial changes to improve its mathematical founda-

tion and make it more robust and intuitive. The notion of an algorithmic re-
currence was introduced, and the topic of ignoring üoors and ceilings in recur-

xviii Preface

rences was addressed more rigorously. The second case of the master theorem
incorporates polylogarithmic factors, and a rigorous proof of a <continuous=
version of the master theorem is now provided. We also present the powerful
and general Akra-Bazzi method (without proof).

 The deterministic order-statistic algorithm in Chapter 9 is slightly different, and
the analyses of both the randomized and deterministic order-statistic algorithms
have been revamped.

 In addition to stacks and queues, Section 10.1 discusses ways to store arrays
and matrices.

 Chapter 11 on hash tables includes a modern treatment of hash functions. It
also emphasizes linear probing as an efûcient method for resolving collisions
when the underlying hardware implements caching to favor local searches.

 To replace the sections on matroids in Chapter 15, we converted a problem in
the third edition about ofüine caching into a full section.

 Section 16.4 now contains a more intuitive explanation of the potential func-
tions to analyze table doubling and halving.

 Chapter 17 on augmenting data structures was relocated from Part III to Part V,
reüecting our view that this technique goes beyond basic material.

 Chapter 25 is a new chapter about matchings in bipartite graphs. It presents
algorithms to ûnd a matching of maximum cardinality, to solve the stable-
marriage problem, and to ûnd a maximum-weight matching (known as the <as-
signment problem=).

 Chapter 26, on task-parallel computing, has been updated with modern termi-
nology, including the name of the chapter.

 Chapter 27, which covers online algorithms, is another new chapter. In an
online algorithm, the input arrives over time, rather than being available in its
entirety at the start of the algorithm. The chapter describes several examples
of online algorithms, including determining how long to wait for an elevator
before taking the stairs, maintaining a linked list via the move-to-front heuristic,
and evaluating replacement policies for caches.

 In Chapter 29, we removed the detailed presentation of the simplex algorithm,
as it was math heavy without really conveying many algorithmic ideas. The
chapter now focuses on the key aspect of how to model problems as linear
programs, along with the essential duality property of linear programming.

 Section 32.5 adds to the chapter on string matching the simple, yet powerful,
structure of sufûx arrays.

Preface xix

 Chapter 33, on machine learning, is the third new chapter. It introduces sev-
eral basic methods used in machine learning: clustering to group similar items
together, weighted-majority algorithms, and gradient descent to ûnd the mini-
mizer of a function.

 Section 34.5.6 summarizes strategies for polynomial-time reductions to show
that problems are NP-hard.

 The proof of the approximation algorithm for the set-covering problem in Sec-
tion 35.3 has been revised.

Website
You can use our website, http://mitpress.mit.edu/algorithms/, to obtain supplemen-
tary information and to communicate with us. The website links to a list of known
errors, material from the third edition that is not included in the fourth edition,
solutions to selected exercises and problems, Python implementations of many of
the algorithms in this book, a list explaining the corny professor jokes (of course),
as well as other content, which we may add to. The website also tells you how to
report errors or make suggestions.

How we produced this book

Like the previous three editions, the fourth edition was produced in L A T E X 2 " . We
used the Times font with mathematics typeset using the MathTime Professional II
fonts. As in all previous editions, we compiled the index using Windex, a C pro-
gram that we wrote, and produced the bibliography using B IBT E X. The PDF ûles
for this book were created on a MacBook Pro running macOS 10.14.
Our plea to Apple in the preface of the third edition to update MacDraw Pro for

macOS 10 went for naught, and so we continued to draw illustrations on pre-Intel
Macs running MacDraw Pro under the Classic environment of older versions of
macOS 10. Many of the mathematical expressions appearing in illustrations were
laid in with the psfrag package for L A T E X 2 " .

Acknowledgments for the fourth edition

We have been working with the MIT Press since we started writing the ûrst edi-
tion in 1987, collaborating with several directors, editors, and production staff.
Throughout our association with the MIT Press, their support has always been out-
standing. Special thanks to our editors Marie Lee, who put up with us for far too
long, and Elizabeth Swayze, who pushed us over the ûnish line. Thanks also to
Director Amy Brand and to Alex Hoopes.

xx Preface

As in the third edition, we were geographically distributed while producing
the fourth edition, working in the Dartmouth College Department of Computer
Science; the MIT Computer Science and Artiûcial Intelligence Laboratory and
the MIT Department of Electrical Engineering and Computer Science; and the
Columbia University Department of Industrial Engineering and Operations Re-
search, Department of Computer Science, and Data Science Institute. During the
COVID-19 pandemic, we worked largely from home. We thank our respective
universities and colleagues for providing such supportive and stimulating environ-
ments. As we complete this book, those of us who are not retired are eager to return
to our respective universities now that the pandemic seems to be abating.
Julie Sussman, P.P.A., came to our rescue once again with her technical copy-

editing under tremendous time pressure. If not for Julie, this book would be riddled
with errors (or, let’s say, many more errors than it has) and would be far less read-
able. Julie, we will be forever indebted to you. Errors that remain are the responsi-
bility of the authors (and probably were inserted after Julie read the material).

Dozens of errors in previous editions were corrected in the process of creating
this edition. We thank our readers4too many to list them all4who have reported
errors and suggested improvements over the years.

We received considerable help in preparing some of the new material in this
edition. Neville Campbell (unafûliated), Bill Kuszmaul of MIT, and Chee Yap of
NYU provided valuable advice regarding the treatment of recurrences in Chapter 4.
Yan Gu of the University of California, Riverside, provided feedback on parallel
algorithms in Chapter 26. Rob Shapire of Microsoft Research altered our approach
to the material on machine learning with his detailed comments on Chapter 33. Qi
Qi of MIT helped with the analysis of the Monty Hall problem (Problem C-1).

Molly Seaman and Mary Reilly of the MIT Press helped us select the color
palette in the illustrations, and Wojciech Jarosz of Dartmouth College suggested
design improvements to our newly colored ûgures. Yichen (Annie) Ke and Linda
Xiao, who have since graduated from Dartmouth, aided in colorizing the illus-
trations, and Linda also produced many of the Python implementations that are
available on the book’s website.
Finally, we thank our wives4Wendy Leiserson, Gail Rivest, Rebecca Ivry, and

the late Nicole Cormen4and our families. The patience and encouragement of
those who love us made this project possible. We affectionately dedicate this book
to them.
THOMAS H. CORMEN Lebanon, New Hampshire
CHARLES E. LEISERSON Cambridge, Massachusetts
RONALD L. RIVEST Cambridge, Massachusetts
CLIFFORD STEIN New York, New York
June, 2021

Part I Foundations

Introduction

When you design and analyze algorithms, you need to be able to describe how they
operate and how to design them. You also need some mathematical tools to show
that your algorithms do the right thing and do it efûciently. This part will get you
started. Later parts of this book will build upon this base.
Chapter 1 provides an overview of algorithms and their place in modern com-

puting systems. This chapter deûnes what an algorithm is and lists some examples.
It also makes a case for considering algorithms as a technology, alongside tech-
nologies such as fast hardware, graphical user interfaces, object-oriented systems,
and networks.
In Chapter 2, we see our ûrst algorithms, which solve the problem of sorting

a sequence of n numbers. They are written in a pseudocode which, although not
directly translatable to any conventional programming language, conveys the struc-
ture of the algorithm clearly enough that you should be able to implement it in the
language of your choice. The sorting algorithms we examine are insertion sort,
which uses an incremental approach, and merge sort, which uses a recursive tech-
nique known as <divide-and-conquer.= Although the time each requires increases
with the value of n, the rate of increase differs between the two algorithms. We
determine these running times in Chapter 2, and we develop a useful <asymptotic=
notation to express them.
Chapter 3 precisely deûnes asymptotic notation. We’ll use asymptotic notation

to bound the growth of functions4most often, functions that describe the running
time of algorithms4from above and below. The chapter starts by informally deûn-
ing the most commonly used asymptotic notations and giving an example of how to
apply them. It then formally deûnes ûve asymptotic notations and presents conven-
tions for how to put them together. The rest of Chapter 3 is primarily a presentation
of mathematical notation, more to ensure that your use of notation matches that in
this book than to teach you new mathematical concepts.

4 Part I Foundations

Chapter 4 delves further into the divide-and-conquer method introduced in
Chapter 2. It provides two additional examples of divide-and-conquer algorithms
for multiplying square matrices, including Strassen’s surprising method. Chapter 4
contains methods for solving recurrences, which are useful for describing the run-
ning times of recursive algorithms. In the substitution method, you guess an answer
and prove it correct. Recursion trees provide one way to generate a guess. Chap-
ter 4 also presents the powerful technique of the <master method,= which you can
often use to solve recurrences that arise from divide-and-conquer algorithms. Al-
though the chapter provides a proof of a foundational theorem on which the master
theorem depends, you should feel free to employ the master method without delv-
ing into the proof. Chapter 4 concludes with some advanced topics.
Chapter 5 introduces probabilistic analysis and randomized algorithms. You

typically use probabilistic analysis to determine the running time of an algorithm
in cases in which, due to the presence of an inherent probability distribution, the
running time may differ on different inputs of the same size. In some cases, you
might assume that the inputs conform to a known probability distribution, so that
you are averaging the running time over all possible inputs. In other cases, the
probability distribution comes not from the inputs but from random choices made
during the course of the algorithm. An algorithm whose behavior is determined
not only by its input but by the values produced by a random-number generator is a
randomized algorithm. You can use randomized algorithms to enforce a probability
distribution on the inputs4thereby ensuring that no particular input always causes
poor performance4or even to bound the error rate of algorithms that are allowed
to produce incorrect results on a limited basis.

Appendices A–D contain other mathematical material that you will ûnd helpful
as you read this book. You might have seen much of the material in the appendix
chapters before having read this book (although the speciûc deûnitions and nota-
tional conventions we use may differ in some cases from what you have seen in
the past), and so you should think of the appendices as reference material. On the
other hand, you probably have not already seen most of the material in Part I. All
the chapters in Part I and the appendices are written with a tutorial üavor.

1 The Role of Algorithms in Computing

What are algorithms? Why is the study of algorithms worthwhile? What is the role
of algorithms relative to other technologies used in computers? This chapter will
answer these questions.

1.1 Algorithms

Informally, an algorithm is any well-deûned computational procedure that takes
some value, or set of values, as input and produces some value, or set of values, as
output in a ûnite amount of time. An algorithm is thus a sequence of computational
steps that transform the input into the output.
You can also view an algorithm as a tool for solving a well-speciûed computa-

tional problem. The statement of the problem speciûes in general terms the desired
input/output relationship for problem instances, typically of arbitrarily large size.
The algorithm describes a speciûc computational procedure for achieving that in-
put/output relationship for all problem instances.

As an example, suppose that you need to sort a sequence of numbers into mono-
tonically increasing order. This problem arises frequently in practice and provides
fertile ground for introducing many standard design techniques and analysis tools.
Here is how we formally deûne the sorting problem:
Input: A sequence of n numbers ha 1 ; a 2 ; : : : ; a n i.
Output: A permutation (reordering) ha 0 1 ; a 0 2 ; : : : ; a 0 n i of the input sequence such

that a 0 1 හ a 0 2 හ හ a 0 n .
Thus, given the input sequence h31; 41; 59; 26; 41; 58i, a correct sorting algorithm
returns as output the sequence h26; 31; 41; 41; 58; 59i. Such an input sequence is

6 Chapter 1 The Role of Algorithms in Computing

called an instance of the sorting problem. In general, an instance of a problem 1

consists of the input (satisfying whatever constraints are imposed in the problem
statement) needed to compute a solution to the problem.

Because many programs use it as an intermediate step, sorting is a fundamental
operation in computer science. As a result, you have a large number of good sort-
ing algorithms at your disposal. Which algorithm is best for a given application
depends on4among other factors4the number of items to be sorted, the extent
to which the items are already somewhat sorted, possible restrictions on the item
values, the architecture of the computer, and the kind of storage devices to be used:
main memory, disks, or even4archaically4tapes.

An algorithm for a computational problem is correct if, for every problem in-
stance provided as input, it halts4ûnishes its computing in ûnite time4and out-
puts the correct solution to the problem instance. A correct algorithm solves the
given computational problem. An incorrect algorithm might not halt at all on some
input instances, or it might halt with an incorrect answer. Contrary to what you
might expect, incorrect algorithms can sometimes be useful, if you can control
their error rate. We’ll see an example of an algorithm with a controllable error rate
in Chapter 31 when we study algorithms for ûnding large prime numbers. Ordi-
narily, however, we’ll concern ourselves only with correct algorithms.
An algorithm can be speciûed in English, as a computer program, or even as

a hardware design. The only requirement is that the speciûcation must provide a
precise description of the computational procedure to be followed.

What kinds of problems are solved by algorithms?

Sorting is by no means the only computational problem for which algorithms have
been developed. (You probably suspected as much when you saw the size of this
book.) Practical applications of algorithms are ubiquitous and include the follow-
ing examples:
 The Human Genome Project has made great progress toward the goals of iden-

tifying all the roughly 30,000 genes in human DNA, determining the sequences
of the roughly 3 billion chemical base pairs that make up human DNA, stor-
ing this information in databases, and developing tools for data analysis. Each
of these steps requires sophisticated algorithms. Although the solutions to the
various problems involved are beyond the scope of this book, many methods to
solve these biological problems use ideas presented here, enabling scientists to
accomplish tasks while using resources efûciently. Dynamic programming, as

1 Sometimes, when the problem context is known, problem instances are themselves simply called
<problems.=

1.1 Algorithms 7

in Chapter 14, is an important technique for solving several of these biological
problems, particularly ones that involve determining similarity between DNA
sequences. The savings realized are in time, both human and machine, and in
money, as more information can be extracted by laboratory techniques.

 The internet enables people all around the world to quickly access and retrieve
large amounts of information. With the aid of clever algorithms, sites on the
internet are able to manage and manipulate this large volume of data. Exam-
ples of problems that make essential use of algorithms include ûnding good
routes on which the data travels (techniques for solving such problems appear
in Chapter 22), and using a search engine to quickly ûnd pages on which par-
ticular information resides (related techniques are in Chapters 11 and 32).

 Electronic commerce enables goods and services to be negotiated and ex-
changed electronically, and it depends on the privacy of personal informa-
tion such as credit card numbers, passwords, and bank statements. The core
technologies used in electronic commerce include public-key cryptography and
digital signatures (covered in Chapter 31), which are based on numerical algo-
rithms and number theory.

 Manufacturing and other commercial enterprises often need to allocate scarce
resources in the most beneûcial way. An oil company might wish to know
where to place its wells in order to maximize its expected proût. A political
candidate might want to determine where to spend money buying campaign ad-
vertising in order to maximize the chances of winning an election. An airline
might wish to assign crews to üights in the least expensive way possible, mak-
ing sure that each üight is covered and that government regulations regarding
crew scheduling are met. An internet service provider might wish to determine
where to place additional resources in order to serve its customers more effec-
tively. All of these are examples of problems that can be solved by modeling
them as linear programs, which Chapter 29 explores.

Although some of the details of these examples are beyond the scope of this
book, we do give underlying techniques that apply to these problems and problem
areas. We also show how to solve many speciûc problems, including the following:
 You have a road map on which the distance between each pair of adjacent in-

tersections is marked, and you wish to determine the shortest route from one
intersection to another. The number of possible routes can be huge, even if you
disallow routes that cross over themselves. How can you choose which of all
possible routes is the shortest? You can start by modeling the road map (which
is itself a model of the actual roads) as a graph (which we will meet in Part VI
and Appendix B). In this graph, you wish to ûnd the shortest path from one
vertex to another. Chapter 22 shows how to solve this problem efûciently.

8 Chapter 1 The Role of Algorithms in Computing

 Given a mechanical design in terms of a library of parts, where each part may
include instances of other parts, list the parts in order so that each part appears
before any part that uses it. If the design comprises n parts, then there are nŠ
possible orders, where nŠ denotes the factorial function. Because the factorial
function grows faster than even an exponential function, you cannot feasibly
generate each possible order and then verify that, within that order, each part
appears before the parts using it (unless you have only a few parts). This prob-
lem is an instance of topological sorting, and Chapter 20 shows how to solve
this problem efûciently.

 A doctor needs to determine whether an image represents a cancerous tumor or
a benign one. The doctor has available images of many other tumors, some of
which are known to be cancerous and some of which are known to be benign.
A cancerous tumor is likely to be more similar to other cancerous tumors than
to benign tumors, and a benign tumor is more likely to be similar to other be-
nign tumors. By using a clustering algorithm, as in Chapter 33, the doctor can
identify which outcome is more likely.

 You need to compress a large ûle containing text so that it occupies less space.
Many ways to do so are known, including <LZW compression,= which looks for
repeating character sequences. Chapter 15 studies a different approach, <Huff-
man coding,= which encodes characters by bit sequences of various lengths,
with characters occurring more frequently encoded by shorter bit sequences.

These lists are far from exhaustive (as you again have probably surmised from
this book’s heft), but they exhibit two characteristics common to many interesting
algorithmic problems:
1. They have many candidate solutions, the overwhelming majority of which do

not solve the problem at hand. Finding one that does, or one that is <best,= with-
out explicitly examining each possible solution, can present quite a challenge.

2. They have practical applications. Of the problems in the above list, ûnding the
shortest path provides the easiest examples. A transportation ûrm, such as a
trucking or railroad company, has a ûnancial interest in ûnding shortest paths
through a road or rail network because taking shorter paths results in lower
labor and fuel costs. Or a routing node on the internet might need to ûnd the
shortest path through the network in order to route a message quickly. Or a
person wishing to drive from New York to Boston might want to ûnd driving
directions using a navigation app.
Not every problem solved by algorithms has an easily identiûed set of candi-

date solutions. For example, given a set of numerical values representing samples
of a signal taken at regular time intervals, the discrete Fourier transform converts

1.1 Algorithms 9

the time domain to the frequency domain. That is, it approximates the signal as a
weighted sum of sinusoids, producing the strength of various frequencies which,
when summed, approximate the sampled signal. In addition to lying at the heart of
signal processing, discrete Fourier transforms have applications in data compres-
sion and multiplying large polynomials and integers. Chapter 30 gives an efûcient
algorithm, the fast Fourier transform (commonly called the FFT), for this problem.
The chapter also sketches out the design of a hardware FFT circuit.

Data structures
This book also presents several data structures. A data structure is a way to store
and organize data in order to facilitate access and modiûcations. Using the appro-
priate data structure or structures is an important part of algorithm design. No sin-
gle data structure works well for all purposes, and so you should know the strengths
and limitations of several of them.

Technique
Although you can use this book as a <cookbook= for algorithms, you might some-
day encounter a problem for which you cannot readily ûnd a published algorithm
(many of the exercises and problems in this book, for example). This book will
teach you techniques of algorithm design and analysis so that you can develop al-
gorithms on your own, show that they give the correct answer, and analyze their ef-
ûciency. Different chapters address different aspects of algorithmic problem solv-
ing. Some chapters address speciûc problems, such as ûnding medians and order
statistics in Chapter 9, computing minimum spanning trees in Chapter 21, and de-
termining a maximum üow in a network in Chapter 24. Other chapters introduce
techniques, such as divide-and-conquer in Chapters 2 and 4, dynamic programming
in Chapter 14, and amortized analysis in Chapter 16.

Hard problems
Most of this book is about efûcient algorithms. Our usual measure of efûciency
is speed: how long does an algorithm take to produce its result? There are some
problems, however, for which we know of no algorithm that runs in a reasonable
amount of time. Chapter 34 studies an interesting subset of these problems, which
are known as NP-complete.
Why are NP-complete problems interesting? First, although no efûcient algo-

rithm for an NP-complete problem has ever been found, nobody has ever proven
that an efûcient algorithm for one cannot exist. In other words, no one knows
whether efûcient algorithms exist for NP-complete problems. Second, the set of

10 Chapter 1 The Role of Algorithms in Computing

NP-complete problems has the remarkable property that if an efûcient algorithm
exists for any one of them, then efûcient algorithms exist for all of them. This re-
lationship among the NP-complete problems makes the lack of efûcient solutions
all the more tantalizing. Third, several NP-complete problems are similar, but not
identical, to problems for which we do know of efûcient algorithms. Computer
scientists are intrigued by how a small change to the problem statement can cause
a big change to the efûciency of the best known algorithm.
You should know about NP-complete problems because some of them arise sur-

prisingly often in real applications. If you are called upon to produce an efûcient
algorithm for an NP-complete problem, you are likely to spend a lot of time in a
fruitless search. If, instead, you can show that the problem is NP-complete, you
can spend your time developing an efûcient approximation algorithm, that is, an
algorithm that gives a good, but not necessarily the best possible, solution.

As a concrete example, consider a delivery company with a central depot. Each
day, it loads up delivery trucks at the depot and sends them around to deliver goods
to several addresses. At the end of the day, each truck must end up back at the depot
so that it is ready to be loaded for the next day. To reduce costs, the company wants
to select an order of delivery stops that yields the lowest overall distance traveled by
each truck. This problem is the well-known <traveling-salesperson problem,= and it
is NP-complete. 2 It has no known efûcient algorithm. Under certain assumptions,
however, we know of efûcient algorithms that compute overall distances close to
the smallest possible. Chapter 35 discusses such <approximation algorithms.=

Alternative computing models
For many years, we could count on processor clock speeds increasing at a steady
rate. Physical limitations present a fundamental roadblock to ever-increasing clock
speeds, however: because power density increases superlinearly with clock speed,
chips run the risk of melting once their clock speeds become high enough. In or-
der to perform more computations per second, therefore, chips are being designed
to contain not just one but several processing <cores.= We can liken these multi-
core computers to several sequential computers on a single chip. In other words,
they are a type of <parallel computer.= In order to elicit the best performance
from multicore computers, we need to design algorithms with parallelism in mind.
Chapter 26 presents a model for =task-parallel= algorithms, which take advantage
of multiple processing cores. This model has advantages from both theoretical and

2 To be precise, only decision problems4those with a <yes/no= answer4can be NP-complete. The
decision version of the traveling salesperson problem asks whether there exists an order of stops
whose distance totals at most a given amount.

1.1 Algorithms 11

practical standpoints, and many modern parallel-programming platforms embrace
something similar to this model of parallelism.

Most of the examples in this book assume that all of the input data are available
when an algorithm begins running. Much of the work in algorithm design makes
the same assumption. For many important real-world examples, however, the input
actually arrives over time, and the algorithm must decide how to proceed without
knowing what data will arrive in the future. In a data center, jobs are constantly
arriving and departing, and a scheduling algorithm must decide when and where to
run a job, without knowing what jobs will be arriving in the future. Trafûc must
be routed in the internet based on the current state, without knowing about where
trafûc will arrive in the future. Hospital emergency rooms make triage decisions
about which patients to treat ûrst without knowing when other patients will be
arriving in the future and what treatments they will need. Algorithms that receive
their input over time, rather than having all the input present at the start, are online
algorithms, which Chapter 27 examines.

Exercises
1.1-1
Describe your own real-world example that requires sorting. Describe one that
requires ûnding the shortest distance between two points.
1.1-2
Other than speed, what other measures of efûciency might you need to consider in
a real-world setting?
1.1-3
Select a data structure that you have seen, and discuss its strengths and limitations.
1.1-4
How are the shortest-path and traveling-salesperson problems given above similar?
How are they different?
1.1-5
Suggest a real-world problem in which only the best solution will do. Then come
up with one in which <approximately= the best solution is good enough.
1.1-6
Describe a real-world problem in which sometimes the entire input is available
before you need to solve the problem, but other times the input is not entirely
available in advance and arrives over time.

12 Chapter 1 The Role of Algorithms in Computing

1.2 Algorithms as a technology

If computers were inûnitely fast and computer memory were free, would you have
any reason to study algorithms? The answer is yes, if for no other reason than that
you would still like to be certain that your solution method terminates and does so
with the correct answer.
If computers were inûnitely fast, any correct method for solving a problem

would do. You would probably want your implementation to be within the bounds
of good software engineering practice (for example, your implementation should
be well designed and documented), but you would most often use whichever
method was the easiest to implement.
Of course, computers may be fast, but they are not inûnitely fast. Computing

time is therefore a bounded resource, which makes it precious. Although the saying
goes, <Time is money,= time is even more valuable than money: you can get back
money after you spend it, but once time is spent, you can never get it back. Memory
may be inexpensive, but it is neither inûnite nor free. You should choose algorithms
that use the resources of time and space efûciently.

Efûciency

Different algorithms devised to solve the same problem often differ dramatically in
their efûciency. These differences can be much more signiûcant than differences
due to hardware and software.

As an example, Chapter 2 introduces two algorithms for sorting. The ûrst,
known as insertion sort, takes time roughly equal to c 1 n 2 to sort n items, where c 1
is a constant that does not depend on n. That is, it takes time roughly proportional
to n 2 . The second, merge sort, takes time roughly equal to c 2 n lg n, where lg n
stands for log 2 n and c 2 is another constant that also does not depend on n. Inser-
tion sort typically has a smaller constant factor than merge sort, so that c 1 < c 2 .
We’ll see that the constant factors can have far less of an impact on the running
time than the dependence on the input size n. Let’s write insertion sort’s running
time as c 1 n n and merge sort’s running time as c 2 n lg n. Then we see that where
insertion sort has a factor of n in its running time, merge sort has a factor of lg n,
which is much smaller. For example, when n is 1000, lg n is approximately 10, and
when n is 1,000,000, lg n is approximately only 20. Although insertion sort usu-
ally runs faster than merge sort for small input sizes, once the input size n becomes
large enough, merge sort’s advantage of lg n versus n more than compensates for
the difference in constant factors. No matter how much smaller c 1 is than c 2 , there
is always a crossover point beyond which merge sort is faster.

1.2 Algorithms as a technology 13

For a concrete example, let us pit a faster computer (computer A) running inser-
tion sort against a slower computer (computer B) running merge sort. They each
must sort an array of 10 million numbers. (Although 10 million numbers might
seem like a lot, if the numbers are eight-byte integers, then the input occupies
about 80 megabytes, which ûts in the memory of even an inexpensive laptop com-
puter many times over.) Suppose that computer A executes 10 billion instructions
per second (faster than any single sequential computer at the time of this writing)
and computer B executes only 10 million instructions per second (much slower
than most contemporary computers), so that computer A is 1000 times faster than
computer B in raw computing power. To make the difference even more dramatic,
suppose that the world’s craftiest programmer codes insertion sort in machine lan-
guage for computer A, and the resulting code requires 2n 2 instructions to sort n
numbers. Suppose further that just an average programmer implements merge
sort, using a high-level language with an inefûcient compiler, with the resulting
code taking 50n lg n instructions. To sort 10 million numbers, computer A takes
2 .10 7 / 2 instructions
10 10 instructions/second D 20,000 seconds (more than 5:5 hours) ;

while computer B takes
50 10 7 lg 10 7 instructions
10 7 instructions/second 1163 seconds (under 20 minutes) :

By using an algorithm whose running time grows more slowly, even with a poor
compiler, computer B runs more than 17 times faster than computer A! The ad-
vantage of merge sort is even more pronounced when sorting 100 million numbers:
where insertion sort takes more than 23 days, merge sort takes under four hours.
Although 100 million might seem like a large number, there are more than 100 mil-
lion web searches every half hour, more than 100 million emails sent every minute,
and some of the smallest galaxies (known as ultra-compact dwarf galaxies) con-
tain about 100 million stars. In general, as the problem size increases, so does the
relative advantage of merge sort.

Algorithms and other technologies
The example above shows that you should consider algorithms, like computer hard-
ware, as a technology. Total system performance depends on choosing efûcient
algorithms as much as on choosing fast hardware. Just as rapid advances are being
made in other computer technologies, they are being made in algorithms as well.

You might wonder whether algorithms are truly that important on contemporary
computers in light of other advanced technologies, such as

14 Chapter 1 The Role of Algorithms in Computing

 advanced computer architectures and fabrication technologies,
 easy-to-use, intuitive, graphical user interfaces (GUIs),
 object-oriented systems,
 integrated web technologies,
 fast networking, both wired and wireless,
 machine learning,
 and mobile devices.
The answer is yes. Although some applications do not explicitly require algorith-
mic content at the application level (such as some simple, web-based applications),
many do. For example, consider a web-based service that determines how to travel
from one location to another. Its implementation would rely on fast hardware, a
graphical user interface, wide-area networking, and also possibly on object ori-
entation. It would also require algorithms for operations such as ûnding routes
(probably using a shortest-path algorithm), rendering maps, and interpolating ad-
dresses.

Moreover, even an application that does not require algorithmic content at the
application level relies heavily upon algorithms. Does the application rely on fast
hardware? The hardware design used algorithms. Does the application rely on
graphical user interfaces? The design of any GUI relies on algorithms. Does the
application rely on networking? Routing in networks relies heavily on algorithms.
Was the application written in a language other than machine code? Then it was
processed by a compiler, interpreter, or assembler, all of which make extensive use
of algorithms. Algorithms are at the core of most technologies used in contempo-
rary computers.

Machine learning can be thought of as a method for performing algorithmic tasks
without explicitly designing an algorithm, but instead inferring patterns from data
and thereby automatically learning a solution. At ûrst glance, machine learning,
which automates the process of algorithmic design, may seem to make learning
about algorithms obsolete. The opposite is true, however. Machine learning is
itself a collection of algorithms, just under a different name. Furthermore, it cur-
rently seems that the successes of machine learning are mainly for problems for
which we, as humans, do not really understand what the right algorithm is. Promi-
nent examples include computer vision and automatic language translation. For
algorithmic problems that humans understand well, such as most of the problems
in this book, efûcient algorithms designed to solve a speciûc problem are typically
more successful than machine-learning approaches.
Data science is an interdisciplinary ûeld with the goal of extracting knowledge

and insights from structured and unstructured data. Data science uses methods

Problems for Chapter 1 15

from statistics, computer science, and optimization. The design and analysis of
algorithms is fundamental to the ûeld. The core techniques of data science, which
overlap signiûcantly with those in machine learning, include many of the algo-
rithms in this book.
Furthermore, with the ever-increasing capacities of computers, we use them to

solve larger problems than ever before. As we saw in the above comparison be-
tween insertion sort and merge sort, it is at larger problem sizes that the differences
in efûciency between algorithms become particularly prominent.

Having a solid base of algorithmic knowledge and technique is one characteristic
that deûnes the truly skilled programmer. With modern computing technology, you
can accomplish some tasks without knowing much about algorithms, but with a
good background in algorithms, you can do much, much more.

Exercises
1.2-1
Give an example of an application that requires algorithmic content at the applica-
tion level, and discuss the function of the algorithms involved.
1.2-2
Suppose that for inputs of size n on a particular computer, insertion sort runs in 8n 2

steps and merge sort runs in 64n lg n steps. For which values of n does insertion
sort beat merge sort?
1.2-3
What is the smallest value of n such that an algorithm whose running time is 100n 2

runs faster than an algorithm whose running time is 2 n on the same machine?

Problems

1-1 Comparison of running times
For each function f .n/ and time t in the following table, determine the largest
size n of a problem that can be solved in time t , assuming that the algorithm to
solve the problem takes f .n/ microseconds.

16 Chapter 1 The Role of Algorithms in Computing

1 1 1 1 1 1 1
second minute hour day month year century

lg n
p
n
n

n lg n
n 2

n 3

2 n

nŠ

Chapter notes

There are many excellent texts on the general topic of algorithms, including those
by Aho, Hopcroft, and Ullman [5, 6], Dasgupta, Papadimitriou, and Vazirani [107],
Edmonds [133], Erickson [135], Goodrich and Tamassia [195, 196], Kleinberg
and Tardos [257], Knuth [259, 260, 261, 262, 263], Levitin [298], Louridas [305],
Mehlhorn and Sanders [325], Mitzenmacher and Upfal [331], Neapolitan [342],
Roughgarden [385, 386, 387, 388], Sanders, Mehlhorn, Dietzfelbinger, and De-
mentiev [393], Sedgewick and Wayne [402], Skiena [414], Soltys-Kulinicz [419],
Wilf [455], and Williamson and Shmoys [459]. Some of the more practical as-
pects of algorithm design are discussed by Bentley [49, 50, 51], Bhargava [54],
Kochenderfer and Wheeler [268], and McGeoch [321]. Surveys of the ûeld of al-
gorithms can also be found in books by Atallah and Blanton [27, 28] and Mehta and
Sahhi [326]. For less technical material, see the books by Christian and Grifûths
[92], Cormen [104], Erwig [136], MacCormick [307], and V¨ ocking et al. [448].
Overviews of the algorithms used in computational biology can be found in books
by Jones and Pevzner [240], Elloumi and Zomaya [134], and Marchisio [315].

2 Getting Started

This chapter will familiarize you with the framework we’ll use throughout the book
to think about the design and analysis of algorithms. It is self-contained, but it does
include several references to material that will be introduced in Chapters 3 and 4.
(It also contains several summations, which Appendix A shows how to solve.)
We’ll begin by examining the insertion sort algorithm to solve the sorting prob-

lem introduced in Chapter 1. We’ll specify algorithms using a pseudocode that
should be understandable to you if you have done computer programming. We’ll
see why insertion sort correctly sorts and analyze its running time. The analysis
introduces a notation that describes how running time increases with the number
of items to be sorted. Following a discussion of insertion sort, we’ll use a method
called divide-and-conquer to develop a sorting algorithm called merge sort. We’ll
end with an analysis of merge sort’s running time.

2.1 Insertion sort

Our ûrst algorithm, insertion sort, solves the sorting problem introduced in Chap-
ter 1:
Input: A sequence of n numbers ha 1 ; a 2 ; : : : ; a n i.
Output: A permutation (reordering) ha 0 1 ; a 0 2 ; : : : ; a 0 n i of the input sequence such

that a 0 1 හ a 0 2 හ හ a 0 n .
The numbers to be sorted are also known as the keys. Although the problem is con-
ceptually about sorting a sequence, the input comes in the form of an array with
n elements. When we want to sort numbers, it’s often because they are the keys
associated with other data, which we call satellite data. Together, a key and satel-
lite data form a record. For example, consider a spreadsheet containing student
records with many associated pieces of data such as age, grade-point average, and
number of courses taken. Any one of these quantities could be a key, but when the

18 Chapter 2 Getting Started

spreadsheet sorts, it moves the associated record (the satellite data) with the key.
When describing a sorting algorithm, we focus on the keys, but it is important to
remember that there usually is associated satellite data.
In this book, we’ll typically describe algorithms as procedures written in a pseu-

docode that is similar in many respects to C, C++, Java, Python, 1 or JavaScript.
(Apologies if we’ve omitted your favorite programming language. We can’t list
them all.) If you have been introduced to any of these languages, you should have
little trouble understanding algorithms <coded= in pseudocode. What separates
pseudocode from real code is that in pseudocode, we employ whatever expres-
sive method is most clear and concise to specify a given algorithm. Sometimes
the clearest method is English, so do not be surprised if you come across an En-
glish phrase or sentence embedded within a section that looks more like real code.
Another difference between pseudocode and real code is that pseudocode often ig-
nores aspects of software engineering4such as data abstraction, modularity, and
error handling4in order to convey the essence of the algorithm more concisely.

We start with insertion sort, which is an efûcient algorithm for sorting a small
number of elements. Insertion sort works the way you might sort a hand of playing
cards. Start with an empty left hand and the cards in a pile on the table. Pick up
the ûrst card in the pile and hold it with your left hand. Then, with your right hand,
remove one card at a time from the pile, and insert it into the correct position in
your left hand. As Figure 2.1 illustrates, you ûnd the correct position for a card
by comparing it with each of the cards already in your left hand, starting at the
right and moving left. As soon as you see a card in your left hand whose value is
less than or equal to the card you’re holding in your right hand, insert the card that
you’re holding in your right hand just to the right of this card in your left hand. If
all the cards in your left hand have values greater than the card in your right hand,
then place this card as the leftmost card in your left hand. At all times, the cards
held in your left hand are sorted, and these cards were originally the top cards of
the pile on the table.

The pseudocode for insertion sort is given as the procedure I NSERTION-SORT
on the facing page. It takes two parameters: an array A containing the values to
be sorted and the number n of values of sort. The values occupy positions AŒ1�
through AŒn� of the array, which we denote by AŒ1 W n�. When the I NSERTION-
SORT procedure is ûnished, array AŒ1 W n� contains the original values, but in sorted
order.

1 If you’re familiar with only Python, you can think of arrays as similar to Python lists.

2.1 Insertion sort 19

2
♥
♥

♥ 2
♥

4
♥ ♥ ♥

♥ ♥ 4
♥

5
♥ ♥ ♥

♥♥ 5
♥

♥

7 ♥
♥
♥

♥ ♥

♥♥
7 ♥

♥

10 ♥ ♥
♥ ♥
♥ ♥

♥
♥♥
♥♥

10 ♥

Figure 2.1 Sorting a hand of cards using insertion sort.

I NSERTION-SORT .A; n/
1 for i D 2 to n
2 key D AŒi�
3 // Insert AŒi� into the sorted subarray AŒ1 W i 1�.
4 j D i 1
5 while j > 0 and AŒj � > key
6 AŒj C 1� D AŒj �
7 j D j 1
8 AŒj C 1� D key

Loop invariants and the correctness of insertion sort
Figure 2.2 shows how this algorithm works for an array A that starts out with
the sequence h5; 2; 4; 6; 1; 3i. The index i indicates the <current card= being
inserted into the hand. At the beginning of each iteration of the for loop, which
is indexed by i , the subarray (a contiguous portion of the array) consisting of
elements AŒ1 W i 1� (that is, AŒ1� through AŒi 1�) constitutes the currently sorted
hand, and the remaining subarray AŒi C 1 W n� (elements AŒi C 1� through AŒn�)
corresponds to the pile of cards still on the table. In fact, elements AŒ1 W i 1� are
the elements originally in positions 1 through i 1, but now in sorted order. We
state these properties of AŒ1 W i 1� formally as a loop invariant:

20 Chapter 2 Getting Started

1 2 3 4 5 6
5 2 4 6 1 3 (a)

1 2 3 4 5 6
2 5 4 6 1 3 (b)

1 2 3 4 5 6
2 4 5 6 1 3 (c)

1 2 3 4 5 6
2 4 5 6 1 3 (d)

1 2 3 4 5 6
2 4 5 6 1 3 (e)

1 2 3 4 5 6
2 4 5 6 1 3 (f)

Figure 2.2 The operation of I NSERTION-SORT.A; n/, where A initially contains the sequence
h5; 2; 4; 6; 1; 3i and n D 6. Array indices appear above the rectangles, and values stored in the
array positions appear within the rectangles. (a)–(e) The iterations of the for loop of lines 138. In
each iteration, the blue rectangle holds the key taken from AŒi�, which is compared with the values
in tan rectangles to its left in the test of line 5. Orange arrows show array values moved one position
to the right in line 6, and blue arrows indicate where the key moves to in line 8. (f) The ûnal sorted
array.

At the start of each iteration of the for loop of lines 138, the subarray
AŒ1 W i 1� consists of the elements originally in AŒ1 W i 1�, but in sorted
order.

Loop invariants help us understand why an algorithm is correct. When you’re
using a loop invariant, you need to show three things:
Initialization: It is true prior to the ûrst iteration of the loop.
Maintenance: If it is true before an iteration of the loop, it remains true before

the next iteration.
Termination: The loop terminates, and when it terminates, the invariant4usually

along with the reason that the loop terminated4gives us a useful property that
helps show that the algorithm is correct.

When the ûrst two properties hold, the loop invariant is true prior to every iteration
of the loop. (Of course, you are free to use established facts other than the loop
invariant itself to prove that the loop invariant remains true before each iteration.)
A loop-invariant proof is a form of mathematical induction, where to prove that a
property holds, you prove a base case and an inductive step. Here, showing that the
invariant holds before the ûrst iteration corresponds to the base case, and showing
that the invariant holds from iteration to iteration corresponds to the inductive step.

The third property is perhaps the most important one, since you are using the
loop invariant to show correctness. Typically, you use the loop invariant along with
the condition that caused the loop to terminate. Mathematical induction typically
applies the inductive step inûnitely, but in a loop invariant the <induction= stops
when the loop terminates.

2.1 Insertion sort 21

Let’s see how these properties hold for insertion sort.
Initialization: We start by showing that the loop invariant holds before the ûrst

loop iteration, when i D 2. 2 The subarray AŒ1 W i 1� consists of just the
single element AŒ1�, which is in fact the original element in AŒ1�. Moreover,
this subarray is sorted (after all, how could a subarray with just one value not
be sorted?), which shows that the loop invariant holds prior to the ûrst iteration
of the loop.

Maintenance: Next, we tackle the second property: showing that each iteration
maintains the loop invariant. Informally, the body of the for loop works by
moving the values in AŒi 1�, AŒi 2�, AŒi 3�, and so on by one position
to the right until it ûnds the proper position for AŒi� (lines 437), at which point
it inserts the value of AŒi� (line 8). The subarray AŒ1 W i � then consists of the
elements originally in AŒ1 W i �, but in sorted order. Incrementing i (increasing
its value by 1) for the next iteration of the for loop then preserves the loop
invariant.
A more formal treatment of the second property would require us to state and
show a loop invariant for the while loop of lines 537. Let’s not get bogged
down in such formalism just yet. Instead, we’ll rely on our informal analysis to
show that the second property holds for the outer loop.

Termination: Finally, we examine loop termination. The loop variable i starts
at 2 and increases by 1 in each iteration. Once i ’s value exceeds n in line 1, the
loop terminates. That is, the loop terminates once i equals n C 1. Substituting
n C 1 for i in the wording of the loop invariant yields that the subarray AŒ1 W n�
consists of the elements originally in AŒ1 W n�, but in sorted order. Hence, the
algorithm is correct.

This method of loop invariants is used to show correctness in various places
throughout this book.

Pseudocode conventions
We use the following conventions in our pseudocode.
 Indentation indicates block structure. For example, the body of the for loop that

begins on line 1 consists of lines 238, and the body of the while loop that

2 When the loop is a for loop, the loop-invariant check just prior to the ûrst iteration occurs immedi-
ately after the initial assignment to the loop-counter variable and just before the ûrst test in the loop
header. In the case of I NSERTION-SORT, this time is after assigning 2 to the variable i but before the
ûrst test of whether i හ n.

22 Chapter 2 Getting Started

begins on line 5 contains lines 637 but not line 8. Our indentation style applies
to if-else statements 3 as well. Using indentation instead of textual indicators
of block structure, such as begin and end statements or curly braces, reduces
clutter while preserving, or even enhancing, clarity. 4

 The looping constructs while, for, and repeat-until and the if-else conditional
construct have interpretations similar to those in C, C++, Java, Python, and
JavaScript. 5 In this book, the loop counter retains its value after the loop is
exited, unlike some situations that arise in C++ and Java. Thus, immediately
after a for loop, the loop counter’s value is the value that ûrst exceeded the for
loop bound. 6 We used this property in our correctness argument for insertion
sort. The for loop header in line 1 is for i D 2 to n, and so when this loop
terminates, i equals nC1. We use the keyword to when a for loop increments its
loop counter in each iteration, and we use the keyword downto when a for loop
decrements its loop counter (reduces its value by 1 in each iteration). When
the loop counter changes by an amount greater than 1, the amount of change
follows the optional keyword by.

 The symbol <//= indicates that the remainder of the line is a comment.
 Variables (such as i , j , and key) are local to the given procedure. We won’t use

global variables without explicit indication.
 We access array elements by specifying the array name followed by the index

in square brackets. For example, AŒi� indicates the i th element of the array A.
Although many programming languages enforce 0-origin indexing for arrays (0
is the smallest valid index), we choose whichever indexing scheme is clearest
for human readers to understand. Because people usually start counting at 1,
not 0, most4but not all4of the arrays in this book use 1-origin indexing. To be

3 In an if-else statement, we indent else at the same level as its matching if. The ûrst executable line
of an else clause appears on the same line as the keyword else. For multiway tests, we use elseif for
tests after the ûrst one. When it is the ûrst line in an else clause, an if statement appears on the line
following else so that you do not misconstrue it as elseif.
4 Each pseudocode procedure in this book appears on one page so that you do not need to discern
levels of indentation in pseudocode that is split across pages.
5 Most block-structured languages have equivalent constructs, though the exact syntax may differ.
Python lacks repeat-until loops, and its for loops operate differently from the for loops in this book.
Think of the pseudocode line <for i D 1 to n= as equivalent to <for i in range(1, n+1)= in Python.
6 In Python, the loop counter retains its value after the loop is exited, but the value it retains is the
value it had during the ûnal iteration of the for loop, rather than the value that exceeded the loop
bound. That is because a Python for loop iterates through a list, which may contain nonnumeric
values.

2.1 Insertion sort 23

clear about whether a particular algorithm assumes 0-origin or 1-origin index-
ing, we’ll specify the bounds of the arrays explicitly. If you are implementing
an algorithm that we specify using 1-origin indexing, but you’re writing in a
programming language that enforces 0-origin indexing (such as C, C++, Java,
Python, or JavaScript), then give yourself credit for being able to adjust. You
can either always subtract 1 from each index or allocate each array with one
extra position and just ignore position 0.
The notation <W= denotes a subarray. Thus, AŒi W j � indicates the subarray of A
consisting of the elements AŒi�; AŒi C 1�; : : : ; AŒj �. 7 We also use this notation
to indicate the bounds of an array, as we did earlier when discussing the array
AŒ1 W n�.

 We typically organize compound data into objects, which are composed of
attributes. We access a particular attribute using the syntax found in many
object-oriented programming languages: the object name, followed by a dot,
followed by the attribute name. For example, if an object x has attribute f , we
denote this attribute by x: f .
We treat a variable representing an array or object as a pointer (known as a
reference in some programming languages) to the data representing the array
or object. For all attributes f of an object x , setting y D x causes y: f to
equal x: f . Moreover, if we now set x: f D 3, then afterward not only does x: f
equal 3, but y: f equals 3 as well. In other words, x and y point to the same
object after the assignment y D x . This way of treating arrays and objects is
consistent with most contemporary programming languages.
Our attribute notation can <cascade.= For example, suppose that the attribute f
is itself a pointer to some type of object that has an attribute g. Then the notation
x: f : g is implicitly parenthesized as .x: f /: g. In other words, if we had assigned
y D x: f , then x: f : g is the same as y: g.
Sometimes a pointer refers to no object at all. In this case, we give it the special
value NIL.

 We pass parameters to a procedure by value: the called procedure receives its
own copy of the parameters, and if it assigns a value to a parameter, the change
is not seen by the calling procedure. When objects are passed, the pointer to
the data representing the object is copied, but the object’s attributes are not. For
example, if x is a parameter of a called procedure, the assignment x D y within

7 If you’re used to programming in Python, bear in mind that in this book, the subarray AŒi W j �
includes the element AŒj �. In Python, the last element of AŒi W j � is AŒj 1�. Python allows negative
indices, which count from the back end of the list. This book does not use negative array indices.

24 Chapter 2 Getting Started

the called procedure is not visible to the calling procedure. The assignment
x: f D 3, however, is visible if the calling procedure has a pointer to the same
object as x . Similarly, arrays are passed by pointer, so that a pointer to the array
is passed, rather than the entire array, and changes to individual array elements
are visible to the calling procedure. Again, most contemporary programming
languages work this way.

 A return statement immediately transfers control back to the point of call in
the calling procedure. Most return statements also take a value to pass back to
the caller. Our pseudocode differs from many programming languages in that
we allow multiple values to be returned in a single return statement without
having to create objects to package them together. 8

 The boolean operators <and= and <or= are short circuiting. That is, evaluate
the expression <x and y = by ûrst evaluating x . If x evaluates to FALSE, then
the entire expression cannot evaluate to TRUE, and therefore y is not evaluated.
If, on the other hand, x evaluates to TRUE, y must be evaluated to determine
the value of the entire expression. Similarly, in the expression <x or y = the ex-
pression y is evaluated only if x evaluates to FALSE. Short-circuiting operators
allow us to write boolean expressions such as <x ¤ NIL and x: f D y = without
worrying about what happens upon evaluating x: f when x is NIL.

 The keyword error indicates that an error occurred because conditions were
wrong for the procedure to have been called, and the procedure immediately
terminates. The calling procedure is responsible for handling the error, and so
we do not specify what action to take.

Exercises
2.1-1
Using Figure 2.2 as a model, illustrate the operation of I NSERTION-SORT on an
array initially containing the sequence h31; 41; 59; 26; 41; 58i.
2.1-2
Consider the procedure SUM-ARRAY on the facing page. It computes the sum of
the n numbers in array AŒ1 W n�. State a loop invariant for this procedure, and use
its initialization, maintenance, and termination properties to show that the SUM-
ARRAY procedure returns the sum of the numbers in AŒ1 W n�.

8 Python’s tuple notation allows return statements to return multiple values without creating objects
from a programmer-deûned class.

2.2 Analyzing algorithms 25

SUM-ARRAY.A; n/
1 sum D 0
2 for i D 1 to n
3 sum D sum C AŒi�
4 return sum

2.1-3
Rewrite the I NSERTION-SORT procedure to sort into monotonically decreasing in-
stead of monotonically increasing order.
2.1-4
Consider the searching problem:
Input: A sequence of n numbers ha 1 ; a 2 ; : : : ; a n i stored in array AŒ1 W n� and a

value x .
Output: An index i such that x equals AŒi� or the special value NIL if x does not

appear in A.
Write pseudocode for linear search, which scans through the array from begin-

ning to end, looking for x . Using a loop invariant, prove that your algorithm is
correct. Make sure that your loop invariant fulûlls the three necessary properties.
2.1-5
Consider the problem of adding two n-bit binary integers a and b, stored in two
n-element arrays AŒ0 W n 1� and BŒ0 W n 1�, where each element is either 0
or 1, a D

P n1
i D0 AŒi� 2 i , and b D

P n1
i D0 BŒi� 2 i . The sum c D a C b of the

two integers should be stored in binary form in an .n C 1/-element array CŒ0 W n�,
where c D

P n
i D0 CŒi� 2 i . Write a procedure ADD-BINARY-I NTEGERS that takes

as input arrays A and B , along with the length n, and returns array C holding the
sum.

2.2 Analyzing algorithms

Analyzing an algorithm has come to mean predicting the resources that the algo-
rithm requires. You might consider resources such as memory, communication
bandwidth, or energy consumption. Most often, however, you’ll want to measure
computational time. If you analyze several candidate algorithms for a problem,

26 Chapter 2 Getting Started

you can identify the most efûcient one. There might be more than just one viable
candidate, but you can often rule out several inferior algorithms in the process.

Before you can analyze an algorithm, you need a model of the technology that
it runs on, including the resources of that technology and a way to express their
costs. Most of this book assumes a generic one-processor, random-access ma-
chine (RAM) model of computation as the implementation technology, with the
understanding that algorithms are implemented as computer programs. In the RAM
model, instructions execute one after another, with no concurrent operations. The
RAM model assumes that each instruction takes the same amount of time as any
other instruction and that each data access4using the value of a variable or storing
into a variable4takes the same amount of time as any other data access. In other
words, in the RAM model each instruction or data access takes a constant amount
of time4even indexing into an array. 9

Strictly speaking, we should precisely deûne the instructions of the RAM model
and their costs. To do so, however, would be tedious and yield little insight into al-
gorithm design and analysis. Yet we must be careful not to abuse the RAM model.
For example, what if a RAM had an instruction that sorts? Then you could sort
in just one step. Such a RAM would be unrealistic, since such instructions do
not appear in real computers. Our guide, therefore, is how real computers are de-
signed. The RAM model contains instructions commonly found in real computers:
arithmetic (such as add, subtract, multiply, divide, remainder, üoor, ceiling), data
movement (load, store, copy), and control (conditional and unconditional branch,
subroutine call and return).
The data types in the RAM model are integer, üoating point (for storing real-

number approximations), and character. Real computers do not usually have a
separate data type for the boolean values TRUE and FALSE. Instead, they often test
whether an integer value is 0 (FALSE) or nonzero (TRUE), as in C. Although we
typically do not concern ourselves with precision for üoating-point values in this
book (many numbers cannot be represented exactly in üoating point), precision is
crucial for most applications. We also assume that each word of data has a limit on
the number of bits. For example, when working with inputs of size n, we typically

9 We assume that each element of a given array occupies the same number of bytes and that the
elements of a given array are stored in contiguous memory locations. For example, if array AŒ1 W n�
starts at memory address 1000 and each element occupies four bytes, then element AŒi� is at address
1000 C 4.i 1/. In general, computing the address in memory of a particular array element requires
at most one subtraction (no subtraction for a 0-origin array), one multiplication (often implemented
as a shift operation if the element size is an exact power of 2), and one addition. Furthermore, for
code that iterates through the elements of an array in order, an optimizing compiler can generate the
address of each element using just one addition, by adding the element size to the address of the
preceding element.

2.2 Analyzing algorithms 27

assume that integers are represented by c log 2 n bits for some constant c 1. We
require c 1 so that each word can hold the value of n, enabling us to index
the individual input elements, and we restrict c to be a constant so that the word
size does not grow arbitrarily. (If the word size could grow arbitrarily, we could
store huge amounts of data in one word and operate on it all in constant time4an
unrealistic scenario.)

Real computers contain instructions not listed above, and such instructions rep-
resent a gray area in the RAM model. For example, is exponentiation a constant-
time instruction? In the general case, no: to compute x n when x and n are general
integers typically takes time logarithmic in n (see equation (31.34) on page 934),
and you must worry about whether the result ûts into a computer word. If n is an
exact power of 2, however, exponentiation can usually be viewed as a constant-time
operation. Many computers have a <shift left= instruction, which in constant time
shifts the bits of an integer by n positions to the left. In most computers, shifting
the bits of an integer by 1 position to the left is equivalent to multiplying by 2, so
that shifting the bits by n positions to the left is equivalent to multiplying by 2 n .
Therefore, such computers can compute 2 n in 1 constant-time instruction by shift-
ing the integer 1 by n positions to the left, as long as n is no more than the number
of bits in a computer word. We’ll try to avoid such gray areas in the RAM model
and treat computing 2 n and multiplying by 2 n as constant-time operations when
the result is small enough to ût in a computer word.

The RAM model does not account for the memory hierarchy that is common
in contemporary computers. It models neither caches nor virtual memory. Sev-
eral other computational models attempt to account for memory-hierarchy effects,
which are sometimes signiûcant in real programs on real machines. Section 11.5
and a handful of problems in this book examine memory-hierarchy effects, but for
the most part, the analyses in this book do not consider them. Models that include
the memory hierarchy are quite a bit more complex than the RAM model, and so
they can be difûcult to work with. Moreover, RAM-model analyses are usually
excellent predictors of performance on actual machines.

Although it is often straightforward to analyze an algorithm in the RAM model,
sometimes it can be quite a challenge. You might need to employ mathematical
tools such as combinatorics, probability theory, algebraic dexterity, and the ability
to identify the most signiûcant terms in a formula. Because an algorithm might
behave differently for each possible input, we need a means for summarizing that
behavior in simple, easily understood formulas.

Analysis of insertion sort
How long does the I NSERTION-SORT procedure take? One way to tell would be for
you to run it on your computer and time how long it takes to run. Of course, you’d

28 Chapter 2 Getting Started

ûrst have to implement it in a real programming language, since you cannot run our
pseudocode directly. What would such a timing test tell you? You would ûnd out
how long insertion sort takes to run on your particular computer, on that particular
input, under the particular implementation that you created, with the particular
compiler or interpreter that you ran, with the particular libraries that you linked
in, and with the particular background tasks that were running on your computer
concurrently with your timing test (such as checking for incoming information over
a network). If you run insertion sort again on your computer with the same input,
you might even get a different timing result. From running just one implementation
of insertion sort on just one computer and on just one input, what would you be able
to determine about insertion sort’s running time if you were to give it a different
input, if you were to run it on a different computer, or if you were to implement it
in a different programming language? Not much. We need a way to predict, given
a new input, how long insertion sort will take.

Instead of timing a run, or even several runs, of insertion sort, we can determine
how long it takes by analyzing the algorithm itself. We’ll examine how many times
it executes each line of pseudocode and how long each line of pseudocode takes
to run. We’ll ûrst come up with a precise but complicated formula for the running
time. Then, we’ll distill the important part of the formula using a convenient no-
tation that can help us compare the running times of different algorithms for the
same problem.
How do we analyze insertion sort? First, let’s acknowledge that the running time

depends on the input. You shouldn’t be terribly surprised that sorting a thousand
numbers takes longer than sorting three numbers. Moreover, insertion sort can take
different amounts of time to sort two input arrays of the same size, depending on
how nearly sorted they already are. Even though the running time can depend on
many features of the input, we’ll focus on the one that has been shown to have
the greatest effect, namely the size of the input, and describe the running time of a
program as a function of the size of its input. To do so, we need to deûne the terms
<running time= and <input size= more carefully. We also need to be clear about
whether we are discussing the running time for an input that elicits the worst-case
behavior, the best-case behavior, or some other case.

The best notion for input size depends on the problem being studied. For many
problems, such as sorting or computing discrete Fourier transforms, the most nat-
ural measure is the number of items in the input4for example, the number n of
items being sorted. For many other problems, such as multiplying two integers,
the best measure of input size is the total number of bits needed to represent the
input in ordinary binary notation. Sometimes it is more appropriate to describe the
size of the input with more than just one number. For example, if the input to an
algorithm is a graph, we usually characterize the input size by both the number

2.2 Analyzing algorithms 29

of vertices and the number of edges in the graph. We’ll indicate which input size
measure is being used with each problem we study.

The running time of an algorithm on a particular input is the number of in-
structions and data accesses executed. How we account for these costs should be
independent of any particular computer, but within the framework of the RAM
model. For the moment, let us adopt the following view. A constant amount of
time is required to execute each line of our pseudocode. One line might take more
or less time than another line, but we’ll assume that each execution of the kth line
takes c k time, where c k is a constant. This viewpoint is in keeping with the RAM
model, and it also reüects how the pseudocode would be implemented on most
actual computers. 10

Let’s analyze the I NSERTION-SORT procedure. As promised, we’ll start by de-
vising a precise formula that uses the input size and all the statement costs c k .
This formula turns out to be messy, however. We’ll then switch to a simpler no-
tation that is more concise and easier to use. This simpler notation makes clear
how to compare the running times of algorithms, especially as the size of the input
increases.

To analyze the I NSERTION-SORT procedure, let’s view it on the following page
with the time cost of each statement and the number of times each statement is
executed. For each i D 2; 3; : : : ; n, let t i denote the number of times the while
loop test in line 5 is executed for that value of i . When a for or while loop exits
in the usual way4because the test in the loop header comes up FALSE4the test is
executed one time more than the loop body. Because comments are not executable
statements, assume that they take no time.

The running time of the algorithm is the sum of running times for each state-
ment executed. A statement that takes c k steps to execute and executes m times
contributes c k m to the total running time. 11 We usually denote the running time of
an algorithm on an input of size n by T .n/. To compute T .n/, the running time
of I NSERTION-SORT on an input of n values, we sum the products of the cost and
times columns, obtaining

10 There are some subtleties here. Computational steps that we specify in English are often variants
of a procedure that requires more than just a constant amount of time. For example, in the R ADIX-
SORT procedure on page 213, one line reads <use a stable sort to sor t array A on digit i ,= which,
as we shall see, takes more than a constant amount of time. Also, although a statement that calls a
subroutine takes only constant time, the subroutine itself, once invoked, may take more. That is, we
separate the process of calling the subroutine4passing parameters to it, etc.4from the process of
executing the subroutine.
11 This characteristic does not necessarily hold for a resource such as memory. A statement that
references m words of memory and is executed n times does not necessarily reference mn distinct
words of memory.

30 Chapter 2 Getting Started

I NSERTION-SORT .A; n/ cost times
1 for i D 2 to n c 1 n
2 key D AŒi� c 2 n 1
3 // Insert AŒi� into the sorted subarray AŒ1 W i 1�. 0 n 1
4 j D i 1 c 4 n 1
5 while j > 0 and AŒj � > key c 5

P n
i D2 t i

6 AŒj C 1� D AŒj � c 6
P n

i D2 .t i 1/
7 j D j 1 c 7

P n
i D2 .t i 1/

8 AŒj C 1� D key c 8 n 1

T .n/ D c 1 n C c 2 .n 1/ C c 4 .n 1/ C c 5

n X

i D2

t i C c 6

n X

i D2

.t i 1/

C c 7

n X

i D2

.t i 1/ C c 8 .n 1/ :

Even for inputs of a given size, an algorithm’s running time may depend on
which input of that size is given. For example, in I NSERTION-SORT, the best case
occurs when the array is already sorted. In this case, each time that line 5 executes,
the value of key4the value originally in AŒi�4is already greater than or equal to
all values in AŒ1 W i 1�, so that the while loop of lines 537 always exits upon the
ûrst test in line 5. Therefore, we have that t i D 1 for i D 2; 3; : : : ; n, and the
best-case running time is given by

T .n/ D c 1 n C c 2 .n 1/ C c 4 .n 1/ C c 5 .n 1/ C c 8 .n 1/
D .c 1 C c 2 C c 4 C c 5 C c 8 /n .c 2 C c 4 C c 5 C c 8 / : (2.1)

We can express this running time as an C b for constants a and b that depend on
the statement costs c k (where a D c 1 Cc 2 Cc 4 Cc 5 Cc 8 and b D c 2 Cc 4 Cc 5 Cc 8).
The running time is thus a linear function of n.

The worst case arises when the array is in reverse sorted order4that is, it starts
out in decreasing order. The procedure must compare each element AŒi� with each
element in the entire sorted subarray AŒ1 W i 1�, and so t i D i for i D 2; 3; : : : ; n.
(The procedure ûnds that AŒj � > key every time in line 5, and the while loop exits
only when j reaches 0.) Noting that
n X

i D2

i D

n X

i D1

i

!

 1

D
n.n C 1/

2
 1 (by equation (A.2) on page 1141)

2.2 Analyzing algorithms 31

and
n X

i D2

.i 1/ D
n1 X

i D1

i

D
n.n 1/

2
(again, by equation (A.2)) ,

we ûnd that in the worst case, the running time of I NSERTION-SORT is

T .n/ D c 1 n C c 2 .n 1/ C c 4 .n 1/ C c 5

Î
n.n C 1/

2
 1

Ï

C c 6

Î
n.n 1/

2

Ï
C c 7

Î
n.n 1/

2

Ï
C c 8 .n 1/

D
 c 5

2
C
c 6

2
C
c 7

2

Í
n 2 C

c 1 C c 2 C c 4 C

c 5

2

c 6

2

c 7

2
C c 8

Í
n

 .c 2 C c 4 C c 5 C c 8 / : (2.2)
We can express this worst-case running time as an 2 C bn C c for constants a, b,
and c that again depend on the statement costs c k (now, a D c 5 =2 C c 6 =2 C c 7 =2,
b D c 1 C c 2 C c 4 C c 5 =2 c 6 =2 c 7 =2 C c 8 , and c D .c 2 C c 4 C c 5 C c 8 /). The
running time is thus a quadratic function of n.

Typically, as in insertion sort, the running time of an algorithm is ûxed for a
given input, although we’ll also see some interesting <randomized= algorithms
whose behavior can vary even for a ûxed input.

Worst-case and average-case analysis
Our analysis of insertion sort looked at both the best case, in which the input array
was already sorted, and the worst case, in which the input array was reverse sorted.
For the remainder of this book, though, we’ll usually (but not always) concentrate
on ûnding only the worst-case running time, that is, the longest running time for
any input of size n. Why? Here are three reasons:
 The worst-case running time of an algorithm gives an upper bound on the run-

ning time for any input. If you know it, then you have a guarantee that the
algorithm never takes any longer. You need not make some educated guess
about the running time and hope that it never gets much worse. This feature is
especially important for real-time computing, in which operations must com-
plete by a deadline.

 For some algorithms, the worst case occurs fairly often. For example, in search-
ing a database for a particular piece of information, the searching algorithm’s
worst case often occurs when the information is not present in the database. In
some applications, searches for absent information may be frequent.

32 Chapter 2 Getting Started

 The <average case= is often roughly as bad as the worst case. Suppose that
you run insertion sort on an array of n randomly chosen numbers. How long
does it take to determine where in subarray AŒ1 W i 1� to insert element AŒi�?
On average, half the elements in AŒ1 W i 1� are less than AŒi�, and half the
elements are greater. On average, therefore, AŒi� is compared with just half
of the subarray AŒ1 W i 1�, and so t i is about i=2. The resulting average-case
running time turns out to be a quadratic function of the input size, just like the
worst-case running time.
In some particular cases, we’ll be interested in the average-case running time of

an algorithm. We’ll see the technique of probabilistic analysis applied to various
algorithms throughout this book. The scope of average-case analysis is limited,
because it may not be apparent what constitutes an <average= input for a particular
problem. Often, we’ll assume that all inputs of a given size are equally likely. In
practice, this assumption may be violated, but we can sometimes use a randomized
algorithm, which makes random choices, to allow a probabilistic analysis and yield
an expected running time. We explore randomized algorithms more in Chapter 5
and in several other subsequent chapters.

Order of growth

In order to ease our analysis of the I NSERTION-SORT procedure, we used some
simplifying abstractions. First, we ignored the actual cost of each statement, using
the constants c k to represent these costs. Still, the best-case and worst-case run-
ning times in equations (2.1) and (2.2) are rather unwieldy. The constants in these
expressions give us more detail than we really need. That’s why we also expressed
the best-case running time as an C b for constants a and b that depend on the state-
ment costs c k and why we expressed the worst-case running time as an 2 C bn C c
for constants a, b, and c that depend on the statement costs. We thus ignored not
only the actual statement costs, but also the abstract costs c k .
Let’s now make one more simplifying abstraction: it is the rate of growth, or

order of growth, of the running time that really interests us. We therefore consider
only the leading term of a formula (e.g., an 2), since the lower-order terms are rela-
tively insigniûcant for large values of n. We also ignore the leading term’s constant
coefûcient, since constant factors are less signiûcant than the rate of growth in de-
termining computational efûciency for large inputs. For insertion sort’s worst-case
running time, when we ignore the lower-order terms and the leading term’s con-
stant coefûcient, only the factor of n 2 from the leading term remains. That factor,
n 2 , is by far the most important part of the running time. For example, suppose that
an algorithm implemented on a particular machine takes n 2 =100 C 100n C 17 mi-
croseconds on an input of size n. Although the coefûcients of 1=100 for the n 2 term
and 100 for the n term differ by four orders of magnitude, the n 2 =100 term domi-

2.2 Analyzing algorithms 33

nates the 100n term once n exceeds 10,000. Although 10,000 might seem large, it
is smaller than the population of an average town. Many real-world problems have
much larger input sizes.

To highlight the order of growth of the running time, we have a special notation
that uses the Greek letter ‚ (theta). We write that insertion sort has a worst-case
running time of ‚.n 2 / (pronounced <theta of n-squared= or just <theta n-squared=).
We also write that insertion sort has a best-case running time of ‚.n/ (<theta of n=
or <theta n=). For now, think of ‚-notation as saying <roughly proportional when
n is large,= so that ‚.n 2 / means <roughly proportional to n 2 when n is large= and
‚.n/ means <roughly proportional to n when n is large= We’ll use ‚-notation
informally in this chapter and deûne it precisely in Chapter 3.
We usually consider one algorithm to be more efûcient than another if its worst-

case running time has a lower order of growth. Due to constant factors and lower-
order terms, an algorithm whose running time has a higher order of growth might
take less time for small inputs than an algorithm whose running time has a lower or-
der of growth. But on large enough inputs, an algorithm whose worst-case running
time is ‚.n 2 /, for example, takes less time in the worst case than an algorithm
whose worst-case running time is ‚.n 3 /. Regardless of the constants hidden by
the ‚-notation, there is always some number, say n 0 , such that for all input sizes
n n 0 , the ‚.n 2 / algorithm beats the ‚.n 3 / algorithm in the worst case.

Exercises
2.2-1
Express the function n 3 =1000 C 100n 2 100n C 3 in terms of ‚-notation.
2.2-2
Consider sorting n numbers stored in array AŒ1 W n� by ûrst ûnding the smallest
element of AŒ1 W n� and exchanging it with the element in AŒ1�. Then ûnd the
smallest element of AŒ2 W n�, and exchange it with AŒ2�. Then ûnd the smallest
element of AŒ3 W n�, and exchange it with AŒ3�. Continue in this manner for the
ûrst n 1 elements of A. Write pseudocode for this algorithm, which is known
as selection sort. What loop invariant does this algorithm maintain? Why does it
need to run for only the ûrst n 1 elements, rather than for all n elements? Give the
worst-case running time of selection sort in ‚-notation. Is the best-case running
time any better?
2.2-3
Consider linear search again (see Exercise 2.1-4). How many elements of the input
array need to be checked on the average, assuming that the element being searched
for is equally likely to be any element in the array? How about in the worst case?

34 Chapter 2 Getting Started

Using ‚-notation, give the average-case and worst-case running times of linear
search. Justify your answers.
2.2-4
How can you modify any sorting algorithm to have a good best-case running time?

2.3 Designing algorithms

You can choose from a wide range of algorithm design techniques. Insertion sort
uses the incremental method: for each element AŒi�, insert it into its proper place
in the subarray AŒ1 W i �, having already sorted the subarray AŒ1 W i 1�.

This section examines another design method, known as <divide-and-conquer,=
which we explore in more detail in Chapter 4. We’ll use divide-and-conquer to
design a sorting algorithm whose worst-case running time is much less than that
of insertion sort. One advantage of using an algorithm that follows the divide-and-
conquer method is that analyzing its running time is often straightforward, using
techniques that we’ll explore in Chapter 4.

2.3.1 The divide-and-conquer method

Many useful algorithms are recursive in structure: to solve a given problem, they
recurse (call themselves) one or more times to handle closely related subprob-
lems. These algorithms typically follow the divide-and-conquer method: they
break the problem into several subproblems that are similar to the original prob-
lem but smaller in size, solve the subproblems recursively, and then combine these
solutions to create a solution to the original problem.
In the divide-and-conquer method, if the problem is small enough4the base

case4you just solve it directly without recursing. Otherwise4the recursive case
4you perform three characteristic steps:
Divide the problem into one or more subproblems that are smaller instances of the

same problem.
Conquer the subproblems by solving them recursively.
Combine the subproblem solutions to form a solution to the original problem.

The merge sort algorithm closely follows the divide-and-conquer method. In
each step, it sorts a subarray AŒp W r�, starting with the entire array AŒ1 W n� and
recursing down to smaller and smaller subarrays. Here is how merge sort operates:

2.3 Designing algorithms 35

Divide the subarray AŒp W r� to be sorted into two adjacent subarrays, each of half
the size. To do so, compute the midpoint q of AŒp W r� (taking the average of p
and r), and divide AŒp W r� into subarrays AŒp W q� and AŒq C 1 W r�.

Conquer by sorting each of the two subarrays AŒp W q� and AŒq C 1 W r� recursively
using merge sort.

Combine by merging the two sorted subarrays AŒp W q� and AŒq C 1 W r� back into
AŒp W r�, producing the sorted answer.

The recursion <bottoms out=4it reaches the base case4when the subarray AŒp W r�
to be sorted has just 1 element, that is, when p equals r . As we noted in the ini-
tialization argument for I NSERTION-SORT’s loop invariant, a subarray comprising
just a single element is always sorted.

The key operation of the merge sort algorithm occurs in the <combine= step,
which merges two adjacent, sorted subarrays. The merge operation is performed
by the auxiliary procedure MERGE.A; p; q; r/ on the following page, where A is
an array and p, q, and r are indices into the array such that p හ q < r . The
procedure assumes that the adjacent subarrays AŒp W q� and AŒq C 1 W r� were al-
ready recursively sorted. It merges the two sorted subarrays to form a single sorted
subarray that replaces the current subarray AŒp W r�.

To understand how the MERGE procedure works, let’s return to our card-playing
motif. Suppose that you have two piles of cards face up on a table. Each pile is
sorted, with the smallest-value cards on top. You wish to merge the two piles
into a single sorted output pile, which is to be face down on the table. The basic
step consists of choosing the smaller of the two cards on top of the face-up piles,
removing it from its pile4which exposes a new top card4and placing this card
face down onto the output pile. Repeat this step until one input pile is empty, at
which time you can just take the remaining input pile and üip over the entire pile,
placing it face down onto the output pile.
Let’s think about how long it takes to merge two sorted piles of cards. Each basic

step takes constant time, since you are comparing just the two top cards. If the two
sorted piles that you start with each have n=2 cards, then the number of basic steps
is at least n=2 (since in whichever pile was emptied, every card was found to be
smaller than some card from the other pile) and at most n (actually, at most n 1,
since after n 1 basic steps, one of the piles must be empty). With each basic step
taking constant time and the total number of basic steps being between n=2 and n,
we can say that merging takes time roughly proportional to n. That is, merging
takes ‚.n/ time.

In detail, the MERGE procedure works as follows. It copies the two subarrays
AŒp W q� and AŒq C 1 W r� into temporary arrays L and R (<left= and <right=), and
then it merges the values in L and R back into AŒp W r�. Lines 1 and 2 compute the
lengths n L and n R of the subarrays AŒp W q� and AŒq C 1 W r�, respectively. Then

36 Chapter 2 Getting Started

MERGE.A; p; q; r/
1 n L D q p C 1 // length of AŒp W q�
2 n R D r q // length of AŒq C 1 W r�
3 let LŒ0 W n L 1� and RŒ0 W n R 1� be new arrays
4 for i D 0 to n L 1 // copy AŒp W q� into LŒ0 W n L 1�
5 LŒi� D AŒp C i �
6 for j D 0 to n R 1 // copy AŒq C 1 W r� into RŒ0 W n R 1�
7 RŒj � D AŒq C j C 1�
8 i D 0 // i indexes the smallest remaining element in L
9 j D 0 // j indexes the smallest remaining element in R
10 k D p // k indexes the location in A to ûll
11 // As long as each of the arrays L and R contains an unmerged element,

// copy the smallest unmerged element back into AŒp W r�.
12 while i < n L and j < n R
13 if LŒi� හ RŒj �
14 AŒk� D LŒi�
15 i D i C 1
16 else AŒk� D RŒj �
17 j D j C 1
18 k D k C 1
19 // Having gone through one of L and R entirely, copy the

// remainder of the other to the end of AŒp W r�.
20 while i < n L
21 AŒk� D LŒi�
22 i D i C 1
23 k D k C 1
24 while j < n R
25 AŒk� D RŒj �
26 j D j C 1
27 k D k C 1

line 3 creates arrays LŒ0 W n L 1� and RŒ0 W n R 1� with respective lengths n L
and n R . 12 The for loop of lines 435 copies the subarray AŒp W q� into L, and the for
loop of lines 637 copies the subarray AŒq C 1 W r� into R.
Lines 8318, illustrated in Figure 2.3, perform the basic steps. The while loop

of lines 12318 repeatedly identiûes the smallest value in L and R that has yet to

12 This procedure is the rare case that uses both 1-origin indexing (for array A) and 0-origin indexing
(for arrays L and R). Using 0-origin indexing for L and R makes for a simpler loop invariant in
Exercise 2.3-3.

2.3 Designing algorithms 37

A

L R
1 2 3

i j

k

(a)

2 4 6 7 1 2 3 5

A

L R
i j

k

(b)

2 4 6 7

1

2 3 5 1

2 4 6 7 1 2 3 5 4 6 7 1 2 3 5

A

L R

9 10 11 12 13 14 15 16

i j

k

(c)

2 4 6 7

1

2 3 5 1

6 7 1 2 3 5 2 A

L R
i j

k

(d)

2 4 6 7

1

2 3 5 1

7 1 2 3 5 2 2

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16 8
…

17
…

8
…

17
…

8
…

17
…

8
…

17
…

1 2 3 0 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3 1 2 3

0 0

0

0

0 0 0

A

L R
1 2 3

i j

k

(e)

2 4 6 7

1

2 3 5 1

1 2 3 5 2 2 3 A

L R
i j

k

(f)

2 4 6 7

1

2 3 5 1

2 3 5 2 2 3 4

A

L R
i j

k

(g)

2 4 6 7

1

2 3 5 1

3 5 2 2 3 4 5 A

L R
1 2 3 4 1 2 3 4

i j

k

(h)

2 4 6 7

1

2 3 5 1

7 2 2 3 4 5 6

9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16 9 10 11 12 13 14 15 16

9 10 11 12 13 14 15 16 8
…

17
…

8
…

17
…

8
…

17
…

8
…

17
…

1 2 3 1 2 3 1 2 3

1 2 3 1 2 3

0 0

0 4 0 0 0

0 0

Figure 2.3 The operation of the while loop in lines 8318 in the call MERGE.A; 9; 12; 16/, when
the subarray AŒ9 W 16� contains the values h2; 4; 6; 7; 1; 2; 3; 5i. After allocating and copying into
the arrays L and R, the array L contains h2; 4; 6; 7i, and the array R contains h1; 2; 3; 5i. Tan
positions in A contain their ûnal values, and tan positions in L and R contain values that have yet
to be copied back into A. Taken together, the tan positions always comprise the values originally
in AŒ9 W 16�. Blue positions in A contain values that will be copied over, and dark positions in L
and R contain values that have already been copied back into A. (a)–(g) The arrays A, L, and R, and
their respective indices k, i , and j prior to each iteration of the loop of lines 12318. At the poin t in
part (g), all values in R have been copied back into A (indicated by j equaling the length of R), and
so the while loop in lines 12318 terminates. (h) The arrays and indices at termination. The while
loops of lines 20323 and 24327 copied back into A the remaining values in L and R, which are the
largest values originally in AŒ9 W 16�. Here, lines 20323 copied LŒ2 W 3� into AŒ15 W 16�, and because
all values in R had already been copied back into A, the while loop of lines 24327 iterated 0 times.
At this point, the subarray in AŒ9 W 16� is sorted.

38 Chapter 2 Getting Started

be copied back into AŒp W r� and copies it back in. As the comments indicate, the
index k gives the position of A that is being ûlled in, and the indices i and j give the
positions in L and R, respectively, of the smallest remaining values. Eventually,
either all of L or all of R is copied back into AŒp W r�, and this loop terminates.
If the loop terminates because all of R has been copied back, that is, because j
equals n R , then i is still less than n L , so that some of L has yet to be copied back,
and these values are the greatest in both L and R. In this case, the while loop
of lines 20323 copies these remaining values of L into the last few positions of
AŒp W r�. Because j equals n R , the while loop of lines 24327 iterates 0 times. If
instead the while loop of lines 12318 terminates because i equals n L , then all of L
has already been copied back into AŒp W r�, and the while loop of lines 24327 copies
the remaining values of R back into the end of AŒp W r�.

To see that the MERGE procedure runs in ‚.n/ time, where n D r p C 1, 13

observe that each of lines 133 and 8310 takes constant time, and the for loops
of lines 437 take ‚.n L C n R / D ‚.n/ time. 14 To account for the three while
loops of lines 12318, 20323, and 24327, observe that each iteration of these loops
copies exactly one value from L or R back into A and that every value is copied
back into A exactly once. Therefore, these three loops together make a total of n
iterations. Since each iteration of each of the three loops takes constant time, the
total time spent in these three loops is ‚.n/.

We can now use the MERGE procedure as a subroutine in the merge sort al-
gorithm. The procedure MERGE-SORT.A; p; r/ on the facing page sorts the ele-
ments in the subarray AŒp W r�. If p equals r , the subarray has just 1 element and
is therefore already sorted. Otherwise, we must have p < r , and MERGE-SORT
runs the divide, conquer, and combine steps. The divide step simply computes an
index q that partitions AŒp W r� into two adjacent subarrays: AŒp W q�, containing
dn=2e elements, and AŒq C 1 W r�, containing bn=2c elements. 15 The initial call
MERGE-SORT .A; 1; n/ sorts the entire array AŒ1 W n�.
Figure 2.4 illustrates the operation of the procedure for n D 8, showing also the

sequence of divide and merge steps. The algorithm recursively divides the array
down to 1-element subarrays. The combine steps merge pairs of 1-element subar-

13 If you’re wondering where the <C1= comes from, imagine that r D p C 1. Then the subar-
ray AŒp W r� consists of two elements, and r p C 1 D 2.
14 Chapter 3 shows how to formally interpret equations containing ‚-notation.
15 The expression dxe denotes the least integer greater than or equal to x, and bxc denotes the
greatest integer less than or equal to x. These notations are deûned in Section 3.3. The easiest way
to verify that setting q to b.p C r/=2c yields subarrays AŒp W q� and AŒq C 1 W r� of sizes dn=2e and
bn=2c, respectively, is to examine the four cases that arise depending on whether each of p and r is
odd or even.

2.3 Designing algorithms 39

MERGE-SORT.A; p; r/
1 if p r // zero or one element?
2 return
3 q D b.p C r/=2c // midpoint of AŒp W r�
4 MERGE-SORT .A; p; q/ // recursively sort AŒp W q�
5 MERGE-SORT .A; q C 1; r/ // recursively sort AŒq C 1 W r�
6 // Merge AŒp W q� and AŒq C 1 W r� into AŒp W r�.
7 MERGE.A; p; q; r/

rays to form sorted subarrays of length 2, merges those to form sorted subarrays
of length 4, and merges those to form the ûnal sorted subarray of length 8. If n
is not an exact power of 2, then some divide steps create subarrays whose lengths
differ by 1. (For example, when dividing a subarray of length 7, one subarray has
length 4 and the other has length 3.) Regardless of the lengths of the two subarrays
being merged, the time to merge a total of n items is ‚.n/.

2.3.2 Analyzing divide-and-conquer algorithms
When an algorithm contains a recursive call, you can often describe its running
time by a recurrence equation or recurrence, which describes the overall running
time on a problem of size n in terms of the running time of the same algorithm on
smaller inputs. You can then use mathematical tools to solve the recurrence and
provide bounds on the performance of the algorithm.
A recurrence for the running time of a divide-and-conquer algorithm falls out

from the three steps of the basic method. As we did for insertion sort, let T .n/
be the worst-case running time on a problem of size n. If the problem size is
small enough, say n < n 0 for some constant n 0 > 0, the straightforward solution
takes constant time, which we write as ‚.1/. 16 Suppose that the division of the
problem yields a subproblems, each with size n=b, that is, 1=b the size of the
original. For merge sort, both a and b are 2, but we’ll see other divide-and-conquer
algorithms in which a ¤ b. It takes T .n=b/ time to solve one subproblem of
size n=b, and so it takes aT .n=b/ time to solve all a of them. If it takes D.n/ time
to divide the problem into subproblems and C.n/ time to combine the solutions to
the subproblems into the solution to the original problem, we get the recurrence

16 If you’re wondering where ‚.1/ comes from, think of it this way. When we say that n 2 =100
is ‚.n 2 /, we are ignoring the coefûcient 1=100 of the factor n 2 . Likewise, when we say that a
constant c is ‚.1/, we are ignoring the coefûcient c of the factor 1 (which you can also think of
as n 0).

40 Chapter 2 Getting Started

12 3 7 9 14 6 11 2
1 2 3 4 5 6 7 8

12 3 7 9 14 6 11 2
1 2 3 4 5 6 7 8

p q r

p q r p q r

12 3 7 9
1 2 3 4

p,q r

3
1 2

p,r

12 3
1 2

p,q r

divide

divide

divide

merge

1

2

3

5

6

4

11

p,q r

14 6 11 2
5 6 7 8

p,q r
12 16

p,q r

p,r

12 9
3 4

p,r
7 8
p,r

7 6
5 6

p,r
13 14
p,r

14 2
7 8

p,r
17 18
p,r

11

9 7
3 4

p,q r
9

14 6
5 6

p,q r
15

11 2
7 8

p,q r
19

merge

3 7 9 12 2 6 11 14
1 2 3 4 5 6 7 8
p q r p q r

10

2 3 6 7 9 11 12 14
1 2 3 4 5 6 7 8
p q r

merge 21

20

Figure 2.4 The operation of merge sort on the array A with length 8 that initially contains the
sequence h12; 3; 7; 9; 14; 6; 11; 2i. The indices p, q, and r into each subarray appear above their
values. Numbers in italics indicate the order in which the MERGE-SORT and MERGE procedures are
called following the initial call of MERGE-SORT.A; 1; 8/.

T .n/ D

(
‚.1/ if n < n 0 ;
D.n/ C aT .n=b/ C C.n/ otherwise :

Chapter 4 shows how to solve common recurrences of this form.
Sometimes, the n=b size of the divide step isn’t an integer. For example, the

MERGE-SORT procedure divides a problem of size n into subproblems of sizes
dn=2e and bn=2c. Since the difference between dn=2e and bn=2c is at most 1,

2.3 Designing algorithms 41

which for large n is much smaller than the effect of dividing n by 2, we’ll squint a
little and just call them both size n=2. As Chapter 4 will discuss, this simpliûcation
of ignoring üoors and ceilings does not generally affect the order of growth of a
solution to a divide-and-conquer recurrence.
Another convention we’ll adopt is to omit a statement of the base cases of the

recurrence, which we’ll also discuss in more detail in Chapter 4. The reason is
that the base cases are pretty much always T .n/ D ‚.1/ if n < n 0 for some
constant n 0 > 0. That’s because the running time of an algorithm on an input of
constant size is constant. We save ourselves a lot of extra writing by adopting this
convention.

Analysis of merge sort
Here’s how to set up the recurrence for T .n/, the worst-case running time of merge
sort on n numbers.
Divide: The divide step just computes the middle of the subarray, which takes

constant time. Thus, D.n/ D ‚.1/.
Conquer: Recursively solving two subproblems, each of size n=2, contributes
2T .n=2/ to the running time (ignoring the üoors and ceilings, as we discussed).

Combine: Since the MERGE procedure on an n-element subarray takes ‚.n/
time, we have C.n/ D ‚.n/.

When we add the functions D.n/ and C.n/ for the merge sort analysis, we are
adding a function that is ‚.n/ and a function that is ‚.1/. This sum is a linear
function of n. That is, it is roughly proportional to n when n is large, and so
merge sort’s dividing and combining times together are ‚.n/. Adding ‚.n/ to
the 2T .n=2/ term from the conquer step gives the recurrence for the worst-case
running time T .n/ of merge sort:
T .n/ D 2T .n=2/ C ‚.n/ : (2.3)
Chapter 4 presents the <master theorem,= which shows that T .n/ D ‚.n lg n/. 17

Compared with insertion sort, whose worst-case running time is ‚.n 2 /, merge sort
trades away a factor of n for a factor of lg n. Because the logarithm function grows
more slowly than any linear function, that’s a good trade. For large enough inputs,
merge sort, with its ‚.n lg n/ worst-case running time, outperforms insertion sort,
whose worst-case running time is ‚.n 2 /.

17 The notation lg n stands for log 2 n, although the base of the logarithm doesn’t matter here, but as
computer scientists, we like logarithms base 2. Section 3.3 discusses other standard notation.

42 Chapter 2 Getting Started

We do not need the master theorem, however, to understand intuitively why the
solution to recurrence (2.3) is T .n/ D ‚.n lg n/. For simplicity, assume that n is
an exact power of 2 and that the implicit base case is n D 1. Then recurrence (2.3)
is essentially

T .n/ D

(
c 1 if n D 1 ;
2T .n=2/ C c 2 n if n > 1 ; (2.4)

where the constant c 1 > 0 represents the time required to solve a problem of size 1,
and c 2 > 0 is the time per array element of the divide and combine steps. 18

Figure 2.5 illustrates one way of ûguring out the solution to recurrence (2.4).
Part (a) of the ûgure shows T .n/, which part (b) expands into an equivalent tree
representing the recurrence. The c 2 n term denotes the cost of dividing and com-
bining at the top level of recursion, and the two subtrees of the root are the two
smaller recurrences T .n=2/. Part (c) shows this process carried one step further by
expanding T .n=2/. The cost for dividing and combining at each of the two nodes
at the second level of recursion is c 2 n=2. Continue to expand each node in the tree
by breaking it into its constituent parts as determined by the recurrence, until the
problem sizes get down to 1, each with a cost of c 1 . Part (d) shows the resulting
recursion tree.

Next, add the costs across each level of the tree. The top level has total cost c 2 n,
the next level down has total cost c 2 .n=2/ C c 2 .n=2/ D c 2 n, the level after that has
total cost c 2 .n=4/ C c 2 .n=4/ C c 2 .n=4/ C c 2 .n=4/ D c 2 n, and so on. Each level
has twice as many nodes as the level above, but each node contributes only half
the cost of a node from the level above. From one level to the next, doubling and
halving cancel each other out, so that the cost across each level is the same: c 2 n. In
general, the level that is i levels below the top has 2 i nodes, each contributing a cost
of c 2 .n=2 i /, so that the i th level below the top has total cost 2 i c 2 .n=2 i / D c 2 n.
The bottom level has n nodes, each contributing a cost of c 1 , for a total cost of c 1 n.
The total number of levels of the recursion tree in Figure 2.5 is lg n C 1, where

n is the number of leaves, corresponding to the input size. An informal inductive
argument justiûes this claim. The base case occurs when n D 1, in which case
the tree has only 1 level. Since lg 1 D 0, we have that lg n C 1 gives the correct
number of levels. Now assume as an inductive hypothesis that the number of levels
of a recursion tree with 2 i leaves is lg 2 i C 1 D i C 1 (since for any value of i , we
have that lg 2 i D i). Because we assume that the input size is an exact power of 2,
the next input size to consider is 2 i C1 . A tree with n D 2 i C1 leaves has 1 more

18 It is unlikely that c 1 is exactly the time to solve problems of size 1 and that c 2 n is exactly the
time of the divide and combine steps. We’ll look more closely at bounding recurrences in Chapter 4,
where we’ll be more careful about this kind of detail.

2.3 Designing algorithms 43

…

…

(d)

(c) (b) (a)

T .n/

c 2 n

c 2 n c 2 n

T .n=2/ T .n=2/

c 2 n=2 c 2 n=2

c 2 n=2 c 2 n=2

T .n=4/ T .n=4/ T .n=4/ T .n=4/

c 2 n=4 c 2 n=4 c 2 n=4 c 2 n=4

c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1

n

lg n C 1

c 2 n

c 2 n

c 2 n

c 1 n

Total: c 2 n lg n C c 1 n

Figure 2.5 How to construct a recursion tree for the recurrence (2.4). Part (a) shows T .n/, which
progressively expands in (b)–(d) to form the recursion tree. The fully expanded tree in part (d)
has lg n C 1 levels. Each level above the leaves contributes a total cost of c 2 n, and the leaf level
contributes c 1 n. The total cost, therefore, is c 2 n lg n C c 1 n D ‚.n lg n/.

44 Chapter 2 Getting Started

level than a tree with 2 i leaves, and so the total number of levels is .i C 1/ C 1 D
lg 2 i C1 C 1.
To compute the total cost represented by the recurrence (2.4), simply add up the

costs of all the levels. The recursion tree has lg n C 1 levels. The levels above the
leaves each cost c 2 n, and the leaf level costs c 1 n, for a total cost of c 2 n lg n Cc 1 n D
‚.n lg n/.

Exercises
2.3-1
Using Figure 2.4 as a model, illustrate the operation of merge sort on an array
initially containing the sequence h3; 41; 52; 26; 38; 57; 9; 49i.
2.3-2
The test in line 1 of the MERGE-SORT procedure reads <if p r = rather than <if
p ¤ r .= If MERGE-SORT is called with p > r , then the subarray AŒp W r� is empty.
Argue that as long as the initial call of MERGE-SORT.A; 1; n/ has n 1, the test
<if p ¤ r = sufûces to ensure that no recursive call has p > r .
2.3-3
State a loop invariant for the while loop of lines 12318 of the MERGE procedure.
Show how to use it, along with the while loops of lines 20323 and 24327, to prove
that the MERGE procedure is correct.
2.3-4
Use mathematical induction to show that when n 2 is an exact power of 2, the
solution of the recurrence

T .n/ D

(
2 if n D 2 ;
2T .n=2/ C n if n > 2

is T .n/ D n lg n.
2.3-5
You can also think of insertion sort as a recursive algorithm. In order to sort
AŒ1 W n�, recursively sort the subarray AŒ1 W n 1� and then insert AŒn� into the
sorted subarray AŒ1 W n 1�. Write pseudocode for this recursive version of inser-
tion sort. Give a recurrence for its worst-case running time.
2.3-6
Referring back to the searching problem (see Exercise 2.1-4), observe that if the
subarray being searched is already sorted, the searching algorithm can check the
midpoint of the subarray against v and eliminate half of the subarray from further

Problems for Chapter 2 45

consideration. The binary search algorithm repeats this procedure, halving the
size of the remaining portion of the subarray each time. Write pseudocode, either
iterative or recursive, for binary search. Argue that the worst-case running time of
binary search is ‚.lg n/.
2.3-7
The while loop of lines 537 of the I NSERTION-SORT procedure in Section 2.1
uses a linear search to scan (backward) through the sorted subarray AŒ1 W j 1�.
What if insertion sort used a binary search (see Exercise 2.3-6) instead of a linear
search? Would that improve the overall worst-case running time of insertion sort
to ‚.n lg n/?
2.3-8
Describe an algorithm that, given a set S of n integers and another integer x , de-
termines whether S contains two elements that sum to exactly x . Your algorithm
should take ‚.n lg n/ time in the worst case.

Problems

2-1 Insertion sort on small arrays in merge sort
Although merge sort runs in ‚.n lg n/ worst-case time and insertion sort runs
in ‚.n 2 / worst-case time, the constant factors in insertion sort can make it faster
in practice for small problem sizes on many machines. Thus it makes sense to
coarsen the leaves of the recursion by using insertion sort within merge sort when
subproblems become sufûciently small. Consider a modiûcation to merge sort in
which n=k sublists of length k are sorted using insertion sort and then merged
using the standard merging mechanism, where k is a value to be determined.
a. Show that insertion sort can sort the n=k sublists, each of length k, in ‚.nk/

worst-case time.

b. Show how to merge the sublists in ‚.n lg.n=k// worst-case time.

c. Given that the modiûed algorithm runs in ‚.nk C n lg.n=k// worst-case time,
what is the largest value of k as a function of n for which the modiûed algorithm
has the same running time as standard merge sort, in terms of ‚-notation?

d. How should you choose k in practice?

46 Chapter 2 Getting Started

2-2 Correctness of bubblesort
Bubblesort is a popular, but inefûcient, sorting algorithm. It works by repeatedly
swapping adjacent elements that are out of order. The procedure BUBBLESORT
sorts array AŒ1 W n�.

BUBBLESORT .A; n/
1 for i D 1 to n 1
2 for j D n downto i C 1
3 if AŒj � < AŒj 1�
4 exchange AŒj � with AŒj 1�

a. Let A 0 denote the array A after BUBBLESORT .A; n/ is executed. To prove that
BUBBLESORT is correct, you need to prove that it terminates and that
A 0 Œ1� හ A 0 Œ2� හ හ A 0 Œn� : (2.5)
In order to show that BUBBLESORT actually sorts, what else do you need to
prove?

The next two parts prove inequality (2.5).
b. State precisely a loop invariant for the for loop in lines 234, and prove that this

loop invariant holds. Your proof should use the structure of the loop-invariant
proof presented in this chapter.

c. Using the termination condition of the loop invariant proved in part (b), state
a loop invariant for the for loop in lines 134 that allows you to prove inequal-
ity (2.5). Your proof should use the structure of the loop-invariant proof pre-
sented in this chapter.

d. What is the worst-case running time of BUBBLESORT? How does it compare
with the running time of I NSERTION-SORT?

2-3 Correctness of Horner’s rule
You are given the coefûcents a 0 ; a 1 ; a 2 ; : : : ; a n of a polynomial

P.x/ D
n X

kD0

a k x k

D a 0 C a 1 x C a 2 x 2 C C a n1 x n1 C a n x n ;

and you want to evaluate this polynomial for a given value of x . Horner’s rule
says to evaluate the polynomial according to this parenthesization:

Problems for Chapter 2 47

P.x/ D a 0 C x

a 1 C x

ã
a 2 C C x.a n1 C xa n /

ä Í
:

The procedure HORNER implements Horner’s rule to evaluate P.x/, given the
coefûcients a 0 ; a 1 ; a 2 ; : : : ; a n in an array AŒ0 W n� and the value of x .

HORNER.A; n; x/
1 p D 0
2 for i D n downto 0
3 p D AŒi� C x p
4 return p

a. In terms of ‚-notation, what is the running time of this procedure?

b. Write pseudocode to implement the naive polynomial-evaluation algorithm that
computes each term of the polynomial from scratch. What is the running time
of this algorithm? How does it compare with HORNER?

c. Consider the following loop invariant for the procedure HORNER:
At the start of each iteration of the for loop of lines 233,

p D
n.i C1/ X

kD0

AŒk C i C 1� x k :

Interpret a summation with no terms as equaling 0. Following the structure
of the loop-invariant proof presented in this chapter, use this loop invariant to
show that, at termination, p D

P n
kD0 AŒk� x k .

2-4 Inversions
Let AŒ1 W n� be an array of n distinct numbers. If i < j and AŒi� > AŒj �, then the
pair .i; j / is called an inversion of A.
a. List the ûve inversions of the array h2; 3; 8; 6; 1i.

b. What array with elements from the set f1; 2; : : : ; ng has the most inversions?
How many does it have?

c. What is the relationship between the running time of insertion sort and the
number of inversions in the input array? Justify your answer .

d. Give an algorithm that determines the number of inversions in any permutation
on n elements in ‚.n lg n/ worst-case time. (Hint: Modify merge sort.)

48 Chapter 2 Getting Started

Chapter notes

In 1968, Knuth published the ûrst of three volumes with the general title The Art of
Computer Programming [259, 260, 261]. The ûrst volume ushered in the modern
study of computer algorithms with a focus on the analysis of running time. The
full series remains an engaging and worthwhile reference for many of the topics
presented here. According to Knuth, the word <algorithm= is derived from the
name <al-Khowˆ arizmˆ ı,= a ninth-century Persian mathematician.
Aho, Hopcroft, and Ullman [5] advocated the asymptotic analysis of algorithms

4using notations that Chapter 3 introduces, including ‚-notation4as a means
of comparing relative performance. They also popularized the use of recurrence
relations to describe the running times of recursive algorithms.
Knuth [261] provides an encyclopedic treatment of many sorting algorithms. His

comparison of sorting algorithms (page 381) includes exact step-counting analyses,
like the one we performed here for insertion sort. Knuth’s discussion of insertion
sort encompasses several variations of the algorithm. The most important of these
is Shell’s sort, introduced by D. L. Shell, which uses insertion sort on periodic
subarrays of the input to produce a faster sorting algorithm.
Merge sort is also described by Knuth. He mentions that a mechanical colla-

tor capable of merging two decks of punched cards in a single pass was invented
in 1938. J. von Neumann, one of the pioneers of computer science, apparently
wrote a program for merge sort on the EDVAC computer in 1945.

The early history of proving programs correct is described by Gries [200], who
credits P. Naur with the ûrst article in this ûeld. Gries attributes loop invariants to
R. W. Floyd. The textbook by Mitchell [329] is a good reference on how to prove
programs correct.

3 Characterizing Running Times

The order of growth of the running time of an algorithm, deûned in Chapter 2,
gives a simple way to characterize the algorithm’s efûciency and also allows us
to compare it with alternative algorithms. Once the input size n becomes large
enough, merge sort, with its ‚.n lg n/ worst-case running time, beats insertion sort,
whose worst-case running time is ‚.n 2 /. Although we can sometimes determine
the exact running time of an algorithm, as we did for insertion sort in Chapter 2,
the extra precision is rarely worth the effort of computing it. For large enough
inputs, the multiplicative constants and lower-order terms of an exact running time
are dominated by the effects of the input size itself.

When we look at input sizes large enough to make relevant only the order of
growth of the running time, we are studying the asymptotic efûciency of algo-
rithms. That is, we are concerned with how the running time of an algorithm
increases with the size of the input in the limit, as the size of the input increases
without bound. Usually, an algorithm that is asymptotically more efûcient is the
best choice for all but very small inputs.

This chapter gives several standard methods for simplifying the asymptotic anal-
ysis of algorithms. The next section presents informally the three most commonly
used types of <asymptotic notation,= of which we have already seen an example
in ‚-notation. It also shows one way to use these asymptotic notations to reason
about the worst-case running time of insertion sort. Then we look at asymptotic
notations more formally and present several notational con ventions used through-
out this book. The last section reviews the behavior of functions that commonly
arise when analyzing algorithms.

50 Chapter 3 Characterizing Running Times

3.1 O-notation, -notation, and ‚-notation

When we analyzed the worst-case running time of insertion sort in Chapter 2, we
started with the complicated expression c 5

2
C
c 6

2
C
c 7

2

Í
n 2 C

c 1 C c 2 C c 4 C

c 5

2

c 6

2

c 7

2
C c 8

Í
n

 .c 2 C c 4 C c 5 C c 8 / :

We then discarded the lower-order terms .c 1 C c 2 C c 4 C c 5 =2 c 6 =2 c 7 =2 C c 8 /n
and c 2 C c 4 C c 5 C c 8 , and we also ignored the coefûcient c 5 =2 C c 6 =2 C c 7 =2
of n 2 . That left just the factor n 2 , which we put into ‚-notation as ‚.n 2 /. We
use this style to characterize running times of algorithms: discard the lower-order
terms and the coefûcient of the leading term, and use a notation that focuses on the
rate of growth of the running time.
‚-notation is not the only such <asymptotic notation.= In this section, we’ll

see other forms of asymptotic notation as well. We start with intuitive looks at
these notations, revisiting insertion sort to see how we can apply them. In the next
section, we’ll see the formal deûnitions of our asymptotic notations, along with
conventions for using them.
Before we get into speciûcs, bear in mind that the asymptotic notations we’ll see

are designed so that they characterize functions in general. It so happens that the
functions we are most interested in denote the running times of algorithms. But
asymptotic notation can apply to functions that characterize some other aspect of
algorithms (the amount of space they use, for example), or even to functions that
have nothing whatsoever to do with algorithms.

O-notation

O-notation characterizes an upper bound on the asymptotic behavior of a function.
In other words, it says that a function grows no faster than a certain rate, based on
the highest-order term. Consider, for example, the function 7n 3 C 100n 2 20n C 6.
Its highest-order term is 7n 3 , and so we say that this function’s rate of growth is n 3 .
Because this function grows no faster than n 3 , we can write that it is O.n 3 /. You
might be surprised that we can also write that the function 7n 3 C 100n 2 20n C 6
is O.n 4 /. Why? Because the function grows more slowly than n 4 , we are correct
in saying that it grows no faster. As you might have guessed, this function is also
O.n 5 /, O.n 6 /, and so on. More generally, it is O.n c / for any constant c 3.

3.1 O-notation, �-notation, and ‚-notation 51

-notation

�-notation characterizes a lower bound on the asymptotic behavior of a function.
In other words, it says that a function grows at least as fast as a certain rate, based
4as in O-notation4on the highest-order term. Because the highest-order term
in the function 7n 3 C 100n 2 20n C 6 grows at least as fast as n 3 , this function
is �.n 3 /. This function is also �.n 2 / and �.n/. More generally, it is �.n c / for
any constant c හ 3.

‚-notation

‚-notation characterizes a tight bound on the asymptotic behavior of a function. It
says that a function grows precisely at a certain rate, based4once again4on the
highest-order term. Put another way, ‚-notation characterizes the rate of growth of
the function to within a constant factor from above and to within a constant factor
from below. These two constant factors need not be equal.

If you can show that a function is both O.f .n// and �.f .n// for some func-
tion f .n/, then you have shown that the function is ‚.f .n//. (The next section
states this fact as a theorem.) For example, since the function 7n 3 C100n 2 20nC6
is both O.n 3 / and �.n 3 /, it is also ‚.n 3 /.

Example: Insertion sort
Let’s revisit insertion sort and see how to work with asymptotic notation to charac-
terize its ‚.n 2 / worst-case running time without evaluating summations as we did
in Chapter 2. Here is the I NSERTION-SORT procedure once again:

I NSERTION-SORT .A; n/
1 for i D 2 to n
2 key D AŒi�
3 // Insert AŒi� into the sorted subarray AŒ1 W i 1�.
4 j D i 1
5 while j > 0 and AŒj � > key
6 AŒj C 1� D AŒj �
7 j D j 1
8 AŒj C 1� D key

What can we observe about how the pseudocode operates? The procedure has
nested loops. The outer loop is a for loop that runs n 1 times, regardless of the
values being sorted. The inner loop is a while loop, but the number of iterations
it makes depends on the values being sorted. The loop variable j starts at i 1

52 Chapter 3 Characterizing Running Times

each of the
n/3 largest

values moves

through each
of these

n/3 positions

to somewhere
in these

n/3 positions

AŒ1 W n=3� AŒn=3 C 1 W 2n=3� AŒ2n=3 C 1 W n�

Figure 3.1 The �.n 2 / lower bound for insertion sort. If the ûrst n=3 positions contain the n=3
largest values, each of these values must move through each of the middle n=3 positions, one position
at a time, to end up somewhere in the last n=3 positions. Since each of n=3 values moves through at
least each of n=3 positions, the time taken in this case is at least proportional to .n=3/.n=3/ D n 2 =9,
or �.n 2 /.

and decreases by 1 in each iteration until either it reaches 0 or AŒj � හ key. For a
given value of i , the while loop might iterate 0 times, i 1 times, or anywhere in
between. The body of the while loop (lines 637) takes constant time per iteration
of the while loop.
These observations sufûce to deduce an O.n 2 / running time for any case of

I NSERTION-SORT, giving us a blanket statement that covers all inputs. The run-
ning time is dominated by the inner loop. Because each of the n 1 iterations of
the outer loop causes the inner loop to iterate at most i 1 times, and because i is
at most n, the total number of iterations of the inner loop is at most .n 1/.n 1/,
which is less than n 2 . Since each iteration of the inner loop takes constant time,
the total time spent in the inner loop is at most a constant times n 2 , or O.n 2 /.
With a little creativity, we can also see that the worst-case running time of

I NSERTION-SORT is �.n 2 /. By saying that the worst-case running time of an
algorithm is �.n 2 /, we mean that for every input size n above a certain threshold,
there is at least one input of size n for which the algorithm takes at least cn 2 time,
for some positive constant c . It does not necessarily mean that the algorithm takes
at least cn 2 time for all inputs.
Let’s now see why the worst-case running time of I NSERTION-SORT is �.n 2 /.

For a value to end up to the right of where it started, it must have been moved in
line 6. In fact, for a value to end up k positions to the right of where it started,
line 6 must have executed k times. As Figure 3.1 shows, let’s assume that n is
a multiple of 3 so that we can divide the array A into groups of n=3 positions.
Suppose that in the input to I NSERTION-SORT, the n=3 largest values occupy the
ûrst n=3 array positions AŒ1 W n=3�. (It does not matter what relative order they
have within the ûrst n=3 positions.) Once the array has been sorted, each of these
n=3 values ends up somewhere in the last n=3 positions AŒ2n=3 C 1 W n�. For that
to happen, each of these n=3 values must pass through each of the middle n=3
positions AŒn=3 C 1 W 2n=3�. Each of these n=3 values passes through these middle

3.2 Asymptotic notation: formal definitions 53

n=3 positions one position at a time, by at least n=3 executions of line 6. Because
at least n=3 values have to pass through at least n=3 positions, the time taken by
I NSERTION-SORT in the worst case is at least proportional to .n=3/.n=3/ D n 2 =9,
which is �.n 2 /.

Because we have shown that I NSERTION-SORT runs in O.n 2 / time in all cases
and that there is an input that makes it take �.n 2 / time, we can conclude that the
worst-case running time of I NSERTION-SORT is ‚.n 2 /. It does not matter that
the constant factors for upper and lower bounds might differ. What matters is
that we have characterized the worst-case running time to within constant factors
(discounting lower-order terms). This argument does not show that I NSERTION-
SORT runs in ‚.n 2 / time in all cases. Indeed, we saw in Chapter 2 that the best-
case running time is ‚.n/.

Exercises
3.1-1
Modify the lower-bound argument for insertion sort to handle input sizes that are
not necessarily a multiple of 3.
3.1-2
Using reasoning similar to what we used for insertion sort, analyze the running
time of the selection sort algorithm from Exercise 2.2-2.
3.1-3
Suppose that ˛ is a fraction in the range 0 < ˛ < 1. Show how to generalize
the lower-bound argument for insertion sort to consider an input in which the ˛n
largest values start in the ûrst ˛n positions. What additional restriction do you
need to put on ˛? What value of ˛ maximizes the number of times that the ˛n
largest values must pass through each of the middle .1 2˛/n array positions?

3.2 Asymptotic notation: formal deûnitions

Having seen asymptotic notation informally, let’s get more formal. The notations
we use to describe the asymptotic running time of an algorithm are deûned in
terms of functions whose domains are typically the set N of natural numbers or
the set R of real numbers. Such notations are convenient for describing a running-
time function T .n/. This section deûnes the basic asymptotic notations and also
introduces some common <proper= notational abuses.

54 Chapter 3 Characterizing Running Times

(a) (b) (c)

n n n
n 0 n 0 n 0

f .n/ D ‚.g.n// f .n/ D O.g.n// f .n/ D �.g.n//

f .n/

f .n/
f .n/

cg.n/

cg.n/

c 1 g.n/

c 2 g.n/

Figure 3.2 Graphic examples of the O , �, and ‚ notations. In each part, the value of n 0 shown
is the minimum possible value, but any greater value also works. (a) O-notation gives an upper
bound for a function to within a constant factor. We write f .n/ D O.g.n// if there are positive
constants n 0 and c such that at and to the right of n 0 , the value of f .n/ always lies on or be-
low cg.n/. (b) �-notation gives a lower bound for a function to within a constant factor. We write
f .n/ D �.g.n// if there are positive constants n 0 and c such that at and to the right of n 0 , the value
of f .n/ always lies on or above cg.n/. (c) ‚-notation bounds a function to within constant factors.
We write f .n/ D ‚.g.n// if there exist positive constants n 0 , c 1 , and c 2 such that at and to the right
of n 0 , the value of f .n/ always lies between c 1 g.n/ and c 2 g.n/ inclusive.

O-notation

As we saw in Section 3.1, O-notation describes an asymptotic upper bound. We
use O-notation to give an upper bound on a function, to within a constant factor.
Here is the formal deûnition of O-notation. For a given function g.n/, we denote

by O.g.n// (pronounced <big-oh of g of n= or sometimes just <oh of g of n=) the
set of functions
O.g.n// D ff .n/ W there exist positive constants c and n 0 such that

0 හ f .n/ හ cg.n/ for all n n 0 g : 1

A function f .n/ belongs to the set O.g.n// if there exists a positive constant c such
that f .n/ හ cg.n/ for sufûciently large n. Figure 3.2(a) shows the intuition behind
O-notation. For all values n at and to the right of n 0 , the value of the function f .n/
is on or below cg.n/.
The deûnition of O.g.n// requires that every function f .n/ in the set O.g.n//

be asymptotically nonnegative: f .n/ must be nonnegative whenever n is sufû-
ciently large. (An asymptotically positive function is one that is positive for all

1 Within set notation, a colon means <such that.=

3.2 Asymptotic notation: formal definitions 55

sufûciently large n.) Consequently, the function g.n/ itself must be asymptotically
nonnegative, or else the set O.g.n// is empty. We therefore assume that every
function used within O-notation is asymptotically nonnegative. This assumption
holds for the other asymptotic notations deûned in this chapter as well.
You might be surprised that we deûne O-notation in terms of sets. Indeed, you

might expect that we would write <f .n/ 2 O.g.n//= to indicate that f .n/ be-
longs to the set O.g.n//. Instead, we usually write <f .n/ D O.g.n//= and say
<f .n/ is big-oh of g.n/= to express the same notion. Although it may seem con-
fusing at ûrst to abuse equality in this way, we’ll see later in this section that doing
so has its advantages.
Let’s explore an example of how to use the formal deûnition of O-notation to

justify our practice of discarding lower-order terms and ignoring the constant coef-
ûcient of the highest-order term. We’ll show that 4n 2 C100n C500 D O.n 2 /, even
though the lower-order terms have much larger coefûcients than the leading term.
We need to ûnd positive constants c and n 0 such that 4n 2 C 100n C 500 හ cn 2

for all n n 0 . Dividing both sides by n 2 gives 4 C 100=n C 500=n 2 හ c . This
inequality is satisûed for many choices of c and n 0 . For example, if we choose
n 0 D 1, then this inequality holds for c D 604. If we choose n 0 D 10, then c D 19
works, and choosing n 0 D 100 allows us to use c D 5:05.
We can also use the formal deûnition of O-notation to show that the function

n 3 100n 2 does not belong to the set O.n 2 /, even though the coefûcient of n 2

is a large negative number. If we had n 3 100n 2 D O.n 2 /, then there would be
positive constants c and n 0 such that n 3 100n 2 හ cn 2 for all n n 0 . Again, we
divide both sides by n 2 , giving n 100 හ c . Regardless of what value we choose
for the constant c , this inequality does not hold for any value of n > c C 100.

-notation

Just as O-notation provides an asymptotic upper bound on a function, �-notation
provides an asymptotic lower bound. For a given function g.n/, we denote
by �.g.n// (pronounced <big-omega of g of n= or sometimes just <omega of g
of n=) the set of functions
�.g.n// D ff .n/ W there exist positive constants c and n 0 such that

0 හ cg.n/ හ f .n/ for all n n 0 g :

Figure 3.2(b) shows the intuition behind �-notation. For all values n at or to the
right of n 0 , the value of f .n/ is on or above cg.n/.
We’ve already shown that 4n 2 C 100n C 500 D O.n 2 /. Now let’s show that

4n 2 C 100n C 500 D �.n 2 /. We need to ûnd positive constants c and n 0 such that
4n 2 C 100n C 500 cn 2 for all n n 0 . As before, we divide both sides by n 2 ,

56 Chapter 3 Characterizing Running Times

giving 4 C 100=n C 500=n 2 c . This inequality holds when n 0 is any positive
integer and c D 4.
What if we had subtracted the lower-order terms from the 4n 2 term instead of

adding them? What if we had a small coefûcient for the n 2 term? The function
would still be �.n 2 /. For example, let’s show that n 2 =100 100n 500 D �.n 2 /.
Dividing by n 2 gives 1=100 100=n 500=n 2 c . We can choose any value
for n 0 that is at least 10,005 and ûnd a positive value for c . For example, when
n 0 D 10,005, we can choose c D 2:49 10 9 . Yes, that’s a tiny value for c , but it
is positive. If we select a larger value for n 0 , we can also increase c . For example,
if n 0 D 100,000, then we can choose c D 0:0089. The higher the value of n 0 , the
closer to the coefûcient 1=100 we can choose c .

‚-notation

We use ‚-notation for asymptotically tight bounds. For a given function g.n/, we
denote by ‚.g.n// (<theta of g of n=) the set of functions
‚.g.n// D ff .n/ W there exist positive constants c 1 , c 2 , and n 0 such that

0 හ c 1 g.n/ හ f .n/ හ c 2 g.n/ for all n n 0 g :

Figure 3.2(c) shows the intuition behind ‚-notation. For all values of n at and to
the right of n 0 , the value of f .n/ lies at or above c 1 g.n/ and at or below c 2 g.n/. In
other words, for all n n 0 , the function f .n/ is equal to g.n/ to within constant
factors.
The deûnitions of O-, �-, and ‚-notations lead to the following theorem, whose

proof we leave as Exercise 3.2-4.

Theorem 3.1
For any two functions f .n/ and g.n/, we have f .n/ D ‚.g.n// if and only if
f .n/ D O.g.n// and f .n/ D �.g.n//.
We typically apply Theorem 3.1 to prove asymptotically tight bounds from asymp-
totic upper and lower bounds.

Asymptotic notation and running times
When you use asymptotic notation to characterize an algorithm’s running time,
make sure that the asymptotic notation you use is as precise as possible without
overstating which running time it applies to. Here are some examples of using
asymptotic notation properly and improperly to characterize running times.
Let’s start with insertion sort. We can correctly say that insertion sort’s worst-

case running time is O.n 2 /, �.n 2 /, and4due to Theorem 3.14‚.n 2 /. Although

3.2 Asymptotic notation: formal definitions 57

all three ways to characterize the worst-case running times are correct, the ‚.n 2 /
bound is the most precise and hence the most preferred. We can also correctly say
that insertion sort’s best-case running time is O.n/, �.n/, and ‚.n/, again with
‚.n/ the most precise and therefore the most preferred.

Here is what we cannot correctly say: insertion sort’s running time is ‚.n 2 /.
That is an overstatement because by omitting <worst-case= from the statement,
we’re left with a blanket statement covering all cases. The error here is that inser-
tion sort does not run in ‚.n 2 / time in all cases since, as we’ve seen, it runs in
‚.n/ time in the best case. We can correctly say that insertion sort’s running time
is O.n 2 /, however, because in all cases, its running time grows no faster than n 2 .
When we say O.n 2 / instead of ‚.n 2 /, there is no problem in having cases whose
running time grows more slowly than n 2 . Likewise, we cannot correctly say that
insertion sort’s running time is ‚.n/, but we can say that its running time is �.n/.
How about merge sort? Since merge sort runs in ‚.n lg n/ time in all cases,

we can just say that its running time is ‚.n lg n/ without specifying worst-case,
best-case, or any other case.
People occasionally conüate O-notation with ‚-notation by mistakenly using

O-notation to indicate an asymptotically tight bound. They say things like <an
O.n lg n/-time algorithm runs faster than an O.n 2 /-time algorithm.= Maybe it
does, maybe it doesn’t. Since O-notation denotes only an asymptotic upper bound,
that so-called O.n 2 /-time algorithm might actually run in ‚.n/ time. You should
be careful to choose the appropriate asymptotic notation. If you want to indicate
an asymptotically tight bound, use ‚-notation.

We typically use asymptotic notation to provide the simplest and most precise
bounds possible. For example, if an algorithm has a running time of 3n 2 C 20n
in all cases, we use asymptotic notation to write that its running time is ‚.n 2 /.
Strictly speaking, we are also correct in writing that the running time is O.n 3 / or
‚.3n 2 C 20n/. Neither of these expressions is as useful as writing ‚.n 2 / in this
case, however: O.n 3 / is less precise than ‚.n 2 / if the running time is 3n 2 C 20n,
and ‚.3n 2 C 20n/ introduces complexity that obscures the order of growth. By
writing the simplest and most precise bound, such as ‚.n 2 /, we can categorize
and compare different algorithms. Throughout the book, you will see asymptotic
running times that are almost always based on polynomials and logarithms: func-
tions such as n, n lg 2 n, n 2 lg n, or n 1=2 . You will also see some other functions,
such as exponentials, lg lg n, and lg n (see Section 3.3). It is usually fairly easy
to compare the rates of growth of these functions. Problem 3-3 gives you good
practice.

58 Chapter 3 Characterizing Running Times

Asymptotic notation in equations and inequalities
Although we formally deûne asymptotic notation in terms of sets, we use the equal
sign (D) instead of the set membership sign (2) within formulas. For example, we
wrote that 4n 2 C 100n C 500 D O.n 2 /. We might also write 2n 2 C 3n C 1 D
2n 2 C ‚.n/. How do we interpret such formulas?

When the asymptotic notation stands alone (that is, not within a larger formula)
on the right-hand side of an equation (or inequality), as in 4n 2 C 100n C 500 D
O.n 2 /, the equal sign means set membership: 4n 2 C 100n C 500 2 O.n 2 /. In
general, however, when asymptotic notation appears in a formula, we interpret it as
standing for some anonymous function that we do not care to name. For example,
the formula 2n 2 C 3n C 1 D 2n 2 C ‚.n/ means that 2n 2 C 3n C 1 D 2n 2 C f .n/,
where f .n/ 2 ‚.n/. In this case, we let f .n/ D 3n C 1, which indeed belongs
to ‚.n/.

Using asymptotic notation in this manner can help eliminate inessential detail
and clutter in an equation. For example, in Chapter 2 we expressed the worst-case
running time of merge sort as the recurrence
T .n/ D 2T .n=2/ C ‚.n/ :

If we are interested only in the asymptotic behavior of T .n/, there is no point in
specifying all the lower-order terms exactly, because they are all understood to be
included in the anonymous function denoted by the term ‚.n/.

The number of anonymous functions in an expression is understood to be equal
to the number of times the asymptotic notation appears. For example, in the ex-
pression
n X

i D1

O.i/ ;

there is only a single anonymous function (a function of i). This expression is thus
not the same as O.1/ C O.2/ C C O.n/, which doesn’t really have a clean
interpretation.
In some cases, asymptotic notation appears on the left-hand side of an equation,

as in
2n 2 C ‚.n/ D ‚.n 2 / :

Interpret such equations using the following rule: No matter how the anonymous
functions are chosen on the left of the equal sign, there is a way to choose the
anonymous functions on the right of the equal sign to make the equation valid.
Thus, our example means that for any function f .n/ 2 ‚.n/, there is some function
g.n/ 2 ‚.n 2 / such that 2n 2 Cf .n/ D g.n/ for all n. In other words, the right-hand
side of an equation provides a coarser level of detail than the left-hand side.

3.2 Asymptotic notation: formal definitions 59

We can chain together a number of such relationships, as in
2n 2 C 3n C 1 D 2n 2 C ‚.n/

D ‚.n 2 / :

By the rules above, interpret each equation separately. The ûrst equation says that
there is some function f .n/ 2 ‚.n/ such that 2n 2 C3n C1 D 2n 2 C f .n/ for all n.
The second equation says that for any function g.n/ 2 ‚.n/ (such as the f .n/ just
mentioned), there is some function h.n/ 2 ‚.n 2 / such that 2n 2 C g.n/ D h.n/ for
all n. This interpretation implies that 2n 2 C 3n C 1 D ‚.n 2 /, which is what the
chaining of equations intuitively says.

Proper abuses of asymptotic notation

Besides the abuse of equality to mean set membership, which we now see has a
precise mathematical interpretation, another abuse of asymptotic notation occurs
when the variable tending toward 1 must be inferred from context. For example,
when we say O.g.n//, we can assume that we’re interested in the growth of g.n/
as n grows, and if we say O.g.m// we’re talking about the growth of g.m/ as m
grows. The free variable in the expression indicates what variable is going to 1.

The most common situation requiring contextual knowledge of which variable
tends to 1 occurs when the function inside the asymptotic notation is a constant,
as in the expression O.1/. We cannot infer from the expression which variable is
going to 1, because no variable appears there. The context must disambiguate. For
example, if the equation using asymptotic notation is f .n/ D O.1/, it’s apparent
that the variable we’re interested in is n. Knowing from context that the variable of
interest is n, however, allows us to make perfect sense of the expression by using
the formal deûnition of O-notation: the expression f .n/ D O.1/ means that the
function f .n/ is bounded from above by a constant as n goes to 1. Technically, it
might be less ambiguous if we explicitly indicated the variable tending to 1 in the
asymptotic notation itself, but that would clutter the notation. Instead, we simply
ensure that the context makes it clear which variable (or variables) tend to 1.

When the function inside the asymptotic notation is bounded by a positive con-
stant, as in T .n/ D O.1/, we often abuse asymptotic notation in yet another way,
especially when stating recurrences. We may write something like T .n/ D O.1/
for n < 3. According to the formal deûnition of O-notation, this statement is
meaningless, because the deûnition only says that T .n/ is bounded above by a
positive constant c for n n 0 for some n 0 > 0. The value of T .n/ for n < n 0
need not be so bounded. Thus, in the example T .n/ D O.1/ for n < 3, we cannot
infer any constraint on T .n/ when n < 3, because it might be that n 0 > 3.

What is conventionally meant when we say T .n/ D O.1/ for n < 3 is that there
exists a positive constant c such that T .n/ හ c for n < 3. This convention saves

60 Chapter 3 Characterizing Running Times

us the trouble of naming the bounding constant, allowing it to remain anonymous
while we focus on more important variables in an analysis. Similar abuses occur
with the other asymptotic notations. For example, T .n/ D ‚.1/ for n < 3 means
that T .n/ is bounded above and below by positive constants when n < 3.
Occasionally, the function describing an algorithm’s running time may not be

deûned for certain input sizes, for example, when an algorithm assumes that the
input size is an exact power of 2. We still use asymptotic notation to describe the
growth of the running time, understanding that any constraints apply only when
the function is deûned. For example, suppose that f .n/ is deûned only on a subset
of the natural or nonnegative real numbers. Then f .n/ D O.g.n// means that the
bound 0 හ T .n/ හ cg.n/ in the deûnition of O-notation holds for all n n 0 over
the domain of f .n/, that is, where f .n/ is deûned. This abuse is rarely pointed
out, since what is meant is generally clear from context.
In mathematics, it’s okay4and often desirable4to abuse a notation, as long as

we don’t misuse it. If we understand precisely what is meant by the abuse and don’t
draw incorrect conclusions, it can simplify our mathematical language, contribute
to our higher-level understanding, and help us focus on what really matters.

o-notation

The asymptotic upper bound provided by O-notation may or may not be asymp-
totically tight. The bound 2n 2 D O.n 2 / is asymptotically tight, but the bound
2n D O.n 2 / is not. We use o-notation to denote an upper bound that is not asymp-
totically tight. We formally deûne o.g.n// (<little-oh of g of n=) as the set
o.g.n// D ff .n/ W for any positive constant c > 0, there exists a constant

n 0 > 0 such that 0 හ f .n/ < cg.n/ for all n n 0 g :

For example, 2n D o.n 2 /, but 2n 2 ¤ o.n 2 /.
The deûnitions of O-notation and o-notation are similar. The main difference

is that in f .n/ D O.g.n//, the bound 0 හ f .n/ හ cg.n/ holds for some con-
stant c > 0, but in f .n/ D o.g.n//, the bound 0 හ f .n/ < cg.n/ holds for all
constants c > 0. Intuitively, in o-notation, the function f .n/ becomes insigniûcant
relative to g.n/ as n gets large:

lim
n!1

f .n/
g.n/

D 0 :

Some authors use this limit as a deûnition of the o-notation, but the deûnition in
this book also restricts the anonymous functions to be asymptotically nonnegative.

3.2 Asymptotic notation: formal definitions 61

!-notation

By analogy, !-notation is to �-notation as o-notation is to O-notation. We use
!-notation to denote a lower bound that is not asymptotically tight. One way to
deûne it is by

f .n/ 2 !.g.n// if and only if g.n/ 2 o.f .n// :

Formally, however, we deûne !.g.n// (<little-omega of g of n=) as the set
!.g.n// D ff .n/ W for any positive constant c > 0, there exists a constant

n 0 > 0 such that 0 හ cg.n/ < f .n/ for all n n 0 g :

Where the deûnition of o-notation says that f .n/ < cg.n/ , the deûnition of
!-notation says the opposite: that cg.n/ < f .n/ . For examples of !-notation,
we have n 2 =2 D !.n/, but n 2 =2 ¤ !.n 2 /. The relation f .n/ D !.g.n// implies
that
lim
n!1

f .n/
g.n/

D 1 ;

if the limit exists. That is, f .n/ becomes arbitrarily large relative to g.n/ as n gets
large.

Comparing functions
Many of the relational properties of real numbers apply to asymptotic comparisons
as well. For the following, assume that f .n/ and g.n/ are asymptotically positive.
Transitivity:
f .n/ D ‚.g.n// and g.n/ D ‚.h.n// imply f .n/ D ‚.h.n// ;
f .n/ D O.g.n// and g.n/ D O.h.n// imply f .n/ D O.h.n// ;
f .n/ D �.g.n// and g.n/ D �.h.n// imply f .n/ D �.h.n// ;
f .n/ D o.g.n// and g.n/ D o.h.n// imply f .n/ D o.h.n// ;
f .n/ D !.g.n// and g.n/ D !.h.n// imply f .n/ D !.h.n// :

Reüexivity:
f .n/ D ‚.f .n// ;
f .n/ D O.f .n// ;
f .n/ D �.f .n// :

Symmetry:
f .n/ D ‚.g.n// if and only if g.n/ D ‚.f .n// :

62 Chapter 3 Characterizing Running Times

Transpose symmetry:
f .n/ D O.g.n// if and only if g.n/ D �.f .n// ;
f .n/ D o.g.n// if and only if g.n/ D !.f .n// :

Because these properties hold for asymptotic notations, we can draw an analogy
between the asymptotic comparison of two functions f and g and the comparison
of two real numbers a and b:
f .n/ D O.g.n// is like a හ b ;
f .n/ D �.g.n// is like a b ;
f .n/ D ‚.g.n// is like a D b ;
f .n/ D o.g.n// is like a < b ;
f .n/ D !.g.n// is like a > b :
We say that f .n/ is asymptotically smaller than g.n/ if f .n/ D o.g.n//, and f .n/
is asymptotically larger than g.n/ if f .n/ D !.g.n//.
One property of real numbers, however, does not carry over to asymptotic nota-

tion:
Trichotomy: For any two real numbers a and b, exactly one of the following

must hold: a < b, a D b, or a > b.
Although any two real numbers can be compared, not all functions are asymptot-
ically comparable. That is, for two functions f .n/ and g.n/, it may be the case
that neither f .n/ D O.g.n// nor f .n/ D �.g.n// holds. For example, we cannot
compare the functions n and n 1Csin n using asymptotic notation, since the value of
the exponent in n 1Csin n oscillates between 0 and 2, taking on all values in between.

Exercises
3.2-1
Let f .n/ and g.n/ be asymptotically nonnegative functions. Using the basic deû-
nition of ‚-notation, prove that max ff .n/; g.n/g D ‚.f .n/ C g.n//.
3.2-2
Explain why the statement, <The running time of algorithm A is at least O.n 2 /,= is
meaningless.
3.2-3
Is 2 nC1 D O.2 n /? Is 2 2n D O.2 n /?
3.2-4
Prove Theorem 3.1.

3.3 Standard notations and common functions 63

3.2-5
Prove that the running time of an algorithm is ‚.g.n// if and only if its worst-case
running time is O.g.n// and its best-case running time is �.g.n//.
3.2-6
Prove that o.g.n// \ !.g.n// is the empty set.
3.2-7
We can extend our notation to the case of two parameters n and m that can go to
1 independently at different rates. For a given function g.n;m/, we denote by
O.g.n;m// the set of functions
O.g.n;m// D ff .n;m/ W there exist positive constants c , n 0 , and m 0

such that 0 හ f .n;m/ හ cg.n;m/
for all n n 0 or m m 0 g :

Give corresponding deûnitions for �.g.n; m// and ‚.g.n;m//.

3.3 Standard notations and common functions

This section reviews some standard mathematical functions and notations and ex-
plores the relationships among them. It also illustrates the use of the asymptotic
notations.

Monotonicity

A function f .n/ is monotonically increasing if m හ n implies f .m/ හ f .n/.
Similarly, it is monotonically decreasing if m හ n implies f .m/ f .n/. A func-
tion f .n/ is strictly increasing if m < n implies f .m/ < f .n/ and strictly de-
creasing if m < n implies f .m/ > f .n/.

Floors and ceilings
For any real number x , we denote the greatest integer less than or equal to x by bx c
(read <the üoor of x =) and the least integer greater than or equal to x by dx e (read
<the ceiling of x =). The üoor function is monotonically increasing, as is the ceiling
function.

Floors and ceilings obey the following properties. For any integer n, we have
bnc D n D dne : (3.1)
For all real x , we have

64 Chapter 3 Characterizing Running Times

x 1 < bx c හ x හ dx e < x C 1 : (3.2)
We also have
 bx c D dx e ; (3.3)
or equivalently,
 dx e D bx c : (3.4)
For any real number x 0 and integers a; b > 0, we have å dx=ae

b

æ
D
å
x
ab

æ
; (3.5) ç bx=ac

b

è
D
ç
x
ab

è
; (3.6) å

a
b

æ
හ
a C .b 1/

b
; (3.7) ç

a
b

è

a .b 1/

b
: (3.8)

For any integer n and real number x , we have
bn C x c D n C bx c ; (3.9)
dn C x e D n C dx e : (3.10)

Modular arithmetic
For any integer a and any positive integer n, the value a mod n is the remainder
(or residue) of the quotient a=n:
a mod n D a n ba=nc : (3.11)
It follows that
0 හ a mod n < n ; (3.12)
even when a is negative.
Given a well-deûned notion of the remainder of one integer when divided by an-

other, it is convenient to provide special notation to indicate equality of remainders.
If .a mod n/ D .b mod n/, we write a D b .mod n/ and say that a is equivalent
to b, modulo n. In other words, a D b .mod n/ if a and b have the same remain-
der when divided by n. Equivalently, a D b .mod n/ if and only if n is a divisor
of b a. We write a ¤ b .mod n/ if a is not equivalent to b, modulo n.

3.3 Standard notations and common functions 65

Polynomials
Given a nonnegative integer d , a polynomial in n of degree d is a function p.n/
of the form

p.n/ D
d X

i D0

a i n i ;

where the constants a 0 ; a 1 ; : : : ; a d are the coefficients of the polynomial and
a d ¤ 0. A polynomial is asymptotically positive if and only if a d > 0. For an
asymptotically positive polynomial p.n/ of degree d , we have p.n/ D ‚.n d /. For
any real constant a 0, the function n a is monotonically increasing, and for any
real constant a හ 0, the function n a is monotonically decreasing. We say that a
function f .n/ is polynomially bounded if f .n/ D O.n k / for some constant k.

Exponentials
For all real a > 0, m, and n, we have the following identities:
a 0 D 1 ;
a 1 D a ;
a 1 D 1=a ;

.a m / n D a mn ;

.a m / n D .a n / m ;
a m a n D a mCn :

For all n and a 1, the function a n is monotonically increasing in n. When
convenient, we assume that 0 0 D 1.

We can relate the rates of growth of polynomials and exponentials by the fol-
lowing fact. For all real constants a > 1 and b, we have

lim
n!1

n b

a n D 0 ;

from which we can conclude that
n b D o.a n / : (3.13)
Thus, any exponential function with a base strictly greater than 1 grows faster than
any polynomial function.

Using e to denote 2:71828 : : :, the base of the natural-logarithm function, we
have for all real x ,

e x D 1 C x C
x 2

2Š
C
x 3

3Š
C D

1 X

i D0

x i

i Š
;

66 Chapter 3 Characterizing Running Times

where <Š= denotes the factorial function deûned later in this section. For all real x ,
we have the inequality
1 C x හ e x ; (3.14)
where equality holds only when x D 0. When jx j හ 1, we have the approximation
1 C x හ e x හ 1 C x C x 2 : (3.15)
When x ! 0, the approximation of e x by 1 C x is quite good:
e x D 1 C x C ‚.x 2 / :

(In this equation, the asymptotic notation is used to describe the limiting behavior
as x ! 0 rather than as x ! 1.) We have for all x ,
lim
n!1

1 C

x
n

Í n
D e x : (3.16)

Logarithms
We use the following notations:

lg n D log 2 n (binary logarithm) ,
ln n D log e n (natural logarithm) ,

lg k n D .lg n/ k (exponentiation) ,
lg lg n D lg.lg n/ (composition) .
We adopt the following notational convention: in the absence of parentheses, a
logarithm function applies only to the next term in the formula, so that lg n C 1
means .lg n/ C 1 and not lg.n C 1/.

For any constant b > 1, the function log b n is undeûned if n හ 0, strictly
increasing if n > 0, negative if 0 < n < 1, positive if n > 1, and 0 if n D 1. For
all real a > 0, b > 0, c > 0, and n, we have

a D b log b a ; (3.17)
log c .ab/ D log c a C log c b ; (3.18)

log b a n D n log b a ;

log b a D
log c a
log c b

; (3.19)
log b .1=a/ D log b a ; (3.20)

log b a D
1

log a b
;

a log b c D c log b a ; (3.21)
where, in each equation above, logarithm bases are not 1.

3.3 Standard notations and common functions 67

By equation (3.19), changing the base of a logarithm from one constant to an-
other changes the value of the logarithm by only a constant factor. Consequently,
we often use the notation <lg n= when we don’t care about constant factors, such
as in O-notation. Computer scientists ûnd 2 to be the most natural base for loga-
rithms because so many algorithms and data structures involve splitting a problem
into two parts.

There is a simple series expansion for ln.1 C x/ when jx j < 1:

ln.1 C x/ D x
x 2

2
C
x 3

3

x 4

4
C
x 5

5
 : (3.22)

We also have the following inequalities for x > 1:
x

1 C x
හ ln.1 C x/ හ x ; (3.23)

where equality holds only for x D 0.
We say that a function f .n/ is polylogarithmically bounded if f .n/ D O.lg k n/

for some constant k. We can relate the growth of polynomials and polylogarithms
by substituting lg n for n and 2 a for a in equation (3.13). For all real constants
a > 0 and b, we have
lg b n D o.n a / : (3.24)
Thus, any positive polynomial function grows faster than any polylogarithmic func-
tion.

Factorials
The notation nŠ (read <n factorial=) is deûned for integers n 0 as

nŠ D

(
1 if n D 0 ;
n .n 1/Š if n > 0 :

Thus, nŠ D 1 2 3 n.
A weak upper bound on the factorial function is nŠ හ n n , since each of the n

terms in the factorial product is at most n. Stirling’s approximation,

nŠ D
p
2�n

 n
e

Í n
Î
1 C ‚

Î
1
n

ÏÏ
; (3.25)

where e is the base of the natural logarithm, gives us a tighter upper bound, and a
lower bound as well. Exercise 3.3-4 asks you to prove the three facts

nŠ D o.n n / ; (3.26)
nŠ D !.2 n / ; (3.27)

lg.nŠ/ D ‚.n lg n/ ; (3.28)

68 Chapter 3 Characterizing Running Times

where Stirling’s approximation is helpful in proving equation (3.28). The following
equation also holds for all n 1:

nŠ D
p
2�n

 n
e

Í n
e ˛ n (3.29)

where
1

12n C 1
< ˛ n <

1
12n

:

Functional iteration

We use the notation f .i/ .n/ to denote the function f .n/ iteratively applied i times
to an initial value of n. Formally, let f .n/ be a function over the reals. For non-
negative integers i , we recursively deûne

f .i/ .n/ D

(
n if i D 0 ;
f .f .i 1/ .n// if i > 0 : (3.30)

For example, if f .n/ D 2n, then f .i/ .n/ D 2 i n.

The iterated logarithm function

We use the notation lg n (read <log star of n=) to denote the iterated logarithm, de-
ûned as follows. Let lg .i/ n be as deûned above, with f .n/ D lg n. Because the log-
arithm of a nonpositive number is undeûned, lg .i/ n is deûned only if lg .i 1/ n > 0.
Be sure to distinguish lg .i/ n (the logarithm function applied i times in succession,
starting with argument n) from lg i n (the logarithm of n raised to the i th power).
Then we deûne the iterated logarithm function as
lg n D min ̊

i 0 W lg .i/ n හ 1

:

The iterated logarithm is a very slowly growing function:
lg 2 D 1 ;
lg 4 D 2 ;

lg 16 D 3 ;
lg 65536 D 4 ;

lg .2 65536 / D 5 :

Since the number of atoms in the observable universe is estimated to be about 10 80 ,
which is much less than 2 65536 D 10 65536= lg 10 10 19;728 , we rarely encounter an
input size n for which lg n > 5.

3.3 Standard notations and common functions 69

Fibonacci numbers
We deûne the Fibonacci numbers F i , for i 0, as follows:

F i D

Ĩ
0 if i D 0 ;
1 if i D 1 ;
F i 1 C F i 2 if i 2 :

(3.31)

Thus, after the ûrst two, each Fibonacci number is the sum of the two previous
ones, yielding the sequence
0; 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; : : : :

Fibonacci numbers are related to the golden ratio � and its conjugate y � , which are
the two roots of the equation
x 2 D x C 1 :

As Exercise 3.3-7 asks you to prove, the golden ratio is given by

� D
1 C

p
5

2
(3.32)

D 1:61803 : : : ;

and its conjugate, by

y � D
1

p
5

2
(3.33)

D :61803 : : : :
Speciûcally, we have

F i D
� i y � i p

5
;

which can be proved by induction (Exercise 3.3-8). Since
ˇ ˇ y � ̌

 ˇ < 1, we have ˇ ˇ y � i ̌
 ˇ

p
5
<

1 p
5

<
1
2
;

which implies that

F i D
ç
� i p
5

C
1
2

è
; (3.34)

which is to say that the i th Fibonacci number F i is equal to � i =
p
5 rounded to the

nearest integer. Thus, Fibonacci numbers grow exponentially.

70 Chapter 3 Characterizing Running Times

Exercises
3.3-1
Show that if f .n/ and g.n/ are monotonically increasing functions, then so are
the functions f .n/ C g.n/ and f .g.n//, and if f .n/ and g.n/ are in addition
nonnegative, then f .n/ g.n/ is monotonically increasing.
3.3-2
Prove that b˛ncCd.1 ˛/ne D n for any integer n and real number ˛ in the range
0 හ ˛ හ 1.
3.3-3
Use equation (3.14) or other means to show that .n C o.n// k D ‚.n k / for any real
constant k. Conclude that dne k D ‚.n k / and bnc k D ‚.n k /.
3.3-4
Prove the following:
a. Equation (3.21).
b. Equations (3.26)3(3.28).
c. lg.‚.n// D ‚.lg n/.

? 3.3-5
Is the function dlg neŠ polynomially bounded? Is the function dlg lg neŠ polynomi-
ally bounded?

? 3.3-6
Which is asymptotically larger: lg.lg n/ or lg .lg n/?
3.3-7
Show that the golden ratio � and its conjugate y � both satisfy the equation
x 2 D x C 1.
3.3-8
Prove by induction that the i th Fibonacci number satisûes the equation

F i D .� i y � i /=
p
5 ;

where � is the golden ratio and y � is its conjugate.
3.3-9
Show that k lg k D ‚.n/ implies k D ‚.n= lg n/.

Problems for Chapter 3 71

Problems

3-1 Asymptotic behavior of polynomials
Let

p.n/ D
d X

i D0

a i n i ;

where a d > 0, be a degree-d polynomial in n, and let k be a constant. Use the
deûnitions of the asymptotic notations to prove the following properties.
a. If k d , then p.n/ D O.n k /.
b. If k හ d , then p.n/ D �.n k /.

c. If k D d , then p.n/ D ‚.n k /.
d. If k > d , then p.n/ D o.n k /.

e. If k < d , then p.n/ D !.n k /.

3-2 Relative asymptotic growths
Indicate, for each pair of expressions .A;B/ in the table below whether A is O , o,
�, !, or ‚ of B . Assume that k 1, � > 0, and c > 1 are constants. Write your
answer in the form of the table with <yes= or <no= written in each box.

A B O o � ! ‚
a. lg k n n

b. n k c n

c. p
n n sin n

d. 2 n 2 n=2

e. n lg c c lg n

f. lg.nŠ/ lg.n n /

3-3 Ordering by asymptotic growth rates
a. Rank the following functions by order of growth. That is, ûnd an arrange-

ment g 1 ; g 2 ; : : : ; g 30 of the functions satisfying g 1 D �.g 2 /, g 2 D �.g 3 /, . . . ,
g 29 D �.g 30 /. Partition your list into equivalence classes such that functions
f .n/ and g.n/ belong to the same class if and only if f .n/ D ‚.g.n//.

72 Chapter 3 Characterizing Running Times

lg.lg n/ 2 lg n .
p
2/ lg n n 2 nŠ .lg n/Š

.3=2/ n n 3 lg 2 n lg.nŠ/ 2 2 n
n 1= lg n

ln ln n lg n n 2 n n lg lg n ln n 1

2 lg n .lg n/ lg n e n 4 lg n .n C 1/Š
p lg n

lg .lg n/ 2
p
2 lg n n 2 n n lg n 2 2 nC1

b. Give an example of a single nonnegative function f .n/ such that for all func-
tions g i .n/ in part (a), f .n/ is neither O.g i .n// nor �.g i .n//.

3-4 Asymptotic notation properties
Let f .n/ and g.n/ be asymptotically positive functions. Prove or disprove each of
the following conjectures.
a. f .n/ D O.g.n// implies g.n/ D O.f .n//.

b. f .n/ C g.n/ D ‚.min ff .n/; g.n/g/.

c. f .n/ D O.g.n// implies lg f .n/ D O.lg g.n//, where lg g.n/ 1 and
f .n/ 1 for all sufûciently large n.

d. f .n/ D O.g.n// implies 2 f .n/ D O
ã
2 g.n/

ä .
e. f .n/ D O ..f .n// 2 /.

f. f .n/ D O.g.n// implies g.n/ D �.f .n// .

g. f .n/ D ‚.f .n=2//.

h. f .n/ C o.f .n// D ‚.f .n//.

3-5 Manipulating asymptotic notation
Let f .n/ and g.n/ be asymptotically positive functions. Prove the following iden-
tities:
a. ‚.‚.f .n/// D ‚.f .n//.

b. ‚.f .n// C O.f .n// D ‚.f .n//.

c. ‚.f .n// C ‚.g.n// D ‚.f .n/ C g.n//.

d. ‚.f .n// ‚.g.n// D ‚.f .n/ g.n//.

Problems for Chapter 3 73

e. Argue that for any real constants a 1 ; b 1 > 0 and integer constants k 1 ; k 2 , the
following asymptotic bound holds:

.a 1 n/ k 1 lg k 2 .a 2 n/ D ‚.n k 1 lg k 2 n/ :

? f. Prove that for S ෂ Z, we have
X

k2S

‚.f .k// D ‚

 X

k2S

f .k/

!

;

assuming that both sums converge.

? g. Show that for S ෂ Z, the following asymptotic bound does not necessarily
hold, even assuming that both products converge, by giving a counterexample:

Y

k2S

‚.f .k// D ‚

 Y

k2S

f .k/

!

:

3-6 Variations on O and ˝
Some authors deûne �-notation in a slightly different way than this textbook does.
We’ll use the nomenclature 1

� (read <omega inûnity=) for this alternative deûni-
tion. We say that f .n/ D

1
�.g.n// if there exists a positive constant c such that

f .n/ cg.n/ 0 for inûnitely many integers n.
a. Show that for any two asymptotically nonnegative functions f .n/ and g.n/, we

have f .n/ D O.g.n// or f .n/ D
1
�.g.n// (or both).

b. Show that there exist two asymptotically nonnegative functions f .n/ and g.n/
for which neither f .n/ D O.g.n// nor f .n/ D �.g.n// holds.

c. Describe the potential advantages and disadvantages of using 1
�-notation in-

stead of �-notation to characterize the running times of programs.
Some authors also deûne O in a slightly different manner. We’ll use O 0 for the
alternative deûnition: f .n/ D O 0 .g.n// if and only if jf .n/j D O.g.n//.
d. What happens to each direction of the <if and only if= in Theorem 3.1 on

page 56 if we substitute O 0 for O but still use �?
Some authors deûne e O (read <soft-oh=) to mean O with logarithmic factors ig-
nored:

74 Chapter 3 Characterizing Running Times

e O.g.n// D ff .n/ W there exist positive constants c , k, and n 0 such that
0 හ f .n/ හ cg.n/ lg k .n/ for all n n 0 g :

e. Deûne e � and e ‚ in a similar manner. Prove the corresponding analog to Theo-
rem 3.1.

3-7 Iterated functions
We can apply the iteration operator used in the lg function to any monotonically
increasing function f .n/ over the reals. For a given constant c 2 R, we deûne the
iterated function f

c by
f
c .n/ D min ̊

i 0 W f .i/ .n/ හ c

;

which need not be well deûned in all cases. In other words, the quantity f
c .n/ is

the minimum number of iterated applications of the function f required to reduce
its argument down to c or less.

For each of the functions f .n/ and constants c in the table below, give as tight
a bound as possible on f

c .n/. If there is no i such that f .i/ .n/ හ c , write <unde-
ûned= as your answer.

f .n/ c f
c .n/

a. n 1 0
b. lg n 1
c. n=2 1
d. n=2 2
e. p

n 2
f. p

n 1
g. n 1=3 2

Chapter notes

Knuth [259] traces the origin of the O-notation to a number-theory text by P. Bach-
mann in 1892. The o-notation was invented by E. Landau in 1909 for his discussion
of the distribution of prime numbers. The � and ‚ notations were advocated by
Knuth [265] to correct the popular, but technically sloppy, practice in the litera-
ture of using O-notation for both upper and lower bounds. As noted earlier in
this chapter, many people continue to use the O-notation where the ‚-notation is
more technically precise. The soft-oh notation e O in Problem 3-6 was introduced

Notes for Chapter 3 75

by Babai, Luks, and Seress [31], although it was originally written as O. Some
authors now deûne e O.g.n// as ignoring factors that are logarithmic in g.n/, rather
than in n. With this deûnition, we can say that n2 n D e O.2 n /, but with the deû-
nition in Problem 3-6, this statement is not true. Further discussion of the history
and development of asymptotic notations appears in works by Knuth [259, 265]
and Brassard and Bratley [70].
Not all authors deûne the asymptotic notations in the same way, although the

various deûnitions agree in most common situations. Some of the alternative def-
initions encompass functions that are not asymptotically nonnegative, as long as
their absolute values are appropriately bounded.
Equation (3.29) is due to Robbins [381]. Other properties of elementary math-

ematical functions can be found in any good mathematical reference, such as
Abramowitz and Stegun [1] or Zwillinger [468], or in a calculus book, such as
Apostol [19] or Thomas et al. [433]. Knuth [259] and Graham, Knuth, and Patash-
nik [199] contain a wealth of material on discrete mathematics as used in computer
science.

4 Divide-and-Conquer

The divide-and-conquer method is a powerful strategy for designing asymptotically
efûcient algorithms. We saw an example of divide-and-conquer in Section 2.3.1
when learning about merge sort. In this chapter, we’ll explore applications of the
divide-and-conquer method and acquire valuable mathematical tools that you can
use to solve the recurrences that arise when analyzing divide-and-conquer algo-
rithms.
Recall that for divide-and-conquer, you solve a given problem (instance) recur-

sively. If the problem is small enough4the base case4you just solve it directly
without recursing. Otherwise4the recursive case4you perform three character-
istic steps:
Divide the problem into one or more subproblems that are smaller instances of the

same problem.
Conquer the subproblems by solving them recursively.
Combine the subproblem solutions to form a solution to the original problem.
A divide-and-conquer algorithm breaks down a large problem into smaller sub-
problems, which themselves may be broken down into even smaller subproblems,
and so forth. The recursion bottoms out when it reaches a base case and the sub-
problem is small enough to solve directly without further recursing.

Recurrences
To analyze recursive divide-and-conquer algorithms, we’ll need some mathemat-
ical tools. A recurrence is an equation that describes a function in terms of its
value on other, typically smaller, arguments. Recurrences go hand in hand with
the divide-and-conquer method because they give us a natural way to characterize
the running times of recursive algorithms mathematically. You saw an example
of a recurrence in Section 2.3.2 when we analyzed the worst-case running time of
merge sort.

Chapter 4 Divide-and-Conquer 77

For the divide-and-conquer matrix-multiplication algorithms presented in Sec-
tions 4.1 and 4.2, we’ll derive recurrences that describe their worst-case running
times. To understand why these two divide-and-conquer algorithms perform the
way they do, you’ll need to learn how to solve the recurrences that describe their
running times. Sections 4.334.7 teach several methods for solving recurrences.
These sections also explore the mathematics behind recurrences, which can give
you stronger intuition for designing your own divide-and-conquer algorithms.
We want to get to the algorithms as soon as possible. So, let’s just cover a few

recurrence basics now, and then we’ll look more deeply at recurrences, especially
how to solve them, after we see the matrix-multiplication examples.

The general form of a recurrence is an equation or inequality that describes a
function over the integers or reals using the function itself. It contains two or more
cases, depending on the argument. If a case involves the recursive invocation of the
function on different (usually smaller) inputs, it is a recursive case. If a case does
not involve a recursive invocation, it is a base case. There may be zero, one, or
many functions that satisfy the statement of the recurrence. The recurrence is well
defined if there is at least one function that satisûes it, and ill defined otherwise.

Algorithmic recurrences
We’ll be particularly interested in recurrences that describe the running times of
divide-and-conquer algorithms. A recurrence T .n/ is algorithmic if, for every
sufûciently large threshold constant n 0 > 0, the following two properties hold:
1. For all n < n 0 , we have T .n/ D ‚.1/.
2. For all n n 0 , every path of recursion terminates in a deûned base case within

a ûnite number of recursive invocations.
Similar to how we sometimes abuse asymptotic notation (see page 60), when a
function is not deûned for all arguments, we understand that this deûnition is con-
strained to values of n for which T .n/ is deûned.

Why would a recurrence T .n/ that represents a (correct) divide-and-conquer al-
gorithm’s worst-case running time satisfy these properties for all sufûciently large
threshold constants? The ûrst property says that there exist constants c 1 ; c 2 such
that 0 < c 1 හ T .n/ හ c 2 for n < n 0 . For every legal input, the algorithm must
output the solution to the problem it’s solving in ûnite time (see Section 1.1). Thus
we can let c 1 be the minimum amount of time to call and return from a procedure,
which must be positive, because machine instructions need to be executed to in-
voke a procedure. The running time of the algorithm may not be deûned for some
values of n if there are no legal inputs of that size, but it must be deûned for at
least one, or else the <algorithm= doesn’t solve any problem. Thus we can let c 2 be
the algorithm’s maximum running time on any input of size n < n 0 , where n 0 is

78 Chapter 4 Divide-and-Conquer

sufûciently large that the algorithm solves at least one problem of size less than n 0 .
The maximum is well deûned, since there are at most a ûnite number of inputs of
size less than n 0 , and there is at least one if n 0 is sufûciently large. Consequently,
T .n/ satisûes the ûrst property. If the second property fails to hold for T .n/, then
the algorithm isn’t correct, because it would end up in an inûnite recursive loop or
otherwise fail to compute a solution. Thus, it stands to reason that a recurrence for
the worst-case running time of a correct divide-and-conquer algorithm would be
algorithmic.

Conventions for recurrences
We adopt the following convention:

Whenever a recurrence is stated without an explicit base case, we assume
that the recurrence is algorithmic.

That means you’re free to pick any sufûciently large threshold constant n 0 for the
range of base cases where T .n/ D ‚.1/. Interestingly, the asymptotic solutions of
most algorithmic recurrences you’re likely to see when analyzing algorithms don’t
depend on the choice of threshold constant, as long as it’s large enough to make
the recurrence well deûned.
Asymptotic solutions of algorithmic divide-and-conquer recurrences also don’t

tend to change when we drop any üoors or ceilings in a recurrence deûned on the
integers to convert it to a recurrence deûned on the reals. Section 4.7 gives a suf-
ûcient condition for ignoring üoors and ceilings that applies to most of the divide-
and-conquer recurrences you’re likely to see. Consequently, we’ll frequently state
algorithmic recurrences without üoors and ceilings. Doing so generally simpliûes
the statement of the recurrences, as well as any math that we do with them.

You may sometimes see recurrences that are not equations, but rather inequal-
ities, such as T .n/ හ 2T .n=2/ C ‚.n/. Because such a recurrence states only
an upper bound on T .n/, we express its solution using O-notation rather than
‚-notation. Similarly, if the inequality is reversed to T .n/ 2T .n=2/ C ‚.n/,
then, because the recurrence gives only a lower bound on T .n/, we use �-notation
in its solution.

Divide-and-conquer and recurrences
This chapter illustrates the divide-and-conquer method by presenting and using
recurrences to analyze two divide-and-conquer algorithms for multiplying n n
matrices. Section 4.1 presents a simple divide-and-conquer algorithm that solves
a matrix-multiplication problem of size n by breaking it into four subproblems of
size n=2, which it then solves recursively. The running time of the algorithm can
be characterized by the recurrence

Chapter 4 Divide-and-Conquer 79

T .n/ D 8T .n=2/ C ‚.1/ ;

which turns out to have the solution T .n/ D ‚.n 3 /. Although this divide-and-
conquer algorithm is no faster than the straightforward method that uses a triply
nested loop, it leads to an asymptotically faster divide-and-conquer algorithm due
to V. Strassen, which we’ll explore in Section 4.2. Strassen’s remarkable algorithm
divides a problem of size n into seven subproblems of size n=2 which it solves
recursively. The running time of Strassen’s algorithm can be described by the
recurrence
T .n/ D 7T .n=2/ C ‚.n 2 / ;

which has the solution T .n/ D ‚.n lg 7 / D O.n 2:81 /. Strassen’s algorithm beats
the straightforward looping method asymptotically.
These two divide-and-conquer algorithms both break a problem of size n into

several subproblems of size n=2. Although it is common when using divide-and-
conquer for all the subproblems to have the same size, that isn’t always the case.
Sometimes it’s productive to divide a problem of size n into subproblems of differ-
ent sizes, and then the recurrence describing the running time reüects the irregular-
ity. For example, consider a divide-and-conquer algorithm that divides a problem
of size n into one subproblem of size n=3 and another of size 2n=3, taking ‚.n/
time to divide the problem and combine the solutions to the subproblems. Then the
algorithm’s running time can be described by the recurrence
T .n/ D T .n=3/ C T .2n=3/ C ‚.n/ ;

which turns out to have solution T .n/ D ‚.n lg n/. We’ll even see an algorithm in
Chapter 9 that solves a problem of size n by recursively solving a subproblem of
size n=5 and another of size 7n=10, taking ‚.n/ time for the divide and combine
steps. Its performance satisûes the recurrence
T .n/ D T .n=5/ C T .7n=10/ C ‚.n/ ;

which has solution T .n/ D ‚.n/.
Although divide-and-conquer algorithms usually create subproblems with sizes

a constant fraction of the original problem size, that’s not always the case. For
example, a recursive version of linear search (see Exercise 2.1-4) creates just one
subproblem, with one element less than the original problem. Each recursive call
takes constant time plus the time to recursively solve a subproblem with one less
element, leading to the recurrence
T .n/ D T .n 1/ C ‚.1/ ;

which has solution T .n/ D ‚.n/. Nevertheless, the vast majority of efûcient
divide-and-conquer algorithms solve subproblems that are a constant fraction of
the size of the original problem, which is where we’ll focus our efforts.

80 Chapter 4 Divide-and-Conquer

Solving recurrences
After learning about divide-and-conquer algorithms for matrix multiplication in
Sections 4.1 and 4.2, we’ll explore several mathematical tools for solving recur-
rences4that is, for obtaining asymptotic ‚-, O-, or �-bounds on their solutions.
We want simple-to-use tools that can handle the most commonly occurring situa-
tions. But we also want general tools that work, perhaps with a little more effort,
for less common cases. This chapter offers four methods for solving recurrences:
 In the substitution method (Section 4.3), you guess the form of a bound and

then use mathematical induction to prove your guess correct and solve for con-
stants. This method is perhaps the most robust method for solving recurrences,
but it also requires you to make a good guess and to produce an inductive proof.

 The recursion-tree method (Section 4.4) models the recurrence as a tree whose
nodes represent the costs incurred at various levels of the recursion. To solve
the recurrence, you determine the costs at each level and add them up, perhaps
using techniques for bounding summations from Section A.2. Even if you don’t
use this method to formally prove a bound, it can be helpful in guessing the form
of the bound for use in the substitution method.

 The master method (Sections 4.5 and 4.6) is the easiest method, when it applies.
It provides bounds for recurrences of the form

T .n/ D aT .n=b/ C f .n/ ;

where a > 0 and b > 1 are constants and f .n/ is a given <driving= function.
This type of recurrence tends to arise more frequently in the study of algorithms
than any other. It characterizes a divide-and-conquer algorithm that creates
a subproblems, each of which is 1=b times the size of the original problem,
using f .n/ time for the divide and combine steps. To apply the master method,
you need to memorize three cases, but once you do, you can easily determine
asymptotic bounds on running times for many divide-and-conquer algorithms.

 The Akra-Bazzi method (Section 4.7) is a general method for solving divide-
and-conquer recurrences. Although it involves calculus, it can be used to attack
more complicated recurrences than those addressed by the master method.

4.1 Multiplying square matrices

We can use the divide-and-conquer method to multiply square matrices. If you’ve
seen matrices before, then you probably know how to multiply them. (Otherwise,

4.1 Multiplying square matrices 81

you should read Section D.1.) Let A D .a ik / and B D .b jk / be square n n
matrices. The matrix product C D A B is also an n n matrix, where for
i; j D 1; 2; : : : ; n, the .i; j / entry of C is given by

c ij D
n X

kD1

a ik b kj : (4.1)

Generally, we’ll assume that the matrices are dense, meaning that most of the n 2

entries are not 0, as opposed to sparse, where most of the n 2 entries are 0 and the
nonzero entries can be stored more compactly than in an n n array.

Computing the matrix C requires computing n 2 matrix entries, each of which is
the sum of n pairwise products of input elements from A and B . The MATRIX-
MULTIPLY procedure implements this strategy in a straightforward manner, and
it generalizes the problem slightly. It takes as input three n n matrices A, B ,
and C , and it adds the matrix product A B to C , storing the result in C . Thus, it
computes C D C C A B , instead of just C D A B . If only the product A B is
needed, just initialize all n 2 entries of C to 0 before calling the procedure, which
takes an additional ‚.n 2 / time. We’ll see that the cost of matrix multiplication
asymptotically dominates this initialization cost.

MATRIX-MULTIPLY .A;B;C; n/
1 for i D 1 to n // compute entries in each of n rows
2 for j D 1 to n // compute n entries in row i
3 for k D 1 to n
4 c ij D c ij C a ik b kj // add in another term of equation (4.1)

The pseudocode for MATRIX-MULTIPLY works as follows. The for loop of
lines 134 computes the entries of each row i , and within a given row i , the for loop
of lines 234 computes each of the entries c ij for each column j . Each iteration of
the for loop of lines 334 adds in one more term of equation (4.1).

Because each of the triply nested for loops runs for exactly n iterations, and
each execution of line 4 takes constant time, the MATRIX-MULTIPLY procedure
operates in ‚.n 3 / time. Even if we add in the ‚.n 2 / time for initializing C to 0,
the running time is still ‚.n 3 /.

A simple divide-and-conquer algorithm

Let’s see how to compute the matrix product A B using divide-and-conquer. For
n > 1, the divide step partitions the n n matrices into four n=2 n=2 submatrices.
We’ll assume that n is an exact power of 2, so that as the algorithm recurses, we
are guaranteed that the submatrix dimensions are integer. (Exercise 4.1-1 asks you

82 Chapter 4 Divide-and-Conquer

to relax this assumption.) As with MATRIX-MULTIPLY, we’ll actually compute
C D C C A B . But to simplify the math behind the algorithm, let’s assume that C
has been initialized to the zero matrix, so that we are indeed computing C D A B .

The divide step views each of the n n matrices A, B , and C as four n=2 n=2
submatrices:
A D

Î
A 11 A 12
A 21 A 22

Ï
; B D

Î
B 11 B 12
B 21 B 22

Ï
; C D

Î
C 11 C 12
C 21 C 22

Ï
: (4.2)

Then we can write the matrix product as Î
C 11 C 12
C 21 C 22

Ï
D

Î
A 11 A 12
A 21 A 22

ÏÎ
B 11 B 12
B 21 B 22

Ï
(4.3)

D
Î
A 11 B 11 C A 12 B 21 A 11 B 12 C A 12 B 22
A 21 B 11 C A 22 B 21 A 21 B 12 C A 22 B 22

Ï
; (4.4)

which corresponds to the equations
C 11 D A 11 B 11 C A 12 B 21 ; (4.5)
C 12 D A 11 B 12 C A 12 B 22 ; (4.6)
C 21 D A 21 B 11 C A 22 B 21 ; (4.7)
C 22 D A 21 B 12 C A 22 B 22 : (4.8)
Equations (4.5)3(4.8) involve eight n=2 n=2 multiplications and four additions
of n=2 n=2 submatrices.

As we look to transform these equations to an algorithm that can be described
with pseudocode, or even implemented for real, there are two common approaches
for implementing the matrix partitioning.
One strategy is to allocate temporary storage to hold A’s four submatrices A 11 ,

A 12 , A 21 , and A 22 and B ’s four submatrices B 11 , B 12 , B 21 , and B 22 . Then copy
each element in A and B to its corresponding location in the appropriate submatrix.
After the recursive conquer step, copy the elements in each of C ’s four submatrices
C 11 , C 12 , C 21 , and C 22 to their corresponding locations in C . This approach takes
‚.n 2 / time, since 3n 2 elements are copied.

The second approach uses index calculations and is faster and more practical. A
submatrix can be speciûed within a matrix by indicating where within the matrix
the submatrix lies without touching any matrix elements. Partitioning a matrix
(or recursively, a submatrix) only involves arithmetic on this location information,
which has constant size independent of the size of the matrix. Changes to the
submatrix elements update the original matrix, since they occupy the same storage.
Going forward, we’ll assume that index calculations are used and that partition-

ing can be performed in ‚.1/ time. Exercise 4.1-3 asks you to show that it makes
no difference to the overall asymptotic running time of matrix multiplication, how-
ever, whether the partitioning of matrices uses the ûrst method of copying or the

4.1 Multiplying square matrices 83

second method of index calculation. But for other divide-and-conquer matrix cal-
culations, such as matrix addition, it can make a difference, as Exercise 4.1-4 asks
you to show.

The procedure MATRIX-MULTIPLY-RECURSIVE uses equations (4.5)3(4.8) to
implement a divide-and-conquer strategy for square-matrix multiplication. Like
MATRIX-MULTIPLY, the procedure MATRIX-MULTIPLY-RECURSIVE computes
C D C C A B since, if necessary, C can be initialized to 0 before the procedure
is called in order to compute only C D A B .

MATRIX-MULTIPLY-RECURSIVE .A;B;C; n/
1 if n == 1
2 // Base case.
3 c 11 D c 11 C a 11 b 11
4 return
5 // Divide.
6 partition A, B , and C into n=2 n=2 submatrices

A 11 ; A 12 ; A 21 ; A 22 ; B 11 ; B 12 ; B 21 ; B 22 ;
and C 11 ; C 12 ; C 21 ; C 22 ; respectively

7 // Conquer.
8 MATRIX-MULTIPLY-RECURSIVE .A 11 ; B 11 ; C 11 ; n=2/
9 MATRIX-MULTIPLY-RECURSIVE .A 11 ; B 12 ; C 12 ; n=2/
10 MATRIX-MULTIPLY-RECURSIVE .A 21 ; B 11 ; C 21 ; n=2/
11 MATRIX-MULTIPLY-RECURSIVE .A 21 ; B 12 ; C 22 ; n=2/
12 MATRIX-MULTIPLY-RECURSIVE .A 12 ; B 21 ; C 11 ; n=2/
13 MATRIX-MULTIPLY-RECURSIVE .A 12 ; B 22 ; C 12 ; n=2/
14 MATRIX-MULTIPLY-RECURSIVE .A 22 ; B 21 ; C 21 ; n=2/
15 MATRIX-MULTIPLY-RECURSIVE .A 22 ; B 22 ; C 22 ; n=2/

As we walk through the pseudocode, we’ll derive a recurrence to characterize
its running time. Let T .n/ be the worst-case time to multiply two n n matrices
using this procedure.

In the base case, when n D 1, line 3 performs just the one scalar multiplica-
tion and one addition, which means that T .1/ D ‚.1/. As is our convention for
constant base cases, we can omit this base case in the statement of the recurrence.

The recursive case occurs when n > 1. As discussed, we’ll use index calcula-
tions to partition the matrices in line 6, taking ‚.1/ time. Lines 8315 recursively
call MATRIX-MULTIPLY-RECURSIVE a total of eight times. The ûrst four recur-
sive calls compute the ûrst terms of equations (4.5)3(4.8), and the subsequent four
recursive calls compute and add in the second terms. Each recursive call adds the
product of a submatrix of A and a submatrix of B to the appropriate submatrix

84 Chapter 4 Divide-and-Conquer

of C in place, thanks to index calculations. Because each recursive call multiplies
two n=2 n=2 matrices, thereby contributing T .n=2/ to the overall running time,
the time taken by all eight recursive calls is 8T .n=2/. There is no combine step,
because the matrix C is updated in place. The total time for the recursive case,
therefore, is the sum of the partitioning time and the time for all the recursive calls,
or ‚.1/ C 8T .n=2/.

Thus, omitting the statement of the base case, our recurrence for the running
time of MATRIX-MULTIPLY-RECURSIVE is
T .n/ D 8T .n=2/ C ‚.1/ : (4.9)
As we’ll see from the master method in Section 4.5, recurrence (4.9) has the solu-
tion T .n/ D ‚.n 3 /, which means that it has the same asymptotic running time as
the straightforward MATRIX-MULTIPLY procedure.

Why is the ‚.n 3 / solution to this recurrence so much larger than the ‚.n lg n/
solution to the merge-sort recurrence (2.3) on page 41? After all, the recurrence
for merge sort contains a ‚.n/ term, whereas the recurrence for recursive matrix
multiplication contains only a ‚.1/ term.
Let’s think about what the recursion tree for recurrence (4.9) would look like

as compared with the recursion tree for merge sort, illustrated in Figure 2.5 on
page 43. The factor of 2 in the merge-sort recurrence determines how many chil-
dren each tree node has, which in turn determines how many terms contribute to the
sum at each level of the tree. In comparison, for the recurrence (4.9) for MATRIX-
MULTIPLY-RECURSIVE, each internal node in the recursion tree has eight children,
not two, leading to a <bushier= recursion tree with many more leaves, despite the
fact that the internal nodes are each much smaller. Consequently, the solution to
recurrence (4.9) grows much more quickly than the solution to recurrence (2.3),
which is borne out in the actual solutions: ‚.n 3 / versus ‚.n lg n/.

Exercises
Note: You may wish to read Section 4.5 before attempting some of these exercises.
4.1-1
Generalize MATRIX-MULTIPLY-RECURSIVE to multiply n n matrices for which
n is not necessarily an exact power of 2. Give a recurrence describing its running
time. Argue that it runs in ‚.n 3 / time in the worst case.
4.1-2
How quickly can you multiply a kn n matrix (kn rows and n columns) by an
n kn matrix, where k 1, using MATRIX-MULTIPLY-RECURSIVE as a subrou-
tine? Answer the same question for multiplying an n kn matrix by a kn n
matrix. Which is asymptotically faster, and by how much?

4.2 Strassen’s algorithm for matrix multiplication 85

4.1-3
Suppose that instead of partitioning matrices by index calculation in MATRIX-
MULTIPLY-RECURSIVE, you copy the appropriate elements of A, B , and C into
separate n=2 n=2 submatrices A 11 , A 12 , A 21 , A 22 ; B 11 , B 12 , B 21 , B 22 ; and C 11 ,
C 12 , C 21 , C 22 , respectively. After the recursive calls, you copy the results from C 11 ,
C 12 , C 21 , and C 22 back into the appropriate places in C . How does recurrence (4.9)
change, and what is its solution?
4.1-4
Write pseudocode for a divide-and-conquer algorithm MATRIX-ADD-RECURSIVE
that sums two n n matrices A and B by partitioning each of them into four
n=2 n=2 submatrices and then recursively summing corresponding pairs of sub-
matrices. Assume that matrix partitioning uses ‚.1/-time index calculations.
Write a recurrence for the worst-case running time of MATRIX-ADD-RECURSIVE,
and solve your recurrence. What happens if you use ‚.n 2 /-time copying to imple-
ment the partitioning instead of index calculations?

4.2 Strassen’s algorithm for matrix multiplication

You might ûnd it hard to imagine that any matrix multiplication algorithm could
take less than ‚.n 3 / time, since the natural deûnition of matrix multiplication re-
quires n 3 scalar multiplications. Indeed, many mathematicians presumed that it
was not possible to multiply matrices in o.n 3 / time until 1969, when V. Strassen
[424] published a remarkable recursive algorithm for multiplying n n matrices.
Strassen’s algorithm runs in ‚.n lg 7 / time. Since lg 7 D 2:8073549 : : : , Strassen’s
algorithm runs in O.n 2:81 / time, which is asymptotically better than the ‚.n 3 /
MATRIX-MULTIPLY and MATRIX-MULTIPLY-RECURSIVE procedures.
The key to Strassen’s method is to use the divide-and-conquer idea from the

MATRIX-MULTIPLY-RECURSIVE procedure, but make the recursion tree less
bushy. We’ll actually increase the work for each divide and combine step by a
constant factor, but the reduction in bushiness will pay off. We won’t reduce the
bushiness from the eight-way branching of recurrence (4.9) all the way down to
the two-way branching of recurrence (2.3), but we’ll improve it just a little, and
that will make a big difference. Instead of performing eight recursive multiplica-
tions of n=2 n=2 matrices, Strassen’s algorithm performs only seven. The cost
of eliminating one matrix multiplication is several new additions and subtractions
of n=2 n=2 matrices, but still only a constant number. Rather than saying <addi-
tions and subtractions= everywhere, we’ll adopt the common terminology of call-

86 Chapter 4 Divide-and-Conquer

ing them both <additions= because subtraction is structurally the same computation
as addition, except for a change of sign.

To get an inkling how the number of multiplications might be reduced, as well
as why reducing the number of multiplications might be desirable for matrix calcu-
lations, suppose that you have two numbers x and y , and you want to calculate the
quantity x 2 y 2 . The straightforward calculation requires two multiplications to
square x and y , followed by one subtraction (which you can think of as a <negative
addition=). But let’s recall the old algebra trick x 2 y 2 D x 2 xy C xy y 2 D
x.x y/ C y.x y/ D .x C y/.x y/. Using this formulation of the desired
quantity, you could instead compute the sum x C y and the difference x y and
then multiply them, requiring only a single multiplication and two additions. At
the cost of an extra addition, only one multiplication is needed to compute an ex-
pression that looks as if it requires two. If x and y are scalars, there’s not much
difference: both approaches require three scalar operations. If x and y are large
matrices, however, the cost of multiplying outweighs the cost of adding, in which
case the second method outperforms the ûrst, although not asymptotically.
Strassen’s strategy for reducing the number of matrix multiplications at the ex-

pense of more matrix additions is not at all obvious4perhaps the biggest under-
statement in this book! As with MATRIX-MULTIPLY-RECURSIVE, Strassen’s al-
gorithm uses the divide-and-conquer method to compute C D C C A B , where
A, B , and C are all n n matrices and n is an exact power of 2. Strassen’s algo-
rithm computes the four submatrices C 11 , C 12 , C 21 , and C 22 of C from equations
(4.5)3(4.8) on page 82 in four steps. We’ll analyze costs as we go along to develop
a recurrence T .n/ for the overall running time. Let’s see how it works:
1. If n D 1, the matrices each contain a single element. Perform a single scalar

multiplication and a single scalar addition, as in line 3 of MATRIX-MULTIPLY-
RECURSIVE, taking ‚.1/ time, and return. Otherwise, partition the input ma-
trices A and B and output matrix C into n=2 n=2 submatrices, as in equa-
tion (4.2). This step takes ‚.1/ time by index calculation, just as in MATRIX-
MULTIPLY-RECURSIVE.

2. Create n=2 n=2 matrices S 1 ; S 2 ; : : : ; S 10 , each of which is the sum or dif-
ference of two submatrices from step 1. Create and zero the entries of seven
n=2 n=2 matrices P 1 ; P 2 ; : : : ; P 7 to hold seven n=2 n=2 matrix products.
All 17 matrices can be created, and the P i initialized, in ‚.n 2 / time.

3. Using the submatrices from step 1 and the matrices S 1 ; S 2 ; : : : ; S 10 created in
step 2, recursively compute each of the seven matrix products P 1 ; P 2 ; : : : ; P 7 ,
taking 7T .n=2/ time.

4. Update the four submatrices C 11 ; C 12 ; C 21 ; C 22 of the result matrix C by adding
or subtracting various P i matrices, which takes ‚.n 2 / time.

4.2 Strassen’s algorithm for matrix multiplication 87

We’ll see the details of steps 234 in a moment, but we already have enough
information to set up a recurrence for the running time of Strassen’s method. As is
common, the base case in step 1 takes ‚.1/ time, which we’ll omit when stating
the recurrence. When n > 1, steps 1, 2, and 4 take a total of ‚.n 2 / time, and
step 3 requires seven multiplications of n=2 n=2 matrices. Hence, we obtain the
following recurrence for the running time of Strassen’s algorithm:
T .n/ D 7T .n=2/ C ‚.n 2 / : (4.10)
Compared with MATRIX-MULTIPLY-RECURSIVE, we have traded off one recur-
sive submatrix multiplication for a constant number of submatrix additions. Once
you understand recurrences and their solutions, you’ll be able to see why this trade-
off actually leads to a lower asymptotic running time. By the master method in Sec-
tion 4.5, recurrence (4.10) has the solution T .n/ D ‚.n lg 7 / D O.n 2:81 /, beating
the ‚.n 3 /-time algorithms.
Now, let’s delve into the details. Step 2 creates the following 10 matrices:

S 1 D B 12 B 22 ;
S 2 D A 11 C A 12 ;
S 3 D A 21 C A 22 ;
S 4 D B 21 B 11 ;
S 5 D A 11 C A 22 ;
S 6 D B 11 C B 22 ;
S 7 D A 12 A 22 ;
S 8 D B 21 C B 22 ;
S 9 D A 11 A 21 ;
S 10 D B 11 C B 12 :

This step adds or subtracts n=2 n=2 matrices 10 times, taking ‚.n 2 / time.
Step 3 recursively multiplies n=2 n=2 matrices 7 times to compute the follow-

ing n=2 n=2 matrices, each of which is the sum or difference of products of A
and B submatrices:
P 1 D A 11 S 1 .D A 11 B 12 A 11 B 22 / ;
P 2 D S 2 B 22 .D A 11 B 22 C A 12 B 22 / ;
P 3 D S 3 B 11 .D A 21 B 11 C A 22 B 11 / ;
P 4 D A 22 S 4 .D A 22 B 21 A 22 B 11 / ;
P 5 D S 5 S 6 .D A 11 B 11 C A 11 B 22 C A 22 B 11 C A 22 B 22 / ;
P 6 D S 7 S 8 .D A 12 B 21 C A 12 B 22 A 22 B 21 A 22 B 22 / ;
P 7 D S 9 S 10 .D A 11 B 11 C A 11 B 12 A 21 B 11 A 21 B 12 / :

88 Chapter 4 Divide-and-Conquer

The only multiplications that the algorithm performs are those in the middle col-
umn of these equations. The right-hand column just shows what these products
equal in terms of the original submatrices created in step 1, but the terms are never
explicitly calculated by the algorithm.
Step 4 adds to and subtracts from the four n=2 n=2 submatrices of the prod-

uct C the various P i matrices created in step 3. We start with

C 11 D C 11 C P 5 C P 4 P 2 C P 6 :

Expanding the calculation on the right-hand side, with the expansion of each P i
on its own line and vertically aligning terms that cancel out, we see that the update
to C 11 equals
A 11 B 11 C A 11 B 22 C A 22 B 11 C A 22 B 22

 A 22 B 11 C A 22 B 21
 A 11 B 22 A 12 B 22

 A 22 B 22 A 22 B 21 C A 12 B 22 C A 12 B 21

A 11 B 11 C A 12 B 21 ;

which corresponds to equation (4.5). Similarly, setting

C 12 D C 12 C P 1 C P 2

means that the update to C 12 equals
A 11 B 12 A 11 B 22

C A 11 B 22 C A 12 B 22

A 11 B 12 C A 12 B 22 ;

corresponding to equation (4.6). Setting

C 21 D C 21 C P 3 C P 4

means that the update to C 21 equals
A 21 B 11 C A 22 B 11

 A 22 B 11 C A 22 B 21

A 21 B 11 C A 22 B 21 ;

corresponding to equation (4.7). Finally, setting

C 22 D C 22 C P 5 C P 1 P 3 P 7

means that the update to C 22 equals

4.2 Strassen’s algorithm for matrix multiplication 89

A 11 B 11 C A 11 B 22 C A 22 B 11 C A 22 B 22
 A 11 B 22 C A 11 B 12

 A 22 B 11 A 21 B 11
 A 11 B 11 A 11 B 12 C A 21 B 11 C A 21 B 12

A 22 B 22 C A 21 B 12 ;

which corresponds to equation (4.8). Altogether, since we add or subtract n=2n=2
matrices 12 times in step 4, this step indeed takes ‚.n 2 / time.
We can see that Strassen’s remarkable algorithm, comprising steps 134, pro-

duces the correct matrix product using 7 submatrix multiplications and 18 subma-
trix additions. We can also see that recurrence (4.10) characterizes its running time.
Since Section 4.5 shows that this recurrence has the solution T .n/ D ‚.n lg 7 / D
o.n 3 /, Strassen’s method asymptotically beats the ‚.n 3 / MATRIX-MULTIPLY and
MATRIX-MULTIPLY-RECURSIVE procedures.

Exercises
Note: You may wish to read Section 4.5 before attempting some of these exercises.
4.2-1
Use Strassen’s algorithm to compute the matrix product Î
1 3
7 5

ÏÎ
6 8
4 2

Ï
:

Show your work.
4.2-2
Write pseudocode for Strassen’s algorithm.
4.2-3
What is the largest k such that if you can multiply 3 3 matrices using k multi-
plications (not assuming commutativity of multiplication), then you can multiply
n n matrices in o.n lg 7 / time? What is the running time of this algorithm?
4.2-4
V. Pan discovered a way of multiplying 68 68 matrices using 132,464 multi-
plications, a way of multiplying 70 70 matrices using 143,640 multiplications,
and a way of multiplying 72 72 matrices using 155,424 multiplications. Which
method yields the best asymptotic running time when used in a divide-and-conquer
matrix-multiplication algorithm? How does it compare with Strassen’s algorithm?

90 Chapter 4 Divide-and-Conquer

4.2-5
Show how to multiply the complex numbers a C bi and c C di using only three
multiplications of real numbers. The algorithm should take a, b, c , and d as input
and produce the real component ac bd and the imaginary component ad C bc
separately.
4.2-6
Suppose that you have a ‚.n ˛ /-time algorithm for squaring n n matrices, where
˛ 2. Show how to use that algorithm to multiply two different n n matrices in
‚.n ˛ / time.

4.3 The substitution method for solving recurrences

Now that you have seen how recurrences characterize the running times of divide-
and-conquer algorithms, let’s learn how to solve them. We start in this section
with the substitution method, which is the most general of the four methods in this
chapter. The substitution method comprises two steps:
1. Guess the form of the solution using symbolic constants.
2. Use mathematical induction to show that the solution works, and ûnd the con-

stants.
To apply the inductive hypothesis, you substitute the guessed solution for the func-
tion on smaller values4hence the name <substitution method.= This method is
powerful, but you must guess the form of the answer. Although generating a good
guess might seem difûcult, a little practice can quickly improve your intuition.

You can use the substitution method to establish either an upper or a lower bound
on a recurrence. It’s usually best not to try to do both at the same time. That is,
rather than trying to prove a ‚-bound directly, ûrst prove an O-bound, and then
prove an �-bound. Together, they give you a ‚-bound (Theorem 3.1 on page 56).
As an example of the substitution method, let’s determine an asymptotic upper

bound on the recurrence:
T .n/ D 2T .bn=2c/ C ‚.n/ : (4.11)
This recurrence is similar to recurrence (2.3) on page 41 for merge sort, except
for the üoor function, which ensures that T .n/ is deûned over the integers. Let’s
guess that the asymptotic upper bound is the same4T .n/ D O.n lg n/4and use
the substitution method to prove it.
We’ll adopt the inductive hypothesis that T .n/ හ cn lg n for all n n 0 , where

we’ll choose the speciûc constants c > 0 and n 0 > 0 later, after we see what

4.3 The substitution method for solving recurrences 91

constraints they need to obey. If we can establish this inductive hypothesis, we can
conclude that T .n/ D O.n lg n/. It would be dangerous to use T .n/ D O.n lg n/
as the inductive hypothesis because the constants matter, as we’ll see in a moment
in our discussion of pitfalls.

Assume by induction that this bound holds for all numbers at least as big as n 0
and less than n. In particular, therefore, if n 2n 0 , it holds for bn=2c, yielding
T .bn=2c/ හ c bn=2c lg.bn=2c/. Substituting into recurrence (4.11)4hence the
name <substitution= method4yields
T .n/ හ 2.c bn=2c lg.bn=2c// C ‚.n/

හ 2.c.n=2/ lg.n=2// C ‚.n/
D cn lg.n=2/ C ‚.n/
D cn lg n cn lg 2 C ‚.n/
D cn lg n cn C ‚.n/
හ cn lg n ;

where the last step holds if we constrain the constants n 0 and c to be sufûciently
large that for n 2n 0 , the quantity cn dominates the anonymous function hidden
by the ‚.n/ term.
We’ve shown that the inductive hypothesis holds for the inductive case, but we

also need to prove that the inductive hypothesis holds for the base cases of the
induction, that is, that T .n/ හ cn lg n when n 0 හ n < 2n 0 . As long as n 0 > 1 (a
new constraint on n 0), we have lg n > 0, which implies that n lg n > 0. So let’s
pick n 0 D 2. Since the base case of recurrence (4.11) is not stated explicitly, by our
convention, T .n/ is algorithmic, which means that T .2/ and T .3/ are constant (as
they should be if they describe the worst-case running time of any real program on
inputs of size 2 or 3). Picking c D max fT .2/; T .3/g yields T .2/ හ c < .2 lg 2/c
and T .3/ හ c < .3 lg 3/c , establishing the inductive hypothesis for the base cases.

Thus, we have T .n/ හ cn lg n for all n 2, which implies that the solution to
recurrence (4.11) is T .n/ D O.n lg n/.

In the algorithms literature, people rarely carry out their substitution proofs to
this level of detail, especially in their treatment of base cases. The reason is that for
most algorithmic divide-and-conquer recurrences, the base cases are all handled in
pretty much the same way. You ground the induction on a range of values from a
convenient positive constant n 0 up to some constant n 0 0 > n 0 such that for n n 0 0 ,
the recurrence always bottoms out in a constant-sized base case between n 0 and n 0 0 .
(This example used n 0 0 D 2n 0 .) Then, it’s usually apparent, without spelling out
the details, that with a suitably large choice of the leading constant (such as c for
this example), the inductive hypothesis can be made to hold for all the values in the
range from n 0 to n 0 0 .

92 Chapter 4 Divide-and-Conquer

Making a good guess
Unfortunately, there is no general way to correctly guess the tightest asymptotic
solution to an arbitrary recurrence. Making a good guess takes experience and,
occasionally, creativity. Fortunately, learning some recurrence-solving heuristics,
as well as playing around with recurrences to gain experience, can help you become
a good guesser. You can also use recursion trees, which we’ll see in Section 4.4, to
help generate good guesses.
If a recurrence is similar to one you’ve seen before, then guessing a similar

solution is reasonable. As an example, consider the recurrence
T .n/ D 2T .n=2 C 17/ C ‚.n/ ;
deûned on the reals. This recurrence looks somewhat like the merge-sort recur-
rence (2.3), but it’s more complicated because of the added <17= in the argument
to T on the right-hand side. Intuitively, however, this additional term shouldn’t
substantially affect the solution to the recurrence. When n is large, the relative
difference between n=2 and n=2 C 17 is not that large: both cut n nearly in half.
Consequently, it makes sense to guess that T .n/ D O.n lg n/, which you can verify
is correct using the substitution method (see Exercise 4.3-1).

Another way to make a good guess is to determine loose upper and lower bounds
on the recurrence and then reduce your range of uncertainty. For example, you
might start with a lower bound of T .n/ D �.n/ for recurrence (4.11), since the
recurrence includes the term ‚.n/, and you can prove an initial upper bound of
T .n/ D O.n 2 /. Then split your time between trying to lower the upper bound and
trying to raise the lower bound until you converge on the correct, asymptotically
tight solution, which in this case is T .n/ D ‚.n lg n/.

A trick of the trade: subtracting a low-order term

Sometimes, you might correctly guess a tight asymptotic bound on the solution
of a recurrence, but somehow the math fails to work out in the induction proof.
The problem frequently turns out to be that the inductive assumption is not strong
enough. The trick to resolving this problem is to revise your guess by subtracting
a lower-order term when you hit such a snag. The math then often goes through.

Consider the recurrence
T .n/ D 2T .n=2/ C ‚.1/ (4.12)
deûned on the reals. Let’s guess that the solution is T .n/ D O.n/ and try to show
that T .n/ හ cn for n n 0 , where we choose the constants c; n 0 > 0 suitably.
Substituting our guess into the recurrence, we obtain
T .n/ හ 2.c.n=2// C ‚.1/

D cn C ‚.1/ ;

4.3 The substitution method for solving recurrences 93

which, unfortunately, does not imply that T .n/ හ cn for any choice of c . We might
be tempted to try a larger guess, say T .n/ D O.n 2 /. Although this larger guess
works, it provides only a loose upper bound. It turns out that our original guess of
T .n/ D O.n/ is correct and tight. In order to show that it is correct, however, we
must strengthen our inductive hypothesis.

Intuitively, our guess is nearly right: we are off only by ‚.1/, a lower-order
term. Nevertheless, mathematical induction requires us to prove the exact form of
the inductive hypothesis. Let’s try our trick of subtracting a lower-order term from
our previous guess: T .n/ හ cn d , where d 0 is a constant. We now have
T .n/ හ 2.c.n=2/ d/ C ‚.1/

D cn 2d C ‚.1/
හ cn d .d ‚.1//
හ cn d

as long as we choose d to be larger than the anonymous upper-bound constant
hidden by the ‚-notation. Subtracting a lower-order term works! Of course, we
must not forget to handle the base case, which is to choose the constant c large
enough that cn d dominates the implicit base cases.
You might ûnd the idea of subtracting a lower-order term to be counterintuitive.

After all, if the math doesn’t work out, shouldn’t you increase your guess? Not
necessarily! When the recurrence contains more than one recursive invocation
(recurrence (4.12) contains two), if you add a lower-order term to the guess, then
you end up adding it once for each of the recursive invocations. Doing so takes
you even further away from the inductive hypothesis. On the other hand, if you
subtract a lower-order term from the guess, then you get to subtract it once for each
of the recursive invocations. In the above example, we subtracted the constant d
twice because the coefûcient of T .n=2/ is 2. We ended up with the inequality
T .n/ හ cn d .d ‚.1//, and we readily found a suitable value for d .

Avoiding pitfalls
Avoid using asymptotic notation in the inductive hypothesis for the substitution
method because it’s error prone. For example, for recurrence (4.11), we can falsely
<prove= that T .n/ D O.n/ if we unwisely adopt T .n/ D O.n/ as our inductive
hypothesis:
T .n/ හ 2 O.bn=2c/ C ‚.n/

D 2 O.n/ C ‚.n/
D O.n/ : Ń wrong!

94 Chapter 4 Divide-and-Conquer

The problem with this reasoning is that the constant hidden by the O-notation
changes. We can expose the fallacy by repeating the <proof= using an explicit
constant. For the inductive hypothesis, assume that T .n/ හ cn for all n n 0 ,
where c; n 0 > 0 are constants. Repeating the ûrst two steps in the inequality chain
yields
T .n/ හ 2.c bn=2c/ C ‚.n/

හ cn C ‚.n/ :
Now, indeed cnC‚.n/ D O.n/, but the constant hidden by the O-notation must be
larger than c because the anonymous function hidden by the ‚.n/ is asymptotically
positive. We cannot take the third step to conclude that cn C ‚.n/ හ cn, thus
exposing the fallacy.

When using the substitution method, or more generally mathematical induction,
you must be careful that the constants hidden by any asymptotic notation are the
same constants throughout the proof. Consequently, it’s best to avoid asymptotic
notation in your inductive hypothesis and to name constants explicitly.
Here’s another fallacious use of the substitution method to show that the solution

to recurrence (4.11) is T .n/ D O.n/. We guess T .n/ හ cn and then argue
T .n/ හ 2.c bn=2c/ C ‚.n/

හ cn C ‚.n/
D O.n/ ; Ń wrong!

since c is a positive constant. The mistake stems from the difference between our
goal4to prove that T .n/ D O.n/4and our inductive hypothesis4to prove that
T .n/ හ cn. When using the substitution method, or in any inductive proof, you
must prove the exact statement of the inductive hypothesis. In this case, we must
explicitly prove that T .n/ හ cn to show that T .n/ D O.n/.

Exercises
4.3-1
Use the substitution method to show that each of the following recurrences deûned
on the reals has the asymptotic solution speciûed:
a. T .n/ D T .n 1/ C n has solution T .n/ D O.n 2 /.
b. T .n/ D T .n=2/ C ‚.1/ has solution T .n/ D O.lg n/.
c. T .n/ D 2T .n=2/ C n has solution T .n/ D ‚.n lg n/.
d. T .n/ D 2T .n=2 C 17/ C n has solution T .n/ D O.n lg n/.
e. T .n/ D 2T .n=3/ C ‚.n/ has solution T .n/ D ‚.n/.
f. T .n/ D 4T .n=2/ C ‚.n/ has solution T .n/ D ‚.n 2 /.

4.4 The recursion-tree method for solving recurrences 95

4.3-2
The solution to the recurrence T .n/ D 4T .n=2/ C n turns out to be T .n/ D ‚.n 2 /.
Show that a substitution proof with the assumption T .n/ හ cn 2 fails. Then show
how to subtract a lower-order term to make a substitution proof work.
4.3-3
The recurrence T .n/ D 2T .n 1/ C 1 has the solution T .n/ D O.2 n /. Show that a
substitution proof fails with the assumption T .n/ හ c2 n , where c > 0 is constant.
Then show how to subtract a lower-order term to make a substitution proof work.

4.4 The recursion-tree method for solving recurrences

Although you can use the substitution method to prove that a solution to a recur-
rence is correct, you might have trouble coming up with a good guess. Drawing
out a recursion tree, as we did in our analysis of the merge-sort recurrence in Sec-
tion 2.3.2, can help. In a recursion tree, each node represents the cost of a single
subproblem somewhere in the set of recursive function invocations. You typically
sum the costs within each level of the tree to obtain the per-level costs, and then you
sum all the per-level costs to determine the total cost of all levels of the recursion.
Sometimes, however, adding up the total cost takes more creativity.

A recursion tree is best used to generate intuition for a good guess, which you
can then verify by the substitution method. If you are meticulous when drawing out
a recursion tree and summing the costs, however, you can use a recursion tree as a
direct proof of a solution to a recurrence. But if you use it only to generate a good
guess, you can often tolerate a small amount of <sloppiness,= which can simplify
the math. When you verify your guess with the substitution method later on, your
math should be precise. This section demonstrates how you can use recursion trees
to solve recurrences, generate good guesses, and gain intuition for recurrences.

An illustrative example
Let’s see how a recursion tree can provide a good guess for an upper-bound solution
to the recurrence
T .n/ D 3T .n=4/ C ‚.n 2 / : (4.13)
Figure 4.1 shows how to derive the recursion tree for T .n/ D 3T .n=4/ C cn 2 ,
where the constant c > 0 is the upper-bound constant in the ‚.n 2 / term. Part (a)
of the ûgure shows T .n/, which part (b) expands into an equivalent tree represent-
ing the recurrence. The cn 2 term at the root represents the cost at the top level
of recursion, and the three subtrees of the root represent the costs incurred by the

96 Chapter 4 Divide-and-Conquer

…

…

(d)

(c) (b) (a)

T .n/ cn 2 cn 2

cn 2

T
 n
4

Í
T
 n
4

Í
T
 n
4

Í

T
 n
16

Í
T
 n
16

Í
T
 n
16

Í
T
 n
16

Í
T
 n
16

Í
T
 n
16

Í
T
 n
16

Í
T
 n
16

Í
T
 n
16

Í

cn 2

c
 n
4

Í 2
c
 n
4

Í 2
c
 n
4

Í 2

c
 n
4

Í 2
c
 n
4

Í 2
c
 n
4

Í 2

c
 n
16

Í 2
c
 n
16

Í 2
c
 n
16

Í 2
c
 n
16

Í 2
c
 n
16

Í 2
c
 n
16

Í 2
c
 n
16

Í 2
c
 n
16

Í 2
c
 n
16

Í 2

3
16
cn 2

Î
3
16

Ï 2

cn 2

log 4 n

3 log 4 n D n log 4 3

‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.n log 4 3 /

Total: O.n 2 /

Figure 4.1 Constructing a recursion tree for the recurrence T .n/ D 3T .n=4/ C cn 2 . Part (a)
shows T .n/, which progressively expands in (b)–(d) to form the recursion tree. The fully expanded
tree in (d) has height log 4 n.

4.4 The recursion-tree method for solving recurrences 97

subproblems of size n=4. Part (c) shows this process carried one step further by
expanding each node with cost T .n=4/ from part (b). The cost for each of the three
children of the root is c.n=4/ 2 . We continue expanding each node in the tree by
breaking it into its constituent parts as determined by the recurrence.

Because subproblem sizes decrease by a factor of 4 every time we go down one
level, the recursion must eventually bottom out in a base case where n < n 0 . By
convention, the base case is T .n/ D ‚.1/ for n < n 0 , where n 0 > 0 is any
threshold constant sufûciently large that the recurrence is well deûned. For the
purpose of intuition, however, let’s simplify the math a little. Let’s assume that n
is an exact power of 4 and that the base case is T .1/ D ‚.1/. As it turns out, these
assumptions don’t affect the asymptotic solution.
What’s the height of the recursion tree? The subproblem size for a node at

depth i is n=4 i . As we descend the tree from the root, the subproblem size hits
n D 1 when n=4 i D 1 or, equivalently, when i D log 4 n. Thus, the tree has
internal nodes at depths 0; 1; 2; : : : ; log 4 n 1 and leaves at depth log 4 n.
Part (d) of Figure 4.1 shows the cost at each level of the tree. Each level has

three times as many nodes as the level above, and so the number of nodes at
depth i is 3 i . Because subproblem sizes reduce by a factor of 4 for each level
further from the root, each internal node at depth i D 0; 1; 2; : : : ; log 4 n 1 has a
cost of c.n=4 i / 2 . Multiplying, we see that the total cost of all nodes at a given
depth i is 3 i c.n=4 i / 2 D .3=16/ i cn 2 . The bottom level, at depth log 4 n, con-
tains 3 log 4 n D n log 4 3 leaves (using equation (3.21) on page 66). Each leaf con-
tributes ‚.1/, leading to a total leaf cost of ‚.n log 4 3 /.

Now we add up the costs over all levels to determine the cost for the entire tree:

T .n/ D cn 2 C
3
16
cn 2 C

Î
3
16

Ï 2

cn 2 C C
Î
3
16

Ï log 4 n

cn 2 C ‚.n log 4 3 /

D
log 4 n X

i D0

Î
3
16

Ï i
cn 2 C ‚.n log 4 3 /

<
1 X

i D0

Î
3
16

Ï i
cn 2 C ‚.n log 4 3 /

D
1

1 .3=16/
cn 2 C ‚.n log 4 3 / (by equation (A.7) on page 1142)

D
16
13
cn 2 C ‚.n log 4 3 /

D O.n 2 / (‚.n log 4 3 / D O.n 0:8 / D O.n 2 /) .
We’ve derived the guess of T .n/ D O.n 2 / for the original recurrence. In this exam-
ple, the coefûcients of cn 2 form a decreasing geometric series. By equation (A.7),
the sum of these coefûcients is bounded from above by the constant 16=13. Since

98 Chapter 4 Divide-and-Conquer

the root’s contribution to the total cost is cn 2 , the cost of the root dominates the
total cost of the tree.

In fact, if O.n 2 / is indeed an upper bound for the recurrence (as we’ll verify in
a moment), then it must be a tight bound. Why? The ûrst recursive call contributes
a cost of ‚.n 2 /, and so �.n 2 / must be a lower bound for the recurrence.
Let’s now use the substitution method to verify that our guess is correct, namely,

that T .n/ D O.n 2 / is an upper bound for the recurrence T .n/ D 3T .n=4/C‚.n 2 /.
We want to show that T .n/ හ dn 2 for some constant d > 0. Using the same
constant c > 0 as before, we have
T .n/ හ 3T .n=4/ C cn 2

හ 3d.n=4/ 2 C cn 2

D
3
16
dn 2 C cn 2

හ dn 2 ;

where the last step holds if we choose d .16=13/c .
For the base case of the induction, let n 0 > 0 be a sufûciently large threshold

constant that the recurrence is well deûned when T .n/ D ‚.1/ for n < n 0 . We
can pick d large enough that d dominates the constant hidden by the ‚, in which
case dn 2 d T .n/ for 1 හ n < n 0 , completing the proof of the base case.

The substitution proof we just saw involves two named constants, c and d . We
named c and used it to stand for the upper-bound constant hidden and guaranteed to
exist by the ‚-notation. We cannot pick c arbitrarily4it’s given to us4although,
for any such c , any constant c 0 c also sufûces. We also named d , but we were
free to choose any value for it that ût our needs. In this example, the value of d
happened to depend on the value of c , which is ûne, since d is constant if c is
constant.

An irregular example
Let’s ûnd an asymptotic upper bound for another, more irregular, example. Fig-
ure 4.2 shows the recursion tree for the recurrence
T .n/ D T .n=3/ C T .2n=3/ C ‚.n/ : (4.14)
This recursion tree is unbalanced, with different root-to-leaf paths having different
lengths. Going left at any node produces a subproblem of one-third the size, and
going right produces a subproblem of two-thirds the size. Let n 0 > 0 be the implicit
threshold constant such that T .n/ D ‚.1/ for 0 < n < n 0 , and let c represent the
upper-bound constant hidden by the ‚.n/ term for n n 0 . There are actually two
n 0 constants here4one for the threshold in the recurrence, and the other for the
threshold in the ‚-notation, so we’ll let n 0 be the larger of the two constants.

4.4 The recursion-tree method for solving recurrences 99

…

…

cn

cn

cn

cn

c
 n
3

Í
c
Î
2n
3

Ï

c
 n
9

Í
c
Î
2n
9

Ï
c
Î
2n
9

Ï
c
Î
4n
9

Ï

 log 3=2 .n=n 0 /
Ú C 1

Total: O.n lg n/
‚.1/

‚.1/ ‚.1/

‚.1/
‚.1/

‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/

‚.1/

‚.n/

Figure 4.2 A recursion tree for the recurrence T .n/ D T .n=3/ C T .2n=3/ C cn.

The height of the tree runs down the right edge of the tree, corresponding to sub-
problems of sizes n; .2=3/n; .4=9/n; : : : ;‚.1/ with costs bounded by cn; c.2n=3/;
c.4n=9/; : : : ;‚.1/, respectively. We hit the rightmost leaf when .2=3/ h n < n 0 හ
.2=3/ h1 n, which happens when h D blog 3=2 .n=n 0 /cC 1 since, applying the üoor
bounds in equation (3.2) on page 64 with x D log 3=2 .n=n 0 /, we have .2=3/ h n D
.2=3/ bxcC1 n < .2=3/ x n D .n 0 =n/n D n 0 and .2=3/ h1 n D .2=3/ bxc n > .2=3/ x n
D .n 0 =n/n D n 0 . Thus, the height of the tree is h D ‚.lg n/.
We’re now in a position to understand the upper bound. Let’s postpone dealing

with the leaves for a moment. Summing the costs of internal nodes across each
level, we have at most cn per level times the ‚.lg n/ tree height for a total cost of
O.n lg n/ for all internal nodes.

It remains to deal with the leaves of the recursion tree, which represent base
cases, each costing ‚.1/. How many leaves are there? It’s tempting to upper-
bound their number by the number of leaves in a complete binary tree of height
h D blog 3=2 .n=n 0 /c C 1, since the recursion tree is contained within such a com-
plete binary tree. But this approach turns out to give us a poor bound. The
complete binary tree has 1 node at the root, 2 nodes at depth 1, and gener-
ally 2 k nodes at depth k. Since the height is h D blog 3=2 nc C 1, there are

100 Chapter 4 Divide-and-Conquer

2 h D 2 blog 3=2 ncC1 හ 2n log 3=2 2 leaves in the complete binary tree, which is an
upper bound on the number of leaves in the recursion tree. Because the cost of
each leaf is ‚.1/, this analysis says that the total cost of all leaves in the recursion
tree is O.n log 3=2 2 / D O.n 1:71 /, which is an asymptotically greater bound than the
O.n lg n/ cost of all internal nodes. In fact, as we’re about to see, this bound is
not tight. The cost of all leaves in the recursion tree is O.n/4asymptotically less
than O.n lg n/. In other words, the cost of the internal nodes dominates the cost of
the leaves, not vice versa.

Rather than analyzing the leaves, we could quit right now and prove by substi-
tution that T .n/ D ‚.n lg n/. This approach works (see Exercise 4.4-3), but it’s
instructive to understand how many leaves this recursion tree has. You may see
recurrences for which the cost of leaves dominates the cost of internal nodes, and
then you’ll be in better shape if you’ve had some experience analyzing the number
of leaves.
To ûgure out how many leaves there really are, let’s write a recurrence L.n/ for

the number of leaves in the recursion tree for T .n/. Since all the leaves in T .n/
belong either to the left subtree or the right subtree of the root, we have

L.n/ D

(
1 if n < n 0 ;
L.n=3/ C L.2n=3/ if n n 0 :

(4.15)

This recurrence is similar to recurrence (4.14), but it’s missing the ‚.n/ term, and
it contains an explicit base case. Because this recurrence omits the ‚.n/ term, it
is much easier to solve. Let’s apply the substitution method to show that it has
solution L.n/ D O.n/. Using the inductive hypothesis L.n/ හ dn for some
constant d > 0, and assuming that the inductive hypothesis holds for all values
less than n, we have
L.n/ D L.n=3/ C L.2n=3/

හ dn=3 C 2.dn/=3
හ dn ;

which holds for any d > 0. We can now choose d large enough to handle the base
case L.n/ D 1 for 0 < n < n 0 , for which d D 1 sufûces, thereby completing
the substitution method for the upper bound on leaves. (Exercise 4.4-2 asks you to
prove that L.n/ D ‚.n/.)
Returning to recurrence (4.14) for T .n/, it now becomes apparent that the total

cost of leaves over all levels must be L.n/ ‚.1/ D ‚.n/. Since we have derived
the bound of O.n lg n/ on the cost of the internal nodes, it follows that the solution
to recurrence (4.14) is T .n/ D O.n lg n/ C ‚.n/ D O.n lg n/. (Exercise 4.4-3
asks you to prove that T .n/ D ‚.n lg n/.)
It’s wise to verify any bound obtained with a recursion tree by using the sub-

stitution method, especially if you’ve made simplifying assumptions. But another

4.5 The master method for solving recurrences 101

strategy altogether is to use more-powerful mathematics, typically in the form of
the master method in the next section (which unfortunately doesn’t apply to recur-
rence (4.14)) or the Akra-Bazzi method (which does, but requires calculus). Even
if you use a powerful method, a recursion tree can improve your intuition for what’s
going on beneath the heavy math.

Exercises
4.4-1
For each of the following recurrences, sketch its recursion tree, and guess a good
asymptotic upper bound on its solution. Then use the substitution method to verify
your answer.
a. T .n/ D T .n=2/ C n 3 .
b. T .n/ D 4T .n=3/ C n.
c. T .n/ D 4T .n=2/ C n.
d. T .n/ D 3T .n 1/ C 1.

4.4-2
Use the substitution method to prove that recurrence (4.15) has the asymptotic
lower bound L.n/ D �.n/. Conclude that L.n/ D ‚.n/.
4.4-3
Use the substitution method to prove that recurrence (4.14) has the solution T .n/ D
�.n lg n/. Conclude that T .n/ D ‚.n lg n/.
4.4-4
Use a recursion tree to justify a good guess for the solution to the recurrence
T .n/ D T .˛n/CT ..1˛/n/C‚.n/, where ̨ is a constant in the range 0 < ˛ < 1.

4.5 The master method for solving recurrences

The master method provides a <cookbook= method for solving algorithmic recur-
rences of the form
T .n/ D aT .n=b/ C f .n/ ; (4.16)
where a > 0 and b > 1 are constants. We call f .n/ a driving function, and we call
a recurrence of this general form a master recurrence. To use the master method,
you need to memorize three cases, but then you’ll be able to solve many master
recurrences quite easily.

102 Chapter 4 Divide-and-Conquer

A master recurrence describes the running time of a divide-and-conquer algo-
rithm that divides a problem of size n into a subproblems, each of size n=b < n .
The algorithm solves the a subproblems recursively, each in T .n=b/ time. The
driving function f .n/ encompasses the cost of dividing the problem before the re-
cursion, as well as the cost of combining the results of the recursive solutions to
subproblems. For example, the recurrence arising from Strassen’s algorithm is a
master recurrence with a D 7, b D 2, and driving function f .n/ D ‚.n 2 /.

As we have mentioned, in solving a recurrence that describes the running time
of an algorithm, one technicality that we’d often prefer to ignore is the requirement
that the input size n be an integer. For example, we saw that the running time
of merge sort can be described by recurrence (2.3), T .n/ D 2T .n=2/ C ‚.n/,
on page 41. But if n is an odd number, we really don’t have two problems of
exactly half the size. Rather, to ensure that the problem sizes are integers, we round
one subproblem down to size bn=2c and the other up to size dn=2e, so the true
recurrence is T .n/ D T .dn=2e C T .bn=2c/ C ‚.n/. But this üoors-and-ceilings
recurrence is longer to write and messier to deal with than recurrence (2.3), which
is deûned on the reals. We’d rather not worry about üoors and ceilings, if we don’t
have to, especially since the two recurrences have the same ‚.n lg n/ solution.

The master method allows you to state a master recurrence without üoors and
ceilings and implicitly infer them. No matter how the arguments are rounded up
or down to the nearest integer, the asymptotic bounds that it provides remain the
same. Moreover, as we’ll see in Section 4.6, if you deûne your master recurrence
on the reals, without implicit üoors and ceilings, the asymptotic bounds still don’t
change. Thus you can ignore üoors and ceilings for master recurrences. Section 4.7
gives sufûcient conditions for ignoring üoors and ceilings in more general divide-
and-conquer recurrences.

The master theorem

The master method depends upon the following theorem.

Theorem 4.1 (Master theorem)
Let a > 0 and b > 1 be constants, and let f .n/ be a driving function that is
deûned and nonnegative on all sufûciently large reals. Deûne the recurrence T .n/
on n 2 N by
T .n/ D aT .n=b/ C f .n/ ; (4.17)
where aT .n=b/ actually means a 0 T .bn=bc/ C a 00 T .dn=be/ for some constants
a 0 0 and a 00 0 satisfying a D a 0 C a 00 . Then the asymptotic behavior of T .n/
can be characterized as follows:

4.5 The master method for solving recurrences 103

1. If there exists a constant � > 0 such that f .n/ D O.n log b a /, then T .n/ D
‚.n log b a /.

2. If there exists a constant k 0 such that f .n/ D ‚.n log b a lg k n/, then T .n/ D
‚.n log b a lg kC1 n/.

3. If there exists a constant � > 0 such that f .n/ D �.n log b aC /, and if f .n/ addi-
tionally satisûes the regularity condition af .n=b/ හ cf .n/ for some constant
c < 1 and all sufûciently large n, then T .n/ D ‚.f .n//.

Before applying the master theorem to some examples, let’s spend a few mo-
ments to understand broadly what it says. The function n log b a is called the water-
shed function. In each of the three cases, we compare the driving function f .n/ to
the watershed function n log b a . Intuitively, if the watershed function grows asymp-
totically faster than the driving function, then case 1 applies. Case 2 applies if the
two functions grow at nearly the same asymptotic rate. Case 3 is the <opposite= of
case 1, where the driving function grows asymptotically faster than the watershed
function. But the technical details matter.
In case 1, not only must the watershed function grow asymptotically faster than

the driving function, it must grow polynomially faster. That is, the watershed func-
tion n log b a must be asymptotically larger than the driving function f .n/ by at least
a factor of ‚.n / for some constant � > 0. The master theorem then says that the
solution is T .n/ D ‚.n log b a /. In this case, if we look at the recursion tree for the
recurrence, the cost per level grows at least geometrically from root to leaves, and
the total cost of leaves dominates the total cost of the internal nodes.

In case 2, the watershed and driving functions grow at nearly the same asymp-
totic rate. But more speciûcally, the driving function grows faster than the wa-
tershed function by a factor of ‚.lg k n/, where k 0. The master theorem
says that we tack on an extra lg n factor to f .n/, yielding the solution T .n/ D
‚.n log b a lg kC1 n/. In this case, each level of the recursion tree costs approxi-
mately the same4‚.n log b a lg k n/4and there are ‚.lg n/ levels. In practice, the
most common situation for case 2 occurs when k D 0, in which case the water-
shed and driving functions have the same asymptotic growth, and the solution is
T .n/ D ‚.n log b a lg n/.
Case 3 mirrors case 1. Not only must the driving function grow asymptotically

faster than the watershed function, it must grow polynomially faster. That is, the
driving function f .n/ must be asymptotically larger than the watershed function
n log b a by at least a factor of ‚.n / for some constant � > 0. Moreover, the driving
function must satisfy the regularity condition that af .n=b/ හ cf .n/. This condi-
tion is satisûed by most of the polynomially bounded functions that you’re likely
to encounter when applying case 3. The regularity condition might not be satisûed

104 Chapter 4 Divide-and-Conquer

if the driving function grows slowly in local areas, yet relatively quickly overall.
(Exercise 4.5-5 gives an example of such a function.) For case 3, the master theo-
rem says that the solution is T .n/ D ‚.f .n//. If we look at the recursion tree, the
cost per level drops at least geometrically from the root to the leaves, and the root
cost dominates the cost of all other nodes.
It’s worth looking again at the requirement that there be polynomial separation

between the watershed function and the driving function for either case 1 or case 3
to apply. The separation doesn’t need to be much, but it must be there, and it must
grow polynomially. For example, for the recurrence T .n/ D 4T .n=2/ C n 1:99

(admittedly not a recurrence you’re likely to see when analyzing an algorithm), the
watershed function is n log b a D n 2 . Hence the driving function f .n/ D n 1:99 is
polynomially smaller by a factor of n 0:01 . Thus case 1 applies with � D 0:01.

Using the master method

To use the master method, you determine which case (if any) of the master theorem
applies and write down the answer.
As a ûrst example, consider the recurrence T .n/ D 9T .n=3/ C n. For this

recurrence, we have a D 9 and b D 3, which implies that n log b a D n log 3 9 D ‚.n 2).
Since f .n/ D n D O.n 2 / for any constant � හ 1, we can apply case 1 of the
master theorem to conclude that the solution is T .n/ D ‚.n 2 /.

Now consider the recurrence T .n/ D T .2n=3/ C 1, which has a D 1 and
b D 3=2, which means that the watershed function is n log b a D n log 3=2 1 D n 0 D 1.
Case 2 applies since f .n/ D 1 D ‚.n log b a lg 0 n/ D ‚.1/. The solution to the
recurrence is T .n/ D ‚.lg n/.

For the recurrence T .n/ D 3T .n=4/ C n lg n, we have a D 3 and b D 4, which
means that n log b a D n log 4 3 D O.n 0:793 /. Since f .n/ D n lg n D �.n log 4 3C /,
where � can be as large as approximately 0:2, case 3 applies as long as the regularity
condition holds for f .n/. It does, because for sufûciently large n, we have that
af .n=b/ D 3.n=4/ lg.n=4/ හ .3=4/n lg n D cf .n/ for c D 3=4. By case 3, the
solution to the recurrence is T .n/ D ‚.n lg n/.
Next, let’s look at the recurrence T .n/ D 2T .n=2/ C n lg n, where we have

a D 2, b D 2, and n log b a D n log 2 2 D n. Case 2 applies since f .n/ D n lg n D
‚.n log b a lg 1 n/. We conclude that the solution is T .n/ D ‚.n lg 2 n/.

We can use the master method to solve the recurrences we saw in Sections 2.3.2,
4.1, and 4.2.
Recurrence (2.3), T .n/ D 2T .n=2/ C ‚.n/, on page 41, characterizes the run-

ning time of merge sort. Since a D 2 and b D 2, the watershed function is
n log b a D n log 2 2 D n. Case 2 applies because f .n/ D ‚.n/, and the solution is
T .n/ D ‚.n lg n/.

4.5 The master method for solving recurrences 105

Recurrence (4.9), T .n/ D 8T .n=2/ C ‚.1/, on page 84, describes the running
time of the simple recursive algorithm for matrix multiplication. We have a D 8
and b D 2, which means that the watershed function is n log b a D n log 2 8 D n 3 .
Since n 3 is polynomially larger than the driving function f .n/ D ‚.1/4indeed,
we have f .n/ D O.n 3 / for any positive � < 34case 1 applies. We conclude
that T .n/ D ‚.n 3 /.
Finally, recurrence (4.10), T .n/ D 7T .n=2/ C ‚.n 2 /, on page 87, arose from

the analysis of Strassen’s algorithm for matrix multiplication. For this recurrence,
we have a D 7 and b D 2, and the watershed function is n log b a D n lg 7 . Observing
that lg 7 D 2:807355 : : :, we can let � D 0:8 and bound the driving function
f .n/ D ‚.n 2 / D O.n lg 7 /. Case 1 applies with solution T .n/ D ‚.n lg 7 /.

When the master method doesn’t apply
There are situations where you can’t use the master theorem. For example, it can
be that the watershed function and the driving function cannot be asymptotically
compared. We might have that f .n/ n log b a for an inûnite number of values
of n but also that f .n/ n log b a for an inûnite number of different values of n.
As a practical matter, however, most of the driving functions that arise in the study
of algorithms can be meaningfully compared with the watershed function. If you
encounter a master recurrence for which that’s not the case, you’ll have to resort to
substitution or other methods.

Even when the relative growths of the driving and watershed functions can be
compared, the master theorem does not cover all the possibilities. There is a gap
between cases 1 and 2 when f .n/ D o.n log b a /, yet the watershed function does
not grow polynomially faster than the driving function. Similarly, there is a gap
between cases 2 and 3 when f .n/ D !.n log b a / and the driving function grows
more than polylogarithmically faster than the watershed function, but it does not
grow polynomially faster. If the driving function falls into one of these gaps, or if
the regularity condition in case 3 fails to hold, you’ll need to use something other
than the master method to solve the recurrence.

As an example of a driving function falling into a gap, consider the recurrence
T .n/ D 2T .n=2/ C n= lg n. Since a D 2 and b D 2, the watershed function
is n log b a D n log 2 2 D n 1 D n. The driving function is n= lg n D o.n/, which
means that it grows asymptotically more slowly than the watershed function n.
But n= lg n grows only logarithmically slower than n, not polynomially slower.
More precisely, equation (3.24) on page 67 says that lg n D o.n / for any constant
� > 0, which means that 1= lg n D !.n / and n= lg n D !.n 1 / D !.n log b a /.
Thus no constant � > 0 exists such that n= lg n D O.n log b a /, which is required
for case 1 to apply. Case 2 fails to apply as well, since n= lg n D ‚.n log b a lg k n/,
where k D 1, but k must be nonnegative for case 2 to apply.

106 Chapter 4 Divide-and-Conquer

To solve this kind of recurrence, you must use another method, such as the sub-
stitution method (Section 4.3) or the Akra-Bazzi method (Section 4.7). (Exer-
cise 4.6-3 asks you to show that the answer is ‚.n lg lg n/.) Although the master
theorem doesn’t handle this particular recurrence, it does handle the overwhelming
majority of recurrences that tend to arise in practice.

Exercises
4.5-1
Use the master method to give tight asymptotic bounds for the following recur-
rences.
a. T .n/ D 2T .n=4/ C 1.
b. T .n/ D 2T .n=4/ C

p
n.

c. T .n/ D 2T .n=4/ C
p
n lg 2 n.

d. T .n/ D 2T .n=4/ C n.
e. T .n/ D 2T .n=4/ C n 2 .

4.5-2
Professor Caesar wants to develop a matrix-multiplication algorithm that is asymp-
totically faster than Strassen’s algorithm. His algorithm will use the divide-and-
conquer method, dividing each matrix into n=4 n=4 submatrices, and the divide
and combine steps together will take ‚.n 2 / time. Suppose that the professor’s al-
gorithm creates a recursive subproblems of size n=4. What is the largest integer
value of a for which his algorithm could possibly run asymptotically faster than
Strassen’s?
4.5-3
Use the master method to show that the solution to the binary-search recurrence
T .n/ D T .n=2/ C ‚.1/ is T .n/ D ‚.lg n/. (See Exercise 2.3-6 for a description
of binary search.)
4.5-4
Consider the function f .n/ D lg n. Argue that although f .n=2/ < f .n/ , the
regularity condition af .n=b/ හ cf .n/ with a D 1 and b D 2 does not hold for
any constant c < 1. Argue further that for any � > 0, the condition in case 3 that
f .n/ D �.n log b aC / does not hold.

4.6 Proof of the continuous master theorem 107

4.5-5
Show that for suitable constants a, b, and � , the function f .n/ D 2 dlg ne satisûes all
the conditions in case 3 of the master theorem except the regularity condition.

? 4.6 Proof of the continuous master theorem

Proving the master theorem (Theorem 4.1) in its full generality, especially dealing
with the knotty technical issue of üoors and ceilings, is beyond the scope of this
book. This section, however, states and proves a variant of the master theorem,
called the continuous master theorem 1 in which the master recurrence (4.17) is
deûned over sufûciently large positive real numbers. The proof of this version,
uncomplicated by üoors and ceilings, contains the main ideas needed to understand
how master recurrences behave. Section 4.7 discusses üoors and ceilings in divide-
and-conquer recurrences at greater length, presenting sufûcient conditions for them
not to affect the asymptotic solutions.
Of course, since you need not understand the proof of the master theorem in

order to apply the master method, you may choose to skip this section. But if you
wish to study more-advanced algorithms beyond the scope of this textbook, you
may appreciate a better understanding of the underlying mathematics, which the
proof of the continuous master theorem provides.

Although we usually assume that recurrences are algorithmic and don’t require
an explicit statement of a base case, we must be much more careful for proofs that
justify the practice. The lemmas and theorem in this section explicitly state the base
cases, because the inductive proofs require mathematical grounding. It is common
in the world of mathematics to be extraordinarily careful proving theorems that
justify acting more casually in practice.

The proof of the continuous master theorem involves two lemmas. Lemma 4.2
uses a slightly simpliûed master recurrence with a threshold constant of n 0 D 1,
rather than the more general n 0 > 0 threshold constant implied by the unstated base
case. The lemma employs a recursion tree to reduce the solution of the simpliûed
master recurrence to that of evaluating a summation. Lemma 4.3 then provides
asymptotic bounds for the summation, mirroring the three cases of the master the-
orem. Finally, the continuous master theorem itself (Theorem 4.4) gives asymp-
totic bounds for master recurrences, while generalizing to an arbitrary threshold
constant n 0 > 0 as implied by the unstated base case.

1 This terminology does not mean that either T .n/ or f .n/ need be continuous, only that the domain
of T .n/ is the real numbers, as opposed to integers.

108 Chapter 4 Divide-and-Conquer

Some of the proofs use the properties described in Problem 3-5 on pages 72373
to combine and simplify complicated asymptotic expressions. Although Prob-
lem 3-5 addresses only ‚-notation, the properties enumerated there can be ex-
tended to O-notation and �-notation as well.
Here’s the ûrst lemma.

Lemma 4.2
Let a > 0 and b > 1 be constants, and let f .n/ be a function deûned over real
numbers n 1. Then the recurrence

T .n/ D

(
‚.1/ if 0 හ n < 1 ;
aT .n=b/ C f .n/ if n 1

has solution

T .n/ D ‚.n log b a / C
blog b nc X

j D0

a j f .n=b j / : (4.18)

Proof Consider the recursion tree in Figure 4.3. Let’s look ûrst at its inter-
nal nodes. The root of the tree has cost f .n/, and it has a children, each with
cost f .n=b/. (It is convenient to think of a as being an integer, especially when vi-
sualizing the recursion tree, but the mathematics does not require it.) Each of these
children has a children, making a 2 nodes at depth 2, and each of the a children
has cost f .n=b 2 /. In general, there are a j nodes at depth j , and each node has
cost f .n=b j /.
Now, let’s move on to understanding the leaves. The tree grows downward un-

til n=b j becomes less than 1. Thus, the tree has height blog b nc C 1, because
n=b blog b nc n=b log b n D 1 and n=b blog b ncC1 < n=b log b n D 1. Since, as we
have observed, the number of nodes at depth j is a j and all the leaves are at
depth blog b nc C 1, the tree contains a blog b ncC1 leaves. Using the identity (3.21)
on page 66, we have a blog b ncC1 හ a log b nC1 D an log b a D O.n log b a /, since a is
constant, and a blog b ncC1 a log b n D n log b a D �.n log b a /. Consequently, the total
number of leaves is ‚.n log b a /4asymptotically, the watershed function.
We are now in a position to derive equation (4.18) by summing the costs of

the nodes at each depth in the tree, as shown in the ûgure. The ûrst term in the
equation is the total costs of the leaves. Since each leaf is at depth blog b nc C 1
and n=b blog b ncC1 < 1, the base case of the recurrence gives the cost of a
leaf: T .n=b blog b ncC1 / D ‚.1/. Hence the cost of all ‚.n log b a / leaves is
‚.n log b a / ‚.1/ D ‚.n log b a / by Problem 3-5(d). The second term in equa-
tion (4.18) is the cost of the internal nodes, which, in the underlying divide-and-
conquer algorithm, represents the costs of dividing problems into subproblems and

4.6 Proof of the continuous master theorem 109

…

…

…

… … …

…

… … …

…

… … … …

f .n/ f .n/

a a a

a

a a a

a

a a a

a

a

f .n=b/ f .n=b/ f .n=b/

f .n=b 2 / f .n=b 2 / f .n=b 2 / f .n=b 2 / f .n=b 2 / f .n=b 2 / f .n=b 2 / f .n=b 2 / f .n=b 2 /

af .n=b/

a 2 f .n=b 2 /
blog b nc C 1

a blog b ncC1

‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.n log b a /

Total: ‚.n log b a / C
blog b nc X

j D0

a j f .n=b j /

Figure 4.3 The recursion tree generated by T .n/ D aT .n=b/ C f .n/. The tree is a complete a-ary
tree with a blog b ncC1 leaves and height blog b nc C 1. The cost of the nodes at each depth is shown
at the right, and their sum is given in equation (4.18).

then recombining the subproblems. Since the cost for all the internal nodes at
depth j is a j f .n=b j /, the total cost of all internal nodes is
blog b nc X

j D0

a j f .n=b j / :

As we’ll see, the three cases of the master theorem depend on the distribution of
the total cost across levels of the recursion tree:
Case 1: The costs increase geometrically from the root to the leaves, growing by

a constant factor with each level.
Case 2: The costs depend on the value of k in the theorem. With k D 0, the costs

are equal for each level; with k D 1, the costs grow linearly from the root to
the leaves; with k D 2, the growth is quadratic; and in general, the costs grow
polynomially in k.

Case 3: The costs decrease geometrically from the root to the leaves, shrinking
by a constant factor with each level.

110 Chapter 4 Divide-and-Conquer

The summation in equation (4.18) describes the cost of the dividing and com-
bining steps in the underlying divide-and-conquer algorithm. The next lemma pro-
vides asymptotic bounds on the summation’s growth.

Lemma 4.3
Let a > 0 and b > 1 be constants, and let f .n/ be a function deûned over real
numbers n 1. Then the asymptotic behavior of the function

g.n/ D
blog b nc X

j D0

a j f .n=b j / ; (4.19)

deûned for n 1, can be characterized as follows:
1. If there exists a constant � > 0 such that f .n/ D O.n log b a /, then g.n/ D
O.n log b a /.

2. If there exists a constant k 0 such that f .n/ D ‚.n log b a lg k n/, then g.n/ D
‚.n log b a lg kC1 n/.

3. If there exists a constant c in the range 0 < c < 1 such that 0 < af .n=b/ හ
cf .n/ for all n 1, then g.n/ D ‚.f .n//.

Proof For case 1, we have f .n/ D O.n log b a /, which implies that f .n=b j / D
O..n=b j / log b a /. Substituting into equation (4.19) yields

g.n/ D
blog b nc X

j D0

a j O
Î n
b j

Í log b a
Ï

D O

 blog b nc X

j D0

a j
 n
b j

Í log b a
!

(by Problem 3-5(c), repeatedly)

D O

n log b a
blog b nc X

j D0

Î
ab

b log b a

Ï j
!

D O

n log b a
blog b nc X

j D0

.b / j

!

(by equation (3.17) on page 66)

D O
Î
n log b a

Î
b .blog b ncC1/ 1

b 1

ÏÏ
(by equation (A.6) on page 1142) ,

the last series being geometric. Since b and � are constants, the b 1 denom-
inator doesn’t affect the asymptotic growth of g.n/, and neither does the 1 in

4.6 Proof of the continuous master theorem 111

the numerator. Since b .blog b ncC1/ හ .b log b nC1 / D b n D O.n /, we obtain
g.n/ D O.n log b a O.n // D O.n log b a /, thereby proving case 1.

Case 2 assumes that f .n/ D ‚.n log b a lg k n/, from which we can conclude that
f .n=b j / D ‚..n=b j / log b a lg k .n=b j //. Substituting into equation (4.19) and re-
peatedly applying Problem 3-5(c) yields

g.n/ D ‚

 blog b nc X

j D0

a j
 n
b j

Í log b a
lg k

 n
b j

Í !

D ‚

n log b a
blog b nc X

j D0

a j

b j log b a
lg k

 n
b j

Í !

D ‚

n log b a
blog b nc X

j D0

lg k
 n
b j

Í !

D ‚

n log b a
blog b nc X

j D0

Î log b .n=b j /
log b 2

Ï k
!

(by equation (3.19) on page 66)

D ‚

n log b a
blog b nc X

j D0

Î log b n j
log b 2

Ï k
!

(by equations (3.17), (3.18),
and (3.20))

D ‚

n log b a

log k
b 2

blog b nc X

j D0

.log b n j / k

!

D ‚

n log b a
blog b nc X

j D0

.log b n j / k

!

(b > 1 and k are constants) .

The summation within the ‚-notation can be bounded from above as follows:
blog b nc X

j D0

.log b n j / k හ
blog b nc X

j D0

.blog b nc C 1 j / k

D
blog b ncC1 X

j D1

j k (reindexing4pages 114331144)

D O..blog b nc C 1/ kC1 / (by Exercise A.1-5 on page 1144)
D O.log kC1

b n/ (by Exercise 3.3-3 on page 70) .
Exercise 4.6-1 asks you to show that the summation can similarly be bounded from
below by �.log kC1

b n/. Since we have tight upper and lower bounds, the summa-
tion is ‚.log kC1

b n/, from which we can conclude that g.n/ D ‚
ã
n log b a log kC1

b n
ä ,

thereby completing the proof of case 2.

112 Chapter 4 Divide-and-Conquer

For case 3, observe that f .n/ appears in the deûnition (4.19) of g.n/ (when
j D 0) and that all terms of g.n/ are positive. Therefore, we must have g.n/ D
�.f .n// , and it only remains to prove that g.n/ D O.f .n//. Performing j itera-
tions of the inequality af .n=b/ හ cf .n/ yields a j f .n=b j / හ c j f .n/. Substitut-
ing into equation (4.19), we obtain

g.n/ D
blog b nc X

j D0

a j f .n=b j /

හ
blog b nc X

j D0

c j f .n/

හ f .n/
1 X

j D0

c j

D f .n/
Î

1
1 c

Ï
(by equation (A.7) on page 1142 since jc j < 1)

D O.f .n// :
Thus, we can conclude that g.n/ D ‚.f .n//. With case 3 proved, the entire proof
of the lemma is complete.

We can now state and prove the continuous master theorem.

Theorem 4.4 (Continuous master theorem)
Let a > 0 and b > 1 be constants, and let f .n/ be a driving function that is deûned
and nonnegative on all sufûciently large reals. Deûne the algorithmic recurrence
T .n/ on the positive real numbers by
T .n/ D aT .n=b/ C f .n/ :
Then the asymptotic behavior of T .n/ can be characterized as follows:
1. If there exists a constant � > 0 such that f .n/ D O.n log b a /, then T .n/ D
‚.n log b a /.

2. If there exists a constant k 0 such that f .n/ D ‚.n log b a lg k n/, then T .n/ D
‚.n log b a lg kC1 n/.

3. If there exists a constant � > 0 such that f .n/ D �.n log b aC /, and if f .n/ ad-
ditionally satisûes the regularity condition af .n=b/ හ cf .n/ for some constant
c < 1 and all sufûciently large n, then T .n/ D ‚.f .n//.

Proof The idea is to bound the summation (4.18) from Lemma 4.2 by applying
Lemma 4.3. But we must account for Lemma 4.2 using a base case for 0 < n < 1,

4.6 Proof of the continuous master theorem 113

whereas this theorem uses an implicit base case for 0 < n < n 0 , where n 0 > 0 is
an arbitrary threshold constant. Since the recurrence is algorithmic, we can assume
that f .n/ is deûned for n n 0 .

For n > 0, let us deûne two auxiliary functions T 0 .n/ D T .n 0 n/ and f 0 .n/ D
f .n 0 n/. We have
T 0 .n/ D T .n 0 n/

D

(
‚.1/ if n 0 n < n 0 ;
aT .n 0 n=b/ C f .n 0 n/ if n 0 n n 0

D

(
‚.1/ if n < 1 ;
aT 0 .n=b/ C f 0 .n/ if n 1 :

(4.20)

We have obtained a recurrence for T 0 .n/ that satisûes the conditions of Lemma 4.2,
and by that lemma, the solution is

T 0 .n/ D ‚.n log b a / C
blog b nc X

j D0

a j f 0 .n=b j / : (4.21)

To solve T 0 .n/, we ûrst need to bound f 0 .n/. Let’s examine the individual cases
in the theorem.
The condition for case 1 is f .n/ D O.n log b a / for some constant � > 0. We

have
f 0 .n/ D f .n 0 n/

D O..n 0 n/ log b a /
D O.n log b a / ;

since a, b, n 0 , and � are all constant. The function f 0 .n/ satisûes the conditions of
case 1 of Lemma 4.3, and the summation in equation (4.18) of Lemma 4.2 evaluates
to O.n log b a /. Because a, b and n 0 are all constants, we have
T .n/ D T 0 .n=n 0 /

D ‚..n=n 0 / log b a / C O..n=n 0 / log b a /
D ‚.n log b a / C O.n log b a /
D ‚.n log b a / (by Problem 3-5(b)) ,

thereby completing case 1 of the theorem.
The condition for case 2 is f .n/ D ‚.n log b a lg k n/ for some constant k 0.

We have
f 0 .n/ D f .n 0 n/

D ‚..n 0 n/ log b a lg k .n 0 n//
D ‚.n log b a lg k n/ (by eliminating the constant terms) .

114 Chapter 4 Divide-and-Conquer

Similar to the proof of case 1, the function f 0 .n/ satisûes the conditions of case 2
of Lemma 4.3. The summation in equation (4.18) of Lemma 4.2 is therefore
‚.n log b a lg kC1 n/, which implies that
T .n/ D T 0 .n=n 0 /

D ‚..n=n 0 / log b a / C ‚..n=n 0 / log b a lg kC1 .n=n 0 //
D ‚.n log b a / C ‚.n log b a lg kC1 n/
D ‚.n log b a lg kC1 n/ (by Problem 3-5(c)) ,

which proves case 2 of the theorem.
Finally, the condition for case 3 is f .n/ D �.n log b aC / for some constant � > 0

and f .n/ additionally satisûes the regularity condition af .n=b/ හ cf .n/ for all
n n 0 and some constants c < 1 and n 0 > 1. The ûrst part of case 3 is like
case 1:
f 0 .n/ D f .n 0 n/

D �..n 0 n/ log b aC /
D �.n log b aC / :

Using the deûnition of f 0 .n/ and the fact that n 0 n n 0 for all n 1, we have for
n 1 that
af 0 .n=b/ D af .n 0 n=b/

හ cf .n 0 n/
D cf 0 .n/ :

Thus f 0 .n/ satisûes the requirements for case 3 of Lemma 4.3, and the summation
in equation (4.18) of Lemma 4.2 evaluates to ‚.f 0 .n//, yielding
T .n/ D T 0 .n=n 0 /

D ‚..n=n 0 / log b a / C ‚.f 0 .n=n 0 //
D ‚.f 0 .n=n 0 //
D ‚.f .n// ;

which completes the proof of case 3 of the theorem and thus the whole theorem.

Exercises
4.6-1
Show that P blog b nc

j D0 .log b n j / k D �.log kC1
b n/.

? 4.6-2
Show that case 3 of the master theorem is overstated (which is also why case 3
of Lemma 4.3 does not require that f .n/ D �.n log b aC /) in the sense that the

4.7 Akra-Bazzi recurrences 115

regularity condition af .n=b/ හ cf .n/ for some constant c < 1 implies that there
exists a constant � > 0 such that f .n/ D �.n log b aC /.

? 4.6-3
For f .n/ D ‚.n log b a = lg n/, prove that the summation in equation (4.19) has solu-
tion g.n/ D ‚.n log b a lg lg n/. Conclude that a master recurrence T .n/ using f .n/
as its driving function has solution T .n/ D ‚.n log b a lg lg n/.

? 4.7 Akra-Bazzi recurrences

This section provides an overview of two advanced topics related to divide-and-
conquer recurrences. The ûrst deals with technicalities arising from the use of
üoors and ceilings, and the second discusses the Akra-Bazzi method, which in-
volves a little calculus, for solving complicated divide-and-conquer recurrences.
In particular, we’ll look at the class of algorithmic divide-and-conquer recur-

rences originally studied by M. Akra and L. Bazzi [13]. These Akra-Bazzi recur-
rences take the form

T .n/ D f .n/ C
k X

i D1

a i T .n=b i / ; (4.22)

where k is a positive integer; all the constants a 1 ; a 2 ; : : : ; a k 2 R are strictly posi-
tive; all the constants b 1 ; b 2 ; : : : ; b k 2 R are strictly greater than 1; and the driving
function f .n/ is deûned on sufûciently large nonnegative reals and is itself non-
negative.
Akra-Bazzi recurrences generalize the class of recurrences addressed by the

master theorem. Whereas master recurrences characterize the running times of
divide-and-conquer algorithms that break a problem into equal-sized subproblems
(modulo üoors and ceilings), Akra-Bazzi recurrences can describe the running time
of divide-and-conquer algorithms that break a problem into different-sized sub-
problems. The master theorem, however, allows you to ignore üoors and ceilings,
but the Akra-Bazzi method for solving Akra-Bazzi recurrences needs an additional
requirement to deal with üoors and ceilings.
But before diving into the Akra-Bazzi method itself, let’s understand the lim-

itations involved in ignoring üoors and ceilings in Akra-Bazzi recurrences. As
you’re aware, algorithms generally deal with integer-sized inputs. The mathemat-
ics for recurrences is often easier with real numbers, however, than with integers,
where we must cope with üoors and ceilings to ensure that terms are well deûned.
The difference may not seem to be much4especially because that’s often the truth
with recurrences4but to be mathematically correct, we must be careful with our

116 Chapter 4 Divide-and-Conquer

assumptions. Since our end goal is to understand algorithms and not the vagaries
of mathematical corner cases, we’d like to be casual yet rigorous. How can we
treat üoors and ceilings casually while still ensuring rigor?
From a mathematical point of view, the difûculty in dealing with üoors and

ceilings is that some driving functions can be really, really weird. So it’s not okay in
general to ignore üoors and ceilings in Akra-Bazzi recurrences. Fortunately, most
of the driving functions we encounter in the study of algorithms behave nicely, and
üoors and ceilings don’t make a difference.

The polynomial-growth condition

If the driving function f .n/ in equation (4.22) is well behaved in the following
sense, it’s okay to drop üoors and ceilings.

A function f .n/ deûned on all sufûciently large positive reals satisûes the
polynomial-growth condition if there exists a constant y n > 0 such that the
following holds: for every constant � 1, there exists a constant d > 1
(depending on �) such that f .n/=d හ f .n/ හ df .n/ for all 1 හ හ �
and n y n.

This deûnition may be one of the hardest in this textbook to get your head around.
To a ûrst order, it says that f .n/ satisûes the property that f .‚.n// D ‚.f .n//,
although the polynomial-growth condition is actually somewhat stronger (see Ex-
ercise 4.7-4). The deûnition also implies that f .n/ is asymptotically positive (see
Exercise 4.7-3).
Examples of functions that satisfy the polynomial-growth condition include any

function of the form f .n/ D ‚.n ˛ lg ˇ n lg lg n/, where ˛, ˇ, and � are constants.
Most of the polynomially bounded functions used in this book satisfy the condition.
Exponentials and superexponentials do not (see Exercise 4.7-2, for example), and
there also exist polynomially bounded functions that do not.

Floors and ceilings in <nice= recurrences
When the driving function in an Akra-Bazzi recurrence satisûes the polynomial-
growth condition, üoors and ceilings don’t change the asymptotic behavior of the
solution. The following theorem, which is presented without proof, formalizes this
notion.

Theorem 4.5
Let T .n/ be a function deûned on the nonnegative reals that satisûes recur-
rence (4.22), where f .n/ satisûes the polynomial-growth condition. Let T 0 .n/ be
another function deûned on the natural numbers also satisfying recurrence (4.22),

4.7 Akra-Bazzi recurrences 117

except that each T .n=b i / is replaced either with T .dn=b i e/ or with T .bn=b i c/.
Then we have T 0 .n/ D ‚.T .n//.

Floors and ceilings represent a minor perturbation to the arguments in the re-
cursion. By inequality (3.2) on page 64, they perturb an argument by at most 1.
But much larger perturbations are tolerable. As long as the driving function f .n/
in recurrence (4.22) satisûes the polynomial-growth condition, it turns out that re-
placing any term T .n=b i / with T .n=b i C h i .n//, where jh i .n/j D O.n= lg 1C n/
for some constant � > 0 and sufûciently large n, leaves the asymptotic solution
unaffected. Thus, the divide step in a divide-and-conquer algorithm can be moder-
ately coarse without affecting the solution to its running-time recurrence.

The Akra-Bazzi method

The Akra-Bazzi method, not surprisingly, was developed to solve Akra-Bazzi re-
currences (4.22), which by dint of Theorem 4.5, applies in the presence of üoors
and ceilings or even larger perturbations, as just discussed. The method involves
ûrst determining the unique real number p such that P k

i D1 a i =b p
i D 1. Such a p

always exists, because when p ! 1, the sum goes to 1; it decreases as p in-
creases; and when p ! 1, it goes to 0. The Akra-Bazzi method then gives the
solution to the recurrence as

T .n/ D ‚
Î
n p
Î
1 C

Z n

1

f .x/
x pC1

dx
ÏÏ

: (4.23)

As an example, consider the recurrence
T .n/ D T .n=5/ C T .7n=10/ C n : (4.24)
We’ll see the similar recurrence (9.1) on page 240 when we study an algorithm for
selecting the i th smallest element from a set of n numbers. This recurrence has the
form of equation (4.22), where a 1 D a 2 D 1, b 1 D 5, b 2 D 10=7, and f .n/ D n.
To solve it, the Akra-Bazzi method says that we should determine the unique p
satisfying Î
1
5

Ï p

C
Î
7
10

Ï p

D 1 :

Solving for p is kind of messy4it turns out that p D 0:83978 : : :4but we can
solve the recurrence without actually knowing the exact value for p. Observe that
.1=5/ 0 C .7=10/ 0 D 2 and .1=5/ 1 C .7=10/ 1 D 9=10, and thus p lies in the
range 0 < p < 1. That turns out to be sufûcient for the Akra-Bazzi method
to give us the solution. We’ll use the fact from calculus that if k ¤ 1, then R
x k dx D x kC1 =.k C 1/, which we’ll apply with k D p ¤ 1. The Akra-Bazzi

118 Chapter 4 Divide-and-Conquer

solution (4.23) gives us

T .n/ D ‚
Î
n p
Î
1 C

Z n

1

f .x/
x pC1

dx
ÏÏ

D ‚
Î
n p
Î
1 C

Z n

1
x p dx

ÏÏ

D ‚
Î
n p
Î
1 C

Ð
x 1p

1 p

 n

1

ÏÏ

D ‚
Î
n p
Î
1 C

Î
n 1p

1 p

1
1 p

ÏÏÏ

D ‚
ã
n p ‚.n 1p /

ä (because 1 p is a positive constant)
D ‚.n/ (by Problem 3-5(d)) .

Although the Akra-Bazzi method is more general than the master theorem, it
requires calculus and sometimes a bit more reasoning. You also must ensure that
your driving function satisûes the polynomial-growth condition if you want to ig-
nore üoors and ceilings, although that’s rarely a problem. When it applies, the
master method is much simpler to use, but only when subproblem sizes are more
or less equal. They are both good tools for your algorithmic toolkit.

Exercises
? 4.7-1

Consider an Akra-Bazzi recurrence T .n/ on the reals as given in recurrence (4.22),
and deûne T 0 .n/ as

T 0 .n/ D cf .n/ C
k X

i D1

a i T 0 .n=b i / ;

where c > 0 is constant. Prove that whatever the implicit initial conditions for T .n/
might be, there exist initial conditions for T 0 .n/ such that T 0 .n/ D cT .n/ for
all n > 0. Conclude that we can drop the asymptotics on a driving function in any
Akra-Bazzi recurrence without affecting its asymptotic solution.
4.7-2
Show that f .n/ D n 2 satisûes the polynomial-growth condition but that f .n/ D 2 n

does not.
4.7-3
Let f .n/ be a function that satisûes the polynomial-growth condition. Prove that
f .n/ is asymptotically positive, that is, there exists a constant n 0 0 such that
f .n/ 0 for all n n 0 .

Problems for Chapter 4 119

? 4.7-4
Give an example of a function f .n/ that does not satisfy the polynomial-growth
condition but for which f .‚.n// D ‚.f .n//.
4.7-5
Use the Akra-Bazzi method to solve the following recurrences.
a. T .n/ D T .n=2/ C T .n=3/ C T .n=6/ C n lg n.
b. T .n/ D 3T .n=3/ C 8T .n=4/ C n 2 = lg n.
c. T .n/ D .2=3/T .n=3/ C .1=3/T .2n=3/ C lg n.
d. T .n/ D .1=3/T .n=3/ C 1=n.
e. T .n/ D 3T .n=3/ C 3T .2n=3/ C n 2 .

? 4.7-6
Use the Akra-Bazzi method to prove the continuous master theorem.

Problems

4-1 Recurrence examples
Give asymptotically tight upper and lower bounds for T .n/ in each of the following
algorithmic recurrences. Justify your answers.
a. T .n/ D 2T .n=2/ C n 3 .

b. T .n/ D T .8n=11/ C n.

c. T .n/ D 16T .n=4/ C n 2 .

d. T .n/ D 4T .n=2/ C n 2 lg n.

e. T .n/ D 8T .n=3/ C n 2 .

f. T .n/ D 7T .n=2/ C n 2 lg n.

g. T .n/ D 2T .n=4/ C
p
n.

h. T .n/ D T .n 2/ C n 2 .

120 Chapter 4 Divide-and-Conquer

4-2 Parameter-passing costs
Throughout this book, we assume that parameter passing during procedure calls
takes constant time, even if an N -element array is being passed. This assumption
is valid in most systems because a pointer to the array is passed, not the array itself.
This problem examines the implications of three parameter-passing strategies:
1. Arrays are passed by pointer. Time D ‚.1/.
2. Arrays are passed by copying. Time D ‚.N/, where N is the size of the array.
3. Arrays are passed by copying only the subrange that might be accessed by the

called procedure. Time D ‚.n/ if the subarray contains n elements.
Consider the following three algorithms:
a. The recursive binary-search algorithm for ûnding a number in a sorted array

(see Exercise 2.3-6).

b. The MERGE-SORT procedure from Section 2.3.1.

c. The MATRIX-MULTIPLY-RECURSIVE procedure from Section 4.1.
Give nine recurrences T a1 .N; n/; T a2 .N; n/; : : : ; T c3 .N; n/ for the worst-case run-
ning times of each of the three algorithms above when arrays and matrices are
passed using each of the three parameter-passing strategies above. Solve your re-
currences, giving tight asymptotic bounds.

4-3 Solving recurrences with a change of variables
Sometimes, a little algebraic manipulation can make an unknown recurrence simi-
lar to one you have seen before. Let’s solve the recurrence
T .n/ D 2T

ãp
n
ä C ‚.lg n/ (4.25)

by using the change-of-variables method.
a. Deûne m D lg n and S.m/ D T .2 m /. Rewrite recurrence (4.25) in terms of m

and S.m/.

b. Solve your recurrence for S.m/.

c. Use your solution for S.m/ to conclude that T .n/ D ‚.lg n lg lg n/.

d. Sketch the recursion tree for recurrence (4.25), and use it to explain intuitively
why the solution is T .n/ D ‚.lg n lg lg n/.

Solve the following recurrences by changing variables:

Problems for Chapter 4 121

e. T .n/ D 2T .
p
n/ C ‚.1/.

f. T .n/ D 3T . 3
p
n/ C ‚.n/.

4-4 More recurrence examples
Give asymptotically tight upper and lower bounds for T .n/ in each of the following
recurrences. Justify your answers.
a. T .n/ D 5T .n=3/ C n lg n.

b. T .n/ D 3T .n=3/ C n= lg n.

c. T .n/ D 8T .n=2/ C n 3 p
n.

d. T .n/ D 2T .n=2 2/ C n=2.

e. T .n/ D 2T .n=2/ C n= lg n.

f. T .n/ D T .n=2/ C T .n=4/ C T .n=8/ C n.

g. T .n/ D T .n 1/ C 1=n.

h. T .n/ D T .n 1/ C lg n.

i. T .n/ D T .n 2/ C 1= lg n.

j. T .n/ D
p
nT .

p
n/ C n.

4-5 Fibonacci numbers
This problem develops properties of the Fibonacci numbers, which are deûned
by recurrence (3.31) on page 69. We’ll explore the technique of generating func-
tions to solve the Fibonacci recurrence. Deûne the generating function (or formal
power series) F as

F .´/ D
1 X

i D0

F i ́ i

D 0 C ´ C ´ 2 C 2´ 3 C 3´ 4 C 5´ 5 C 8´ 6 C 13´ 7 C 21´ 8 C ;
where F i is the i th Fibonacci number.
a. Show that F .´/ D ´ C ´F .´/ C ´ 2

F .´/.

122 Chapter 4 Divide-and-Conquer

b. Show that
F .´/ D

´
1 ´ ´ 2

D
´

.1 �´/.1 y �´/

D
1 p
5

Î
1

1 �´

1
1 y �´

Ï
;

where � is the golden ratio, and y � is its conjugate (see page 69).

c. Show that

F .´/ D
1 X

i D0

1 p
5
.� i y � i /´ i :

You may use without proof the generating-function version of equation (A.7) on
page 1142, P 1

kD0 x k D 1=.1 x/. Because this equation involves a generating
function, x is a formal variable, not a real-valued variable, so that you don’t
have to worry about convergence of the summation or about the requirement in
equation (A.7) that jx j < 1, which doesn’t make sense here.

d. Use part (c) to prove that F i D � i =
p
5 for i > 0, rounded to the nearest integer.

(Hint: Observe that ˇ ˇ y � ̌
 ˇ < 1.)

e. Prove that F i C2 � i for i 0.

4-6 Chip testing
Professor Diogenes has n supposedly identical integrated-circuit chips that in prin-
ciple are capable of testing each other. The professor’s test jig accommodates two
chips at a time. When the jig is loaded, each chip tests the other and reports whether
it is good or bad. A good chip always reports accurately whether the other chip is
good or bad, but the professor cannot trust the answer of a bad chip. Thus, the four
possible outcomes of a test are as follows:
Chip A says Chip B says Conclusion
B is good A is good both are good, or both are bad
B is good A is bad at least one is bad
B is bad A is good at least one is bad
B is bad A is bad at least one is bad
a. Show that if at least n=2 chips are bad, the professor cannot necessarily deter-

mine which chips are good using any strategy based on this kind of pairwise
test. Assume that the bad chips can conspire to fool the professor.

Problems for Chapter 4 123

Now you will design an algorithm to identify which chips are good and which are
bad, assuming that more than n=2 of the chips are good. First, you will determine
how to identify one good chip.
b. Show that bn=2c pairwise tests are sufûcient to reduce the problem to one of

nearly half the size. That is, show how to use bn=2c pairwise tests to obtain a
set with at most dn=2e chips that still has the property that more than half of
the chips are good.

c. Show how to apply the solution to part (b) recursively to identify one good
chip. Give and solve the recurrence that describes the number of tests needed
to identify one good chip.

You have now determined how to identify one good chip.
d. Show how to identify all the good chips with an additional ‚.n/ pairwise tests.

4-7 Monge arrays
An m n array A of real numbers is a Monge array if for all i , j , k, and l such
that 1 හ i < k හ m and 1 හ j < l හ n, we have
AŒi; j � C AŒk; l� හ AŒi; l� C AŒk; j � :

In other words, whenever we pick two rows and two columns of a Monge array and
consider the four elements at the intersections of the rows and the columns, the sum
of the upper-left and lower-right elements is less than or equal to the sum of the
lower-left and upper-right elements. For example, the following array is Monge:
10 17 13 28 23
17 22 16 29 23
24 28 22 34 24
11 13 6 17 7
45 44 32 37 23
36 33 19 21 6
75 66 51 53 34

a. Prove that an array is Monge if and only if for all i D 1; 2; :::;m 1 and
j D 1; 2; :::; n 1, we have
AŒi; j � C AŒi C 1; j C 1� හ AŒi; j C 1� C AŒi C 1; j � :

(Hint: For the <if= part, use induction separately on rows and columns.)

b. The following array is not Monge. Change one element in order to make it
Monge. (Hint: Use part (a).)

124 Chapter 4 Divide-and-Conquer

37 23 22 32
21 6 7 10
53 34 30 31
32 13 9 6
43 21 15 8

c. Let f .i/ be the index of the column containing the leftmost minimum element
of row i . Prove that f .1/ හ f .2/ හ හ f .m/ for any m n Monge array.

d. Here is a description of a divide-and-conquer algorithm that computes the left-
most minimum element in each row of an m n Monge array A:

Construct a submatrix A 0 of A consisting of the even-numbered rows of A.
Recursively determine the leftmost minimum for each row of A 0 . Then
compute the leftmost minimum in the odd-numbered rows of A.

Explain how to compute the leftmost minimum in the odd-numbered rows of A
(given that the leftmost minimum of the even-numbered rows is known) in
O.m C n/ time.

e. Write the recurrence for the running time of the algorithm in part (d). Show
that its solution is O.m C n log m/.

Chapter notes

Divide-and-conquer as a technique for designing algorithms dates back at least to
1962 in an article by Karatsuba and Ofman [242], but it might have been used
well before then. According to Heideman, Johnson, and Burrus [211], C. F. Gauss
devised the ûrst fast Fourier transform algorithm in 1805, and Gauss’s formulation
breaks the problem into smaller subproblems whose solutions are combined.
Strassen’s algorithm [424] caused much excitement when it appeared in 1969.

Before then, few imagined the possibility of an algorithm asymptotically faster than
the basic MATRIX-MULTIPLY procedure. Shortly thereafter, S. Winograd reduced
the number of submatrix additions from 18 to 15 while still using seven submatrix
multiplications. This improvement, which Winograd apparently never published
(and which is frequently miscited in the literature), may enhance the practicality
of the method, but it does not affect its asymptotic performance. Probert [368]
described Winograd’s algorithm and showed that with seven multiplications, 15
additions is the minimum possible.
Strassen’s ‚.n lg 7 / D O.n 2:81 / bound for matrix multiplication held until 1987,

when Coppersmith and Winograd [103] made a signiûcant advance, improving the

Notes for Chapter 4 125

bound to O.n 2:376 / time with a mathematically sophisticated but wildly impracti-
cal algorithm based on tensor products. It took approximately 25 years before the
asymptotic upper bound was again improved. In 2012 Vassilevska Williams [445]
improved it to O.n 2:37287 /, and two years later Le Gall [278] achieved O.n 2:37286 /,
both of them using mathematically fascinating but impractical algorithms. The best
lower bound to date is just the obvious �.n 2 / bound (obvious because any algo-
rithm for matrix multiplication must ûll in the n 2 elements of the product matrix).

The performance of MATRIX-MULTIPLY-RECURSIVE can be improved in prac-
tice by coarsening the leaves of the recursion. It also exhibits better cache behav-
ior than MATRIX-MULTIPLY, although MATRIX-MULTIPLY can be improved by
<tiling.= Leiserson et al. [293] conducted a performance-engineering study of ma-
trix multiplication in which a parallel and vectorized divide-and-conquer algorithm
achieved the highest performance. Strassen’s algorithm can be practical for large
dense matrices, although large matrices tend to be sparse, and sparse methods can
be much faster. When using limited-precision üoating-point values, Strassen’s al-
gorithm produces larger numerical errors than the ‚.n 3 / algorithms do, although
Higham [215] demonstrated that Strassen’s algorithm is amply accurate for some
applications.
Recurrences were studied as early as 1202 by Leonardo Bonacci [66], also

known as Fibonacci, for whom the Fibonacci numbers are named, although Indian
mathematicians had discovered Fibonacci numbers centuries before. The French
mathematician De Moivre [108] introduced the method of generating functions
with which he studied Fibonacci numbers (see Problem 4-5). Knuth [259] and
Liu [302] are good resources for learning the method of generating functions.
Aho, Hopcroft, and Ullman [5, 6] offered one of the ûrst general methods for

solving recurrences arising from the analysis of divide-and-conquer algorithms.
The master method was adapted from Bentley, Haken, and Saxe [52]. The Akra-
Bazzi method is due (unsurprisingly) to Akra and Bazzi [13]. Divide-and-conquer
recurrences have been studied by many researchers, including Campbell [79], Gra-
ham, Knuth, and Patashnik [199], Kuszmaul and Leiserson [274], Leighton [287],
Purdom and Brown [371], Roura [389], Verma [447], and Yap [462].
The issue of üoors and ceilings in divide-and-conquer recurrences, including a

theorem similar to Theorem 4.5, was studied by Leighton [287]. Leighton pro-
posed a version of the polynomial-growth condition. Campbell [79] removed sev-
eral limitations in Leighton’s statement of it and showed that there were polyno-
mially bounded functions that do not satisfy Leighton’s condition. Campbell also
carefully studied many other technical issues, including the well-deûnedness of
divide-and-conquer recurrences. Kuszmaul and Leiserson [274] provided a proof
of Theorem 4.5 that does not involve calculus or other higher math. Both Camp-
bell and Leighton explored the perturbations of arguments beyond simple üoors
and ceilings.

5 Probabilistic Analysis and Randomized
Algorithms

This chapter introduces probabilistic analysis and randomized algorithms. If you
are unfamiliar with the basics of probability theory, you should read Sections
C.13C.4 of Appendix C, which review this material. We’ll revisit probabilistic
analysis and randomized algorithms several times throughout this book.

5.1 The hiring problem

Suppose that you need to hire a new ofûce assistant. Your previous attempts at
hiring have been unsuccessful, and you decide to use an employment agency. The
employment agency sends you one candidate each day. You interview that person
and then decide either to hire that person or not. You must pay the employment
agency a small fee to interview an applicant. To actually hire an applicant is more
costly, however, since you must ûre your current ofûce assistant and also pay a
substantial hiring fee to the employment agency. You are committed to having, at
all times, the best possible person for the job. Therefore, you decide that, after
interviewing each applicant, if that applicant is better qualiûed than the current
ofûce assistant, you will ûre the current ofûce assistant and hire the new applicant.
You are willing to pay the resulting price of this strategy, but you wish to estimate
what that price will be.

The procedure HIRE-ASSISTANT on the facing page expresses this strategy for
hiring in pseudocode. The candidates for the ofûce assistant job are numbered 1
through n and interviewed in that order. The procedure assumes that after inter-
viewing candidate i , you can determine whether candidate i is the best candidate
you have seen so far. It starts by creating a dummy candidate, numbered 0, who is
less qualiûed than each of the other candidates.

The cost model for this problem differs from the model described in Chapter 2.
We focus not on the running time of HIRE-ASSISTANT, but instead on the fees paid
for interviewing and hiring. On the surface, analyzing the cost of this algorithm

5.1 The hiring problem 127

HIRE-ASSISTANT .n/
1 best D 0 // candidate 0 is a least-qualiûed dummy candidate
2 for i D 1 to n
3 interview candidate i
4 if candidate i is better than candidate best
5 best D i
6 hire candidate i

may seem very different from analyzing the running time of, say, merge sort. The
analytical techniques used, however, are identical whether we are analyzing cost
or running time. In either case, we are counting the number of times certain basic
operations are executed.

Interviewing has a low cost, say c i , whereas hiring is expensive, costing c h . Let-
ting m be the number of people hired, the total cost associated with this algorithm
is O.c i n C c h m/. No matter how many people you hire, you always interview n
candidates and thus always incur the cost c i n associated with interviewing. We
therefore concentrate on analyzing c h m, the hiring cost. This quantity depends on
the order in which you interview candidates.

This scenario serves as a model for a common computational paradigm. Al-
gorithms often need to ûnd the maximum or minimum value in a sequence by
examining each element of the sequence and maintaining a current <winner.= The
hiring problem models how often a procedure updates its notion of which element
is currently winning.

Worst-case analysis
In the worst case, you actually hire every candidate that you interview. This situa-
tion occurs if the candidates come in strictly increasing order of quality, in which
case you hire n times, for a total hiring cost of O.c h n/.
Of course, the candidates do not always come in increasing order of quality. In

fact, you have no idea about the order in which they arrive, nor do you have any
control over this order. Therefore, it is natural to ask what we expect to happen in
a typical or average case.

Probabilistic analysis
Probabilistic analysis is the use of probability in the analysis of problems. Most
commonly, we use probabilistic analysis to analyze the running time of an algo-
rithm. Sometimes we use it to analyze other quantities, such as the hiring cost in

128 Chapter 5 Probabilistic Analysis and Randomized Algorithms

procedure HIRE-ASSISTANT. In order to perform a probabilistic analysis, we must
use knowledge of, or make assumptions about, the distribution of the inputs. Then
we analyze our algorithm, computing an average-case running time, where we take
the average, or expected value, over the distribution of the possible inputs. When
reporting such a running time, we refer to it as the average-case running time.

You must be careful in deciding on the distribution of inputs. For some problems,
you may reasonably assume something about the set of all possible inputs, and
then you can use probabilistic analysis as a technique for designing an efûcient
algorithm and as a means for gaining insight into a problem. For other problems,
you cannot characterize a reasonable input distribution, and in these cases you
cannot use probabilistic analysis.

For the hiring problem, we can assume that the applicants come in a random
order. What does that mean for this problem? We assume that you can compare
any two candidates and decide which one is better qualiûed, which is to say that
there is a total order on the candidates. (See Section B.2 for the deûnition of a total
order.) Thus, you can rank each candidate with a unique number from 1 through n,
using rank.i/ to denote the rank of applicant i , and adopt the convention that a
higher rank corresponds to a better qualiûed applicant. The ordered list hrank.1/;
rank.2/; : : : ; rank.n/i is a permutation of the list h1; 2; : : : ; ni. Saying that the
applicants come in a random order is equivalent to saying that this list of ranks is
equally likely to be any one of the nŠ permutations of the numbers 1 through n.
Alternatively, we say that the ranks form a uniform random permutation, that is,
each of the possible nŠ permutations appears with equal probability.
Section 5.2 contains a probabilistic analysis of the hiring problem.

Randomized algorithms
In order to use probabilistic analysis, you need to know something about the dis-
tribution of the inputs. In many cases, you know little about the input distribu-
tion. Even if you do know something about the distribution, you might not be able
to model this knowledge computationally. Yet, probability and randomness often
serve as tools for algorithm design and analysis, by making part of the algorithm
behave randomly.

In the hiring problem, it may seem as if the candidates are being presented to
you in a random order, but you have no way of knowing whether they really are.
Thus, in order to develop a randomized algorithm for the hiring problem, you need
greater control over the order in which you’ll interview the candidates. We will,
therefore, change the model slightly. The employment agency sends you a list of
the n candidates in advance. On each day, you choose, randomly, which candi-
date to interview. Although you know nothing about the candidates (besides their
names), we have made a signiûcant change. Instead of accepting the order given

5.1 The hiring problem 129

to you by the employment agency and hoping that it’s random, you have instead
gained control of the process and enforced a random order.

More generally, we call an algorithm randomized if its behavior is determined
not only by its input but also by values produced by a random-number generator.
We assume that we have at our disposal a random-number generator RANDOM.
A call to RANDOM.a; b/ returns an integer between a and b, inclusive, with each
such integer being equally likely. For example, RANDOM.0; 1/ produces 0 with
probability 1=2, and it produces 1 with probability 1=2. A call to RANDOM.3; 7/
returns any one of 3, 4, 5, 6, or 7, each with probability 1=5. Each integer returned
by RANDOM is independent of the integers returned on previous calls. You may
imagine RANDOM as rolling a .b a C 1/-sided die to obtain its output. (In prac-
tice, most programming environments offer a pseudorandom-number generator:
a deterministic algorithm returning numbers that <look= statistically random.)

When analyzing the running time of a randomized algorithm, we take the expec-
tation of the running time over the distribution of values returned by the random
number generator. We distinguish these algorithms from those in which the input
is random by referring to the running time of a randomized algorithm as an ex-
pected running time. In general, we discuss the average-case running time when
the probability distribution is over the inputs to the algorithm, and we discuss the
expected running time when the algorithm itself makes random choices.

Exercises
5.1-1
Show that the assumption that you are always able to determine which candidate is
best, in line 4 of procedure HIRE-ASSISTANT, implies that you know a total order
on the ranks of the candidates.

? 5.1-2
Describe an implementation of the procedure RANDOM.a; b/ that makes calls only
to RANDOM.0; 1/. What is the expected running time of your procedure, as a
function of a and b?

? 5.1-3
You wish to implement a program that outputs 0 with probability 1=2 and 1 with
probability 1=2. At your disposal is a procedure B IASED-RANDOM that outputs
either 0 or 1, but it outputs 1 with some probability p and 0 with probability 1 p,
where 0 < p < 1. You do not know what p is. Give an algorithm that uses
BIASED-RANDOM as a subroutine, and returns an unbiased answer, returning 0
with probability 1=2 and 1 with probability 1=2. What is the expected running
time of your algorithm as a function of p?

130 Chapter 5 Probabilistic Analysis and Randomized Algorithms

5.2 Indicator random variables

In order to analyze many algorithms, including the hiring problem, we use indicator
random variables. Indicator random variables provide a convenient method for
converting between probabilities and expectations. Given a sample space S and an
event A, the indicator random variable I fAg associated with event A is deûned as

I fAg D

(
1 if A occurs ;
0 if A does not occur : (5.1)

As a simple example, let us determine the expected number of heads obtained
when üipping a fair coin. The sample space for a single coin üip is S D fH;T g,
with Pr fH g D Pr fT g D 1=2. We can then deûne an indicator random vari-
able X H , associated with the coin coming up heads, which is the event H . This
variable counts the number of heads obtained in this üip, and it is 1 if the coin
comes up heads and 0 otherwise. We write
X H D I fH g

D

(
1 if H occurs ;
0 if T occurs :

The expected number of heads obtained in one üip of the coin is simply the ex-
pected value of our indicator variable X H :
E ŒX H � D E ŒI fH g�

D 1 Pr fH g C 0 Pr fT g
D 1 .1=2/ C 0 .1=2/
D 1=2 :

Thus the expected number of heads obtained by one üip of a fair coin is 1=2. As
the following lemma shows, the expected value of an indicator random variable
associated with an event A is equal to the probability that A occurs.

Lemma 5.1
Given a sample space S and an event A in the sample space S , let X A D I fAg.
Then E ŒX A � D Pr fAg.

Proof By the deûnition of an indicator random variable from equation (5.1) and
the deûnition of expected value, we have
E ŒX A � D E ŒI fAg�

D 1 Pr fAg C 0 Pr ̊
A

D Pr fAg ;

5.2 Indicator random variables 131

where A denotes S A, the complement of A.
Although indicator random variables may seem cumbersome for an applica-

tion such as counting the expected number of heads on a üip of a single coin,
they are useful for analyzing situations that perform repeated random trials. In
Appendix C, for example, indicator random variables provide a simple way to
determine the expected number of heads in n coin üips. One option is to con-
sider separately the probability of obtaining 0 heads, 1 head, 2 heads, etc. to ar-
rive at the result of equation (C.41) on page 1199. Alternati vely, we can employ
the simpler method proposed in equation (C.42), which uses indicator random
variables implicitly. Making this argument more explicit, let X i be the indicator
random variable associated with the event in which the i th üip comes up heads:
X i D I fthe i th üip results in the event H g. Let X be the random variable denot-
ing the total number of heads in the n coin üips, so that

X D
n X

i D1

X i :

In order to compute the expected number of heads, take the expectation of both
sides of the above equation to obtain

E ŒX� D E
"

n X

i D1

X i

: (5.2)

By Lemma 5.1, the expectation of each of the random variables is E ŒX i � D 1=2 for
i D 1; 2; : : : ; n. Then we can compute the sum of the expectations: P n

i D1 E ŒX i � D
n=2. But equation (5.2) calls for the expectation of the sum, not the sum of the ex-
pectations. How can we resolve this conundrum? Linearity of expectation, equa-
tion (C.24) on page 1192, to the rescue: the expectation of the sum always equals
the sum of the expectations. Linearity of expectation applies even when there is
dependence among the random variables. Combining indicator random variables
with linearity of expectation gives us a powerful technique to compute expected
values when multiple events occur. We now can compute the expected number of
heads:

E ŒX� D E
"

n X

i D1

X i

D
n X

i D1

E ŒX i �

D
n X

i D1

1=2

D n=2 :

132 Chapter 5 Probabilistic Analysis and Randomized Algorithms

Thus, compared with the method used in equation (C.41), indicator random vari-
ables greatly simplify the calculation. We use indicator random variables through-
out this book.

Analysis of the hiring problem using indicator random variables
Returning to the hiring problem, we now wish to compute the expected number of
times that you hire a new ofûce assistant. In order to use a probabilistic analysis,
let’s assume that the candidates arrive in a random order, as discussed in Sec-
tion 5.1. (We’ll see in Section 5.3 how to remove this assumption.) Let X be the
random variable whose value equals the number of times you hire a new ofûce as-
sistant. We could then apply the deûnition of expected value from equation (C.23)
on page 1192 to obtain

E ŒX� D
n X

xD1

x Pr fX D x g ;

but this calculation would be cumbersome. Instead, let’s simplify the calculation
by using indicator random variables.

To use indicator random variables, instead of computing E ŒX� by deûning just
one variable denoting the number of times you hire a new ofûce assistant, think
of the process of hiring as repeated random trials and deûne n variables indicating
whether each particular candidate is hired. In particular, let X i be the indicator
random variable associated with the event in which the i th candidate is hired. Thus,
X i D I fcandidate i is hiredg

D

(
1 if candidate i is hired ;
0 if candidate i is not hired ;

and
X D X 1 C X 2 C C X n : (5.3)
Lemma 5.1 gives
E ŒX i � D Pr fcandidate i is hiredg ;

and we must therefore compute the probability that lines 536 of HIRE-ASSISTANT
are executed.

Candidate i is hired, in line 6, exactly when candidate i is better than each of
candidates 1 through i 1. Because we have assumed that the candidates arrive in
a random order, the ûrst i candidates have appeared in a random order. Any one of
these ûrst i candidates is equally likely to be the best qualiûed so far. Candidate i
has a probability of 1=i of being better qualiûed than candidates 1 through i 1
and thus a probability of 1=i of being hired. By Lemma 5.1, we conclude that

5.2 Indicator random variables 133

E ŒX i � D 1=i : (5.4)
Now we can compute E ŒX�:

E ŒX� D E
"

n X

i D1

X i

(by equation (5.3)) (5.5)

D
n X

i D1

E ŒX i � (by equation (C.24), linearity of expectation)

D
n X

i D1

1
i

(by equation (5.4))

D ln n C O.1/ (by equation (A.9), the harmonic series) . (5.6)
Even though you interview n people, you actually hire only approximately ln n of
them, on average. We summarize this result in the following lemma.

Lemma 5.2
Assuming that the candidates are presented in a random order, algorithm H IRE-
ASSISTANT has an average-case total hiring cost of O.c h ln n/.

Proof The bound follows immediately from our deûnition of the hiring cost
and equation (5.6), which shows that the expected number of hires is approxi-
mately ln n.

The average-case hiring cost is a signiûcant improvement over the worst-case
hiring cost of O.c h n/.

Exercises
5.2-1
In HIRE-ASSISTANT, assuming that the candidates are presented in a random or-
der, what is the probability that you hire exactly one time? What is the probability
that you hire exactly n times?
5.2-2
In HIRE-ASSISTANT, assuming that the candidates are presented in a random or-
der, what is the probability that you hire exactly twice?
5.2-3
Use indicator random variables to compute the expected value of the sum of n dice.

134 Chapter 5 Probabilistic Analysis and Randomized Algorithms

5.2-4
This exercise asks you to (partly) verify that linearity of expectation holds even
if the random variables are not independent. Consider two 6-sided dice that are
rolled independently. What is the expected value of the sum? Now consider the
case where the ûrst die is rolled normally and then the second die is set equal to the
value shown on the ûrst die. What is the expected value of the sum? Now consider
the case where the ûrst die is rolled normally and the second die is set equal to 7
minus the value of the ûrst die. What is the expected value of the sum?
5.2-5
Use indicator random variables to solve the following problem, which is known as
the hat-check problem. Each of n customers gives a hat to a hat-check person at a
restaurant. The hat-check person gives the hats back to the customers in a random
order. What is the expected number of customers who get back their own hat?
5.2-6
Let AŒ1 W n� be an array of n distinct numbers. If i < j and AŒi� > AŒj �, then the
pair .i; j / is called an inversion of A. (See Problem 2-4 on page 47 for more on
inversions.) Suppose that the elements of A form a uniform random permutation
of h1; 2; : : : ; ni. Use indicator random variables to compute the expected number
of inversions.

5.3 Randomized algorithms

In the previous section, we showed how knowing a distribution on the inputs can
help us to analyze the average-case behavior of an algorithm. What if you do
not know the distribution? Then you cannot perform an average-case analysis.
As mentioned in Section 5.1, however, you might be able to use a randomized
algorithm.

For a problem such as the hiring problem, in which it is helpful to assume that
all permutations of the input are equally likely, a probabilistic analysis can guide
us when developing a randomized algorithm. Instead of assuming a distribution
of inputs, we impose a distribution. In particular, before running the algorithm,
let’s randomly permute the candidates in order to enforce the property that every
permutation is equally likely. Although we have modiûed the algorithm, we still
expect to hire a new ofûce assistant approximately ln n times. But now we expect
this to be the case for any input, rather than for inputs drawn from a particular
distribution.

Let us further explore the distinction between probabilistic analysis and ran-
domized algorithms. In Section 5.2, we claimed that, assuming that the candidates

5.3 Randomized algorithms 135

arrive in a random order, the expected number of times you hire a new ofûce as-
sistant is about ln n. This algorithm is deterministic: for any particular input, the
number of times a new ofûce assistant is hired is always the same. Furthermore,
the number of times you hire a new ofûce assistant differs for different inputs,
and it depends on the ranks of the various candidates. Since this number depends
only on the ranks of the candidates, to represent a particular input, we can just
list, in order, the ranks hrank.1/; rank.2/; : : : ; rank.n/i of the candidates. Given
the rank list A 1 D h1; 2; 3; 4; 5; 6; 7; 8; 9; 10i, a new ofûce assistant is always
hired 10 times, since each successive candidate is better than the previous one, and
lines 536 of HIRE-ASSISTANT are executed in each iteration. Given the list of
ranks A 2 D h10; 9; 8; 7; 6; 5; 4; 3; 2; 1i, a new ofûce assistant is hired only once,
in the ûrst iteration. Given a list of ranks A 3 D h5; 2; 1; 8; 4; 7; 10; 9; 3; 6i, a new
ofûce assistant is hired three times, upon interviewing the candidates with ranks 5,
8, and 10. Recalling that the cost of our algorithm depends on how many times
you hire a new ofûce assistant, we see that there are expensive inputs such as A 1 ,
inexpensive inputs such as A 2 , and moderately expensive inputs such as A 3 .
Consider, on the other hand, the randomized algorithm that ûrst permutes the list

of candidates and then determines the best candidate. In this case, we randomize in
the algorithm, not in the input distribution. Given a particular input, say A 3 above,
we cannot say how many times the maximum is updated, because this quantity
differs with each run of the algorithm. The ûrst time you run the algorithm on A 3 ,
it might produce the permutation A 1 and perform 10 updates. But the second
time you run the algorithm, it might produce the permutation A 2 and perform only
one update. The third time you run the algorithm, it might perform some other
number of updates. Each time you run the algorithm, its execution depends on
the random choices made and is likely to differ from the previous execution of the
algorithm. For this algorithm and many other randomized algorithms, no particular
input elicits its worst-case behavior. Even your worst enemy cannot produce a
bad input array, since the random permutation makes the input order irrelevant.
The randomized algorithm performs badly only if the random-number generator
produces an <unlucky= permutation.

For the hiring problem, the only change needed in the code is to randomly per-
mute the array, as done in the RANDOMIZED-HIRE-ASSISTANT procedure. This
simple change creates a randomized algorithm whose performance matches that
obtained by assuming that the candidates were presented in a random order.

RANDOMIZED-HIRE-ASSISTANT .n/
1 randomly permute the list of candidates
2 HIRE-ASSISTANT .n/

136 Chapter 5 Probabilistic Analysis and Randomized Algorithms

Lemma 5.3
The expected hiring cost of the procedure RANDOMIZED-HIRE-ASSISTANT is
O.c h ln n/.

Proof Permuting the input array achieves a situation identical to that of the prob-
abilistic analysis of HIRE-ASSISTANT in Section 5.2.

By carefully comparing Lemmas 5.2 and 5.3, you can see the difference between
probabilistic analysis and randomized algorithms. Lemma 5.2 makes an assump-
tion about the input. Lemma 5.3 makes no such assumption, although randomizing
the input takes some additional time. To remain consistent with our terminology,
we couched Lemma 5.2 in terms of the average-case hiring cost and Lemma 5.3 in
terms of the expected hiring cost. In the remainder of this section, we discuss some
issues involved in randomly permuting inputs.

Randomly permuting arrays
Many randomized algorithms randomize the input by permuting a given input ar-
ray. We’ll see elsewhere in this book other ways to randomize an algorithm, but
now, let’s see how we can randomly permute an array of n elements. The goal is
to produce a uniform random permutation, that is, a permutation that is as likely
as any other permutation. Since there are nŠ possible permutations, we want the
probability that any particular permutation is produced to be 1=nŠ.

You might think that to prove that a permutation is a uniform random permuta-
tion, it sufûces to show that, for each element AŒi�, the probability that the element
winds up in position j is 1=n. Exercise 5.3-4 shows that this weaker condition is,
in fact, insufûcient.
Our method to generate a random permutation permutes the array in place: at

most a constant number of elements of the input array are ever stored outside the
array. The procedure RANDOMLY-PERMUTE permutes an array AŒ1 W n� in place in
‚.n/ time. In its i th iteration, it chooses the element AŒi� randomly from among
elements AŒi� through AŒn�. After the i th iteration, AŒi� is never altered.

RANDOMLY-PERMUTE .A; n/
1 for i D 1 to n
2 swap AŒi� with AŒRANDOM.i; n/�

We use a loop invariant to show that procedure RANDOMLY-PERMUTE produces
a uniform random permutation. A k-permutation on a set of n elements is a se-

5.3 Randomized algorithms 137

quence containing k of the n elements, with no repetitions. (See page 1180 in
Appendix C.) There are nŠ=.n k/Š such possible k-permutations.

Lemma 5.4
Procedure RANDOMLY-PERMUTE computes a uniform random permutation.

Proof We use the following loop invariant:
Just prior to the i th iteration of the for loop of lines 132, for each possible
.i 1/-permutation of the n elements, the subarray AŒ1 W i 1� contains this
.i 1/-permutation with probability .n i C 1/Š=nŠ.

We need to show that this invariant is true prior to the ûrst loop iteration, that each
iteration of the loop maintains the invariant, that the loop terminates, and that the
invariant provides a useful property to show correctness when the loop terminates.
Initialization: Consider the situation just before the ûrst loop iteration, so that
i D 1. The loop invariant says that for each possible 0-permutation, the sub-
array AŒ1 W 0� contains this 0-permutation with probability .n i C 1/Š=nŠ D
nŠ=nŠ D 1. The subarray AŒ1 W 0� is an empty subarray, and a 0-permutation has
no elements. Thus, AŒ1 W 0� contains any 0-permutation with probability 1, and
the loop invariant holds prior to the ûrst iteration.

Maintenance: By the loop invariant, we assume that just before the i th iteration,
each possible .i 1/-permutation appears in the subarray AŒ1 W i 1� with prob-
ability .n i C 1/Š=nŠ. We shall show that after the i th iteration, each possible
i -permutation appears in the subarray AŒ1 W i � with probability .n i/Š=nŠ. In-
crementing i for the next iteration then maintains the loop invariant.
Let us examine the i th iteration. Consider a particular i -permutation, and de-
note the elements in it by hx 1 ; x 2 ; : : : ; x i i. This permutation consists of an
.i 1/-permutation hx 1 ; : : : ; x i 1 i followed by the value x i that the algorithm
places in AŒi�. Let E 1 denote the event in which the ûrst i 1 iterations have
created the particular .i 1/-permutation hx 1 ; : : : ; x i 1 i in AŒ1 W i 1�. By
the loop invariant, Pr fE 1 g D .n i C 1/Š=nŠ. Let E 2 be the event that the
i th iteration puts x i in position AŒi�. The i -permutation hx 1 ; : : : ; x i i appears
in AŒ1 W i � precisely when both E 1 and E 2 occur, and so we wish to compute
Pr fE 2 \ E 1 g. Using equation (C.16) on page 1187, we have

Pr fE 2 \ E 1 g D Pr fE 2 j E 1 g Pr fE 1 g :

The probability Pr fE 2 j E 1 g equals 1=.ni C1/ because in line 2 the algorithm
chooses x i randomly from the n i C 1 values in positions AŒi W n�. Thus, we
have

138 Chapter 5 Probabilistic Analysis and Randomized Algorithms

Pr fE 2 \ E 1 g D Pr fE 2 j E 1 g Pr fE 1 g

D
1

n i C 1
 .n i C 1/Š

nŠ

D
.n i/Š
nŠ

:

Termination: The loop terminates, since it is a for loop iterating n times. At
termination, i D n C 1, and we have that the subarray AŒ1 W n� is a given
n-permutation with probability .n .n C 1/ C 1/Š=nŠ D 0Š=nŠ D 1=nŠ.

Thus, RANDOMLY-PERMUTE produces a uniform random permutation.

A randomized algorithm is often the simplest and most efûcient way to solve a
problem.

Exercises
5.3-1
Professor Marceau objects to the loop invariant used in the proof of Lemma 5.4. He
questions whether it holds prior to the ûrst iteration. He reasons that we could just
as easily declare that an empty subarray contains no 0-permutations. Therefore,
the probability that an empty subarray contains a 0-permutation should be 0, thus
invalidating the loop invariant prior to the ûrst iteration. Rewrite the procedure
RANDOMLY-PERMUTE so that its associated loop invariant applies to a nonempty
subarray prior to the ûrst iteration, and modify the proof of Lemma 5.4 for your
procedure.
5.3-2
Professor Kelp decides to write a procedure that produces at random any permu-
tation except the identity permutation, in which every element ends up where it
started. He proposes the procedure PERMUTE-WITHOUT-I DENTITY. Does this
procedure do what Professor Kelp intends?

PERMUTE-WITHOUT-I DENTITY .A; n/
1 for i D 1 to n 1
2 swap AŒi� with AŒRANDOM.i C 1; n/�

5.3-3
Consider the PERMUTE-WITH-ALL procedure on the facing page, which instead
of swapping element AŒi� with a random element from the subarray AŒi W n�, swaps
it with a random element from anywhere in the array. Does PERMUTE-WITH-ALL
produce a uniform random permutation? Why or why not?

5.3 Randomized algorithms 139

PERMUTE-WITH-ALL .A; n/
1 for i D 1 to n
2 swap AŒi� with AŒRANDOM.1; n/�

5.3-4
Professor Knievel suggests the procedure PERMUTE-BY-CYCLE to generate a uni-
form random permutation. Show that each element AŒi� has a 1=n probability of
winding up in any particular position in B . Then show that Professor Knievel is
mistaken by showing that the resulting permutation is not uniformly random.

PERMUTE-BY-CYCLE .A; n/
1 let BŒ1 W n� be a new array
2 offset D RANDOM.1; n/
3 for i D 1 to n
4 dest D i C offset
5 if dest > n
6 dest D dest n
7 BŒdest � D AŒi�
8 return B

5.3-5
Professor Gallup wants to create a random sample of the set f1; 2; 3; : : : ; ng, that
is, an m-element subset S , where 0 හ m හ n, such that each m-subset is equally
likely to be created. One way is to set AŒi� D i , for i D 1; 2; 3; : : : ; n, call
RANDOMLY-PERMUTE .A/, and then take just the ûrst m array elements. This
method makes n calls to the RANDOM procedure. In Professor Gallup’s applica-
tion, n is much larger than m, and so the professor wants to create a random sample
with fewer calls to RANDOM.

RANDOM-SAMPLE .m; n/
1 S D ;
2 for k D n m C 1 to n // iterates m times
3 i D RANDOM.1; k/
4 if i 2 S
5 S D S [fkg
6 else S D S [fi g
7 return S

140 Chapter 5 Probabilistic Analysis and Randomized Algorithms

Show that the procedure RANDOM-SAMPLE on the previous page returns a ran-
dom m-subset S of f1; 2; 3; : : : ; ng, in which each m-subset is equally likely, while
making only m calls to RANDOM.

? 5.4 Probabilistic analysis and further uses of indicator random variables

This advanced section further illustrates probabilistic analysis by way of four ex-
amples. The ûrst determines the probability that in a room of k people, two of them
share the same birthday. The second example examines what happens when ran-
domly tossing balls into bins. The third investigates <streaks= of consecutive heads
when üipping coins. The ûnal example analyzes a variant of the hiring problem in
which you have to make decisions without actually interviewing all the candidates.

5.4.1 The birthday paradox
Our ûrst example is the birthday paradox. How many people must there be in a
room before there is a 50% chance that two of them were born on the same day of
the year? The answer is surprisingly few. The paradox is that it is in fact far fewer
than the number of days in a year, or even half the number of days in a year, as we
shall see.

To answer this question, we index the people in the room with the integers
1; 2; : : : ; k, where k is the number of people in the room. We ignore the issue
of leap years and assume that all years have n D 365 days. For i D 1; 2; : : : ; k,
let b i be the day of the year on which person i ’s birthday falls, where 1 හ b i හ n.
We also assume that birthdays are uniformly distributed across the n days of the
year, so that Pr fb i D r g D 1=n for i D 1; 2; : : : ; k and r D 1; 2; : : : ; n.

The probability that two given people, say i and j , have matching birthdays
depends on whether the random selection of birthdays is independent. We assume
from now on that birthdays are independent, so that the probability that i ’s birthday
and j ’s birthday both fall on day r is
Pr fb i D r and b j D r g D Pr fb i D r g Pr fb j D r g

D
1
n 2 :

Thus, the probability that they both fall on the same day is

Pr fb i D b j g D
n X

r D1

Pr fb i D r and b j D r g

5.4 Probabilistic analysis and further uses of indicator random variables 141

D
n X

r D1

1
n 2

D
1
n
: (5.7)

More intuitively, once b i is chosen, the probability that b j is chosen to be the same
day is 1=n. As long as the birthdays are independent, the probability that i and j
have the same birthday is the same as the probability that the birthday of one of
them falls on a given day.

We can analyze the probability of at least 2 out of k people having matching
birthdays by looking at the complementary event. The probability that at least two
of the birthdays match is 1 minus the probability that all the birthdays are different.
The event B k that k people have distinct birthdays is

B k D
k \

i D1

A i ;

where A i is the event that person i ’s birthday is different from person j ’s for
all j < i . Since we can write B k D A k \ B k1 , we obtain from equation (C.18)
on page 1189 the recurrence
Pr fB k g D Pr fB k1 g Pr fA k j B k1 g ; (5.8)
where we take Pr fB 1 g D Pr fA 1 g D 1 as an initial condition. In other words,
the probability that b 1 ; b 2 ; : : : ; b k are distinct birthdays equals the probability that
b 1 ; b 2 ; : : : ; b k1 are distinct birthdays multiplied by the probability that b k ¤ b i
for i D 1; 2; : : : ; k 1, given that b 1 ; b 2 ; : : : ; b k1 are distinct.

If b 1 ; b 2 ; : : : ; b k1 are distinct, the conditional probability that b k ¤ b i for
i D 1; 2; : : : ; k 1 is Pr fA k j B k1 g D .n k C 1/=n, since out of the n days,
n .k 1/ days are not taken. We iteratively apply the recurrence (5.8) to obtain
Pr fB k g D Pr fB k1 g Pr fA k j B k1 g

D Pr fB k2 g Pr fA k1 j B k2 g Pr fA k j B k1 g
: : :

D Pr fB 1 g Pr fA 2 j B 1 g Pr fA 3 j B 2 g Pr fA k j B k1 g

D 1
Î
n 1
n

ÏÎ
n 2
n

Ï

Î
n k C 1

n

Ï

D 1
Î
1

1
n

ÏÎ
1

2
n

Ï

Î
1

k 1
n

Ï
:

Inequality (3.14) on page 66, 1 C x හ e x , gives us

142 Chapter 5 Probabilistic Analysis and Randomized Algorithms

Pr fB k g හ e 1=n e 2=n e .k1/=n

D e
P k1

i D1 i=n

D e k.k1/=2n

හ
1
2

when k.k 1/=2n හ ln.1=2/. The probability that all k birthdays are distinct
is at most 1=2 when k.k 1/ 2n ln 2 or, solving the quadratic equation, when
k .1 C

p
1 C .8 ln 2/n/=2. For n D 365, we must have k 23. Thus, if at

least 23 people are in a room, the probability is at least 1=2 that at least two people
have the same birthday. Since a year on Mars is 669 Martian days long, it takes 31
Martians to get the same effect.

An analysis using indicator random variables
Indicator random variables afford a simpler but approximate analysis of the birth-
day paradox. For each pair .i; j / of the k people in the room, deûne the indicator
random variable X ij , for 1 හ i < j හ k, by
X ij D I fperson i and person j have the same birthdayg

D

(
1 if person i and person j have the same birthday ;
0 otherwise :

By equation (5.7), the probability that two people have matching birthdays is 1=n,
and thus by Lemma 5.1 on page 130, we have
E ŒX ij � D Pr fperson i and person j have the same birthdayg

D 1=n :

Letting X be the random variable that counts the number of pairs of individuals
having the same birthday, we have

X D
k1 X

i D1

k X

j Di C1

X ij :

Taking expectations of both sides and applying linearity of expectation, we obtain

E ŒX� D E
"
k1 X

i D1

k X

j Di C1

X ij

D
k1 X

i D1

k X

j Di C1

E ŒX ij �

5.4 Probabilistic analysis and further uses of indicator random variables 143

D

k
2

!
1
n

D
k.k 1/
2n

:

When k.k 1/ 2n, therefore, the expected number of pairs of people with the
same birthday is at least 1. Thus, if we have at least

p
2n C 1 individuals in a room,

we can expect at least two to have the same birthday. For n D 365, if k D 28, the
expected number of pairs with the same birthday is .28 27/=.2 365/ 1:0356.
Thus, with at least 28 people, we expect to ûnd at least one matching pair of birth-
days. On Mars, with 669 days per year, we need at least 38 Martians.
The ûrst analysis, which used only probabilities, determined the number of peo-

ple required for the probability to exceed 1=2 that a matching pair of birthdays
exists, and the second analysis, which used indicator random variables, determined
the number such that the expected number of matching birthdays is 1. Although
the exact numbers of people differ for the two situations, they are the same asymp-
totically: ‚. p

n/.

5.4.2 Balls and bins
Consider a process in which you randomly toss identical balls into b bins, num-
bered 1; 2; : : : ; b. The tosses are independent, and on each toss the ball is equally
likely to end up in any bin. The probability that a tossed ball lands in any given bin
is 1=b. If we view the ball-tossing process as a sequence of Bernoulli trials (see
Appendix C.4), where success means that the ball falls in the given bin, then each
trial has a probability 1=b of success. This model is particularly useful for analyz-
ing hashing (see Chapter 11), and we can answer a variety of interesting questions
about the ball-tossing process. (Problem C-2 asks additional questions about balls
and bins.)
 How many balls fall in a given bin? The number of balls that fall in a given

bin follows the binomial distribution b.kI n; 1=b/. If you toss n balls, equa-
tion (C.41) on page 1199 tells us that the expected number of balls that fall in
the given bin is n=b.

 How many balls must you toss, on the average, until a given bin contains a ball?
The number of tosses until the given bin receives a ball follows the geometric
distribution with probability 1=b and, by equation (C.36) on page 1197, the
expected number of tosses until success is 1=.1=b/ D b.

 How many balls must you toss until every bin contains at least one ball? Let us
call a toss in which a ball falls into an empty bin a <hit.= We want to know the
expected number n of tosses required to get b hits.

144 Chapter 5 Probabilistic Analysis and Randomized Algorithms

Using the hits, we can partition the n tosses into stages. The i th stage consists
of the tosses after the .i 1/st hit up to and including the i th hit. The ûrst stage
consists of the ûrst toss, since you are guaranteed to have a hit when all bins are
empty. For each toss during the i th stage, i 1 bins contain balls and b i C 1
bins are empty. Thus, for each toss in the i th stage, the probability of obtaining
a hit is .b i C 1/=b.
Let n i denote the number of tosses in the i th stage. The number of tosses
required to get b hits is n D

P b
i D1 n i . Each random variable n i has a ge-

ometric distribution with probability of success .b i C 1/=b and thus, by
equation (C.36), we have

E Œn i � D
b

b i C 1
:

By linearity of expectation, we have

E Œn� D E
"

b X

i D1

n i

D
b X

i D1

E Œn i �

D
b X

i D1

b
b i C 1

D b
b X

i D1

1
i

(by equation (A.14) on page 1144)

D b.ln b C O.1// (by equation (A.9) on page 1142) .
It therefore takes approximately b ln b tosses before we can expect that every
bin has a ball. This problem is also known as the coupon collector’s problem,
which says that if you are trying to collect each of b different coupons, then
you should expect to acquire approximately b ln b randomly obtained coupons
in order to succeed.

5.4.3 Streaks
Suppose that you üip a fair coin n times. What is the longest streak of consecutive
heads that you expect to see? We’ll prove upper and lower bounds separately to
show that the answer is ‚.lg n/.

5.4 Probabilistic analysis and further uses of indicator random variables 145

We ûrst prove that the expected length of the longest streak of heads is O.lg n/.
The probability that each coin üip is a head is 1=2. Let A ik be the event that a
streak of heads of length at least k begins with the i th coin üip or, more precisely,
the event that the k consecutive coin üips i; i C 1; : : : ; i C k 1 yield only heads,
where 1 හ k හ n and 1 හ i හ n k C1. Since coin üips are mutually independent,
for any given event A ik , the probability that all k üips are heads is
Pr fA ik g D

1
2 k
: (5.9)

For k D 2 dlg ne,

Pr fA i;2dlg ne g D
1

2 2dlg ne

හ
1

2 2 lg n

D
1
n 2
;

and thus the probability that a streak of heads of length at least 2 dlg ne begins in
position i is quite small. There are at most n 2 dlg ne C 1 positions where such
a streak can begin. The probability that a streak of heads of length at least 2 dlg ne
begins anywhere is therefore

Pr
(
n2dlg neC1 [

i D1

A i;2dlg ne

)

හ
n2dlg neC1 X

i D1

Pr fA i;2dlg ne g (by Boole’s inequality (C.21) on page 1190)

හ
n2dlg neC1 X

i D1

1
n 2

<
n X

i D1

1
n 2

D
1
n
: (5.10)

We can use inequality (5.10) to bound the length of the longest streak. For
j D 0; 1; 2; : : : ; n, let L j be the event that the longest streak of heads has length
exactly j , and let L be the length of the longest streak. By the deûnition of ex-
pected value, we have

E ŒL� D
n X

j D0

j Pr fL j g : (5.11)

146 Chapter 5 Probabilistic Analysis and Randomized Algorithms

We could try to evaluate this sum using upper bounds on each Pr fL j g similar
to those computed in inequality (5.10). Unfortunately, this method yields weak
bounds. We can use some intuition gained by the above analysis to obtain a good
bound, however. For no individual term in the summation in equation (5.11) are
both the factors j and Pr fL j g large. Why? When j 2 dlg ne, then Pr fL j g is
very small, and when j < 2 dlg ne, then j is fairly small. More precisely, since
the events L j for j D 0; 1; : : : ; n are disjoint, the probability that a streak of heads
of length at least 2 dlg ne begins anywhere is P n

j D2dlg ne Pr fL j g. Inequality (5.10)
tells us that the probability that a streak of heads of length at least 2 dlg ne begins
anywhere is less than 1=n, which means that P n

j D2dlg ne Pr fL j g < 1=n. Also, not-
ing that P n

j D0 Pr fL j g D 1, we have that P 2dlg ne1
j D0 Pr fL j g හ 1. Thus, we obtain

E ŒL� D
n X

j D0

j Pr fL j g

D
2dlg ne1 X

j D0

j Pr fL j g C
n X

j D2dlg ne
j Pr fL j g

<
2dlg ne1 X

j D0

.2 dlg ne/ Pr fL j g C
n X

j D2dlg ne
n Pr fL j g

D 2 dlg ne
2dlg ne1 X

j D0

Pr fL j g C n
n X

j D2dlg ne
Pr fL j g

< 2 dlg ne 1 C n 1
n

D O.lg n/ :
The probability that a streak of heads exceeds r dlg ne üips diminishes quickly

with r . Let’s get a rough bound on the probability that a streak of at least r dlg ne
heads occurs, for r 1. The probability that a streak of at least r dlg ne heads
starts in position i is

Pr fA i;r dlg ne g D
1

2 r dlg ne

හ
1
n r
:

A streak of at least r dlg ne heads cannot start in the last n r dlg ne C 1 üips, but
let’s overestimate the probability of such a streak by allowing it to start anywhere
within the n coin üips. Then the probability that a streak of at least r dlg ne heads

5.4 Probabilistic analysis and further uses of indicator random variables 147

occurs is at most

Pr
(

n [

i D1

A i;r dlg ne

)

හ
n X

i D1

Pr fA i;r dlg ne g (by Boole’s inequality (C.21))

හ
n X

i D1

1
n r

D
1
n r 1

:

Equivalently, the probability is at least 1 1=n r 1 that the longest streak has length
less than r dlg ne.

As an example, during n D 1000 coin üips, the probability of encountering a
streak of at least 2 dlg ne D 20 heads is at most 1=n D 1=1000. The chance of a
streak of at least 3 dlg ne D 30 heads is at most 1=n 2 D 1=1,000,000.
Let’s now prove a complementary lower bound: the expected length of the

longest streak of heads in n coin üips is �.lg n/. To prove this bound, we look
for streaks of length s by partitioning the n üips into approximately n=s groups of
s üips each. If we choose s D b.lg n/=2c, we’ll see that it is likely that at least one
of these groups comes up all heads, which means that it’s likely that the longest
streak has length at least s D �.lg n/. We’ll then show that the longest streak has
expected length �.lg n/.
Let’s partition the n coin üips into at least bn= b.lg n/=2cc groups of b.lg n/=2c

consecutive üips and bound the probability that no group comes up all heads. By
equation (5.9), the probability that the group starting in position i comes up all
heads is
Pr fA i;b.lg n/=2c g D

1
2 b.lg n/=2c

1 p
n
:

The probability that a streak of heads of length at least b.lg n/=2c does not begin
in position i is therefore at most 1 1=

p
n. Since the bn= b.lg n/=2cc groups are

formed from mutually exclusive, independent coin üips, the probability that every
one of these groups fails to be a streak of length b.lg n/=2c is at most ã
1 1=

p
n
ä bn=b.lg n/=2cc හ

ã
1 1=

p
n
ä n=b.lg n/=2c1

හ
ã
1 1=

p
n
ä 2n= lg n1

හ e .2n= lg n1/=
p
n

D O.e ln n /
D O.1=n/ : (5.12)

148 Chapter 5 Probabilistic Analysis and Randomized Algorithms

For this argument, we used inequality (3.14), 1 C x හ e x , on page 66 and the fact,
which you may verify, that .2n= lg n 1/=

p
n ln n for sufûciently large n.

We want to bound the probability that the longest streak equals or exceeds
b.lg n/=2c. To do so, let L be the event that the longest streak of heads equals
or exceeds s D b.lg n/=2c. Let L be the complementary event, that the longest
streak of heads is strictly less than s , so that Pr fLg C Pr ̊

L
 D 1. Let F be the

event that every group of s üips fails to be a streak of s heads. By inequality (5.12),
we have Pr fF g D O.1=n/. If the longest streak of heads is less than s , then
certainly every group of s üips fails to be a streak of s heads, which means that
event L implies event F . Of course, event F could occur even if event L does not
(for example, if a streak of s or more heads crosses over the boundary between two
groups), and so we have Pr ̊

L
 හ Pr fF g D O.1=n/. Since Pr fLg C Pr ̊

L
 D 1,

we have that
Pr fLg D 1 Pr ̊

L

 1 Pr fF g
D 1 O.1=n/ :

That is, the probability that the longest streak equals or exceeds b.lg n/=2c is
n X

j Db.lg n/=2c
Pr fL j g 1 O.1=n/ : (5.13)

We can now calculate a lower bound on the expected length of the longest streak,
beginning with equation (5.11) and proceeding in a manner similar to our analysis
of the upper bound:

E ŒL� D
n X

j D0

j Pr fL j g

D
b.lg n/=2c1 X

j D0

j Pr fL j g C
n X

j Db.lg n/=2c
j Pr fL j g

b.lg n/=2c1 X

j D0

0 Pr fL j g C
n X

j Db.lg n/=2c
b.lg n/=2c Pr fL j g

D 0
b.lg n/=2c1 X

j D0

Pr fL j g C b.lg n/=2c
n X

j Db.lg n/=2c
Pr fL j g

 0 C b.lg n/=2c .1 O.1=n// (by inequality (5.13))
D �.lg n/ :

5.4 Probabilistic analysis and further uses of indicator random variables 149

As with the birthday paradox, we can obtain a simpler, but approximate, analysis
using indicator random variables. Instead of determining the expected length of
the longest streak, we’ll ûnd the expected number of streaks with at least a given
length. Let X ik D I fA ik g be the indicator random variable associated with a
streak of heads of length at least k beginning with the i th coin üip. To count the
total number of such streaks, deûne

X k D
nkC1 X

i D1

X ik :

Taking expectations and using linearity of expectation, we have

E ŒX k � D E
"
nkC1 X

i D1

X ik

D
nkC1 X

i D1

E ŒX ik �

D
nkC1 X

i D1

Pr fA ik g

D
nkC1 X

i D1

1
2 k

D
n k C 1

2 k
:

By plugging in various values for k, we can calculate the expected number of
streaks of length at least k. If this expected number is large (much greater than 1),
then we expect many streaks of length k to occur, and the probability that one oc-
curs is high. If this expected number is small (much less than 1), then we expect to
see few streaks of length k, and the probability that one occurs is low. If k D c lg n,
for some positive constant c , we obtain

E ŒX c lg n � D
n c lg n C 1

2 c lg n

D
n c lg n C 1

n c

D
1
n c1

.c lg n 1/=n
n c1

D ‚.1=n c1 / :

If c is large, the expected number of streaks of length c lg n is small, and we con-
clude that they are unlikely to occur. On the other hand, if c D 1=2, then we

150 Chapter 5 Probabilistic Analysis and Randomized Algorithms

obtain E ŒX .1=2/ lg n � D ‚.1=n 1=21 / D ‚.n 1=2 /, and we expect there to be numer-
ous streaks of length .1=2/ lg n. Therefore, one streak of such a length is likely to
occur. We can conclude that the expected length of the longest streak is ‚.lg n/.

5.4.4 The online hiring problem

As a ûnal example, let’s consider a variant of the hiring problem. Suppose now
that you do not wish to interview all the candidates in order to ûnd the best one.
You also want to avoid hiring and ûring as you ûnd better and better applicants.
Instead, you are willing to settle for a candidate who is close to the best, in ex-
change for hiring exactly once. You must obey one company requirement: after
each interview you must either immediately offer the position to the applicant or
immediately reject the applicant. What is the trade-off between minimizing the
amount of interviewing and maximizing the quality of the candidate hired?

We can model this problem in the following way. After meeting an applicant,
you are able to give each one a score. Let score.i/ denote the score you give to
the i th applicant, and assume that no two applicants receive the same score. After
you have seen j applicants, you know which of the j has the highest score, but
you do not know whether any of the remaining n j applicants will receive a
higher score. You decide to adopt the strategy of selecting a positive integer k < n,
interviewing and then rejecting the ûrst k applicants, and hiring the ûrst applicant
thereafter who has a higher score than all preceding applicants. If it turns out that
the best-qualiûed applicant was among the ûrst k interviewed, then you hire the nth
applicant4the last one interviewed. We formalize this strategy in the procedure
ONLINE-MAXIMUM.k; n/, which returns the index of the candidate you wish to
hire.

ONLINE-MAXIMUM.k; n/
1 best-score D 1
2 for i D 1 to k
3 if score.i/ > best-score
4 best-score D score.i/
5 for i D k C 1 to n
6 if score.i/ > best-score
7 return i
8 return n

If we determine, for each possible value of k, the probability that you hire
the most qualiûed applicant, then you can choose the best possible k and imple-
ment the strategy with that value. For the moment, assume that k is ûxed. Let

5.4 Probabilistic analysis and further uses of indicator random variables 151

M.j / D max fscore.i/ W 1 හ i හ j g denote the maximum score among applicants
1 through j . Let S be the event that you succeed in choosing the best-qualiûed
applicant, and let S i be the event that you succeed when the best-qualiûed appli-
cant is the i th one interviewed. Since the various S i are disjoint, we have that
Pr fS g D

P n
i D1 Pr fS i g. Noting that you never succeed when the best-qualiûed

applicant is one of the ûrst k, we have that Pr fS i g D 0 for i D 1; 2; : : : ; k. Thus,
we obtain

Pr fS g D
n X

i DkC1

Pr fS i g : (5.14)

We now compute Pr fS i g. In order to succeed when the best-qualiûed applicant
is the i th one, two things must happen. First, the best-qualiûed applicant must be in
position i , an event which we denote by B i . Second, the algorithm must not select
any of the applicants in positions k C 1 through i 1, which happens only if, for
each j such that k C 1 හ j හ i 1, line 6 ûnds that score.j / < best-score. (Be-
cause scores are unique, we can ignore the possibility of score.j / D best-score.)
In other words, all of the values score.k C 1/ through score.i 1/ must be less
than M.k/. If any are greater than M.k/, the algorithm instead returns the index
of the ûrst one that is greater. We use O i to denote the event that none of the ap-
plicants in position k C 1 through i 1 are chosen. Fortunately, the two events B i
and O i are independent. The event O i depends only on the relative ordering of the
values in positions 1 through i 1, whereas B i depends only on whether the value
in position i is greater than the values in all other positions. The ordering of the
values in positions 1 through i 1 does not affect whether the value in position i
is greater than all of them, and the value in position i does not affect the ordering
of the values in positions 1 through i 1. Thus, we can apply equation (C.17) on
page 1188 to obtain

Pr fS i g D Pr fB i \ O i g D Pr fB i g Pr fO i g :

We have Pr fB i g D 1=n since the maximum is equally likely to be in any one of the
n positions. For event O i to occur, the maximum value in positions 1 through i 1,
which is equally likely to be in any of these i 1 positions, must be in one of the
ûrst k positions. Consequently, Pr fO i g D k=.i 1/ and Pr fS i g D k=.n.i 1//.
Using equation (5.14), we have

Pr fS g D
n X

i DkC1

Pr fS i g

D
n X

i DkC1

k
n.i 1/

152 Chapter 5 Probabilistic Analysis and Randomized Algorithms

D
k
n

n X

i DkC1

1
i 1

D
k
n

n1 X

i Dk

1
i
:

We approximate by integrals to bound this summation from above and below. By
the inequalities (A.19) on page 1150, we have Z n

k

1
x
dx හ

n1 X

i Dk

1
i

හ
Z n1

k1

1
x
dx :

Evaluating these deûnite integrals gives us the bounds
k
n
.ln n ln k/ හ Pr fS g හ

k
n
.ln.n 1/ ln.k 1// ;

which provide a rather tight bound for Pr fS g. Because you wish to maximize your
probability of success, let us focus on choosing the value of k that maximizes the
lower bound on Pr fS g. (Besides, the lower-bound expression is easier to maximize
than the upper-bound expression.) Differentiating the expression .k=n/.ln n ln k/
with respect to k, we obtain
1
n
.ln n ln k 1/ :

Setting this derivative equal to 0, we see that you maximize the lower bound on
the probability when ln k D ln n 1 D ln.n=e/ or, equivalently, when k D n=e.
Thus, if you implement our strategy with k D n=e, you succeed in hiring the
best-qualiûed applicant with probability at least 1=e.

Exercises
5.4-1
How many people must there be in a room before the probability that someone
has the same birthday as you do is at least 1=2? How many people must there be
before the probability that at least two people have a birthday on July 4 is greater
than 1=2?
5.4-2
How many people must there be in a room before the probability that two people
have the same birthday is at least 0:99? For that many people, what is the expected
number of pairs of people who have the same birthday?

Problems for Chapter 5 153

5.4-3
You toss balls into b bins until some bin contains two balls. Each toss is indepen-
dent, and each ball is equally likely to end up in any bin. What is the expected
number of ball tosses?

? 5.4-4
For the analysis of the birthday paradox, is it important that the birthdays be mutu-
ally independent, or is pairwise independence sufûcient? Justify your answer.

? 5.4-5
How many people should be invited to a party in order to make it likely that there
are three people with the same birthday?

? 5.4-6
What is the probability that a k-string (deûned on page 1179) over a set of size n
forms a k-permutation? How does this question relate to the birthday paradox?

? 5.4-7
You toss n balls into n bins, where each toss is independent and the ball is equally
likely to end up in any bin. What is the expected number of empty bins? What is
the expected number of bins with exactly one ball?

? 5.4-8
Sharpen the lower bound on streak length by showing that in n üips of a fair coin,
the probability is at least 1 1=n that a streak of length lg n 2 lg lg n consecutive
heads occurs.

Problems

5-1 Probabilistic counting
With a b-bit counter, we can ordinarily only count up to 2 b 1. With R. Morris’s
probabilistic counting, we can count up to a much larger value at the expense of
some loss of precision.

We let a counter value of i represent a count of n i for i D 0; 1; : : : ; 2 b 1, where
the n i form an increasing sequence of nonnegative values. We assume that the ini-
tial value of the counter is 0, representing a count of n 0 D 0. The I NCREMENT
operation works on a counter containing the value i in a probabilistic manner. If
i D 2 b 1, then the operation reports an overüow error. Otherwise, the I NCRE-
MENT operation increases the counter by 1 with probability 1=.n i C1 n i /, and it
leaves the counter unchanged with probability 1 1=.n i C1 n i /.

154 Chapter 5 Probabilistic Analysis and Randomized Algorithms

If we select n i D i for all i 0, then the counter is an ordinary one. More
interesting situations arise if we select, say, n i D 2 i 1 for i > 0 or n i D F i (the
i th Fibonacci number4see equation (3.31) on page 69).

For this problem, assume that n 2 b 1 is large enough that the probability of an
overüow error is negligible.
a. Show that the expected value represented by the counter after n I NCREMENT

operations have been performed is exactly n.

b. The analysis of the variance of the count represented by the counter depends
on the sequence of the n i . Let us consider a simple case: n i D 100i for
all i 0. Estimate the variance in the value represented by the register after n
I NCREMENT operations have been performed.

5-2 Searching an unsorted array
This problem examines three algorithms for searching for a value x in an unsorted
array A consisting of n elements.

Consider the following randomized strategy: pick a random index i into A. If
AŒi� D x , then terminate; otherwise, continue the search by picking a new random
index into A. Continue picking random indices into A until you ûnd an index j
such that AŒj � D x or until every element of A has been checked. This strategy
may examine a given element more than once, because it picks from the whole set
of indices each time.
a. Write pseudocode for a procedure RANDOM-SEARCH to implement the strat-

egy above. Be sure that your algorithm terminates when all indices into A have
been picked.

b. Suppose that there is exactly one index i such that AŒi� D x . What is the
expected number of indices into A that must be picked before x is found and
RANDOM-SEARCH terminates?

c. Generalizing your solution to part (b), suppose that there are k 1 indices i
such that AŒi� D x . What is the expected number of indices into A that must
be picked before x is found and RANDOM-SEARCH terminates? Your answer
should be a function of n and k.

d. Suppose that there are no indices i such that AŒi� D x . What is the expected
number of indices into A that must be picked before all elements of A have
been checked and RANDOM-SEARCH terminates?

Now consider a deterministic linear search algorithm. The algorithm, which we
call DETERMINISTIC-SEARCH, searches A for x in order, considering AŒ1�;AŒ2�;

Notes for Chapter 5 155

AŒ3�; : : : ; AŒn� until either it ûnds AŒi� D x or it reaches the end of the array.
Assume that all possible permutations of the input array are equally likely.
e. Suppose that there is exactly one index i such that AŒi� D x . What is the

average-case running time of DETERMINISTIC-SEARCH? What is the worst-
case running time of DETERMINISTIC-SEARCH?

f. Generalizing your solution to part (e), suppose that there are k 1 indices i
such that AŒi� D x . What is the average-case running time of DETERMINISTIC-
SEARCH? What is the worst-case running time of DETERMINISTIC-S EARCH?
Your answer should be a function of n and k.

g. Suppose that there are no indices i such that AŒi� D x . What is the average-case
running time of DETERMINISTIC-SEARCH? What is the worst-case running
time of DETERMINISTIC-SEARCH?

Finally, consider a randomized algorithm SCRAMBLE-SEARCH that ûrst randomly
permutes the input array and then runs the deterministic linear search given above
on the resulting permuted array.
h. Letting k be the number of indices i such that AŒi� D x , give the worst-case and

expected running times of SCRAMBLE-SEARCH for the cases in which k D 0
and k D 1. Generalize your solution to handle the case in which k 1.

i. Which of the three searching algorithms would you use? Explain your answer.

Chapter notes

Bollob´ as [65], Hofri [223], and Spencer [420] contain a wealth of advanced prob-
abilistic techniques. The advantages of randomized algorithms are discussed and
surveyed by Karp [249] and Rabin [372]. The textbook by Motwani and Raghavan
[336] gives an extensive treatment of randomized algorithms.

The RANDOMLY-PERMUTE procedure is by Durstenfeld [128], based on an ear-
lier procedure by Fisher and Yates [143, p. 34].

Several variants of the hiring problem have been widely studied. These problems
are more commonly referred to as <secretary problems.= Examples of work in this
area are the paper by Ajtai, Meggido, and Waarts [11] and another by Kleinberg
[258], which ties the secretary problem to online ad auctions.

Part II Sorting and Order Statistics

Introduction

This part presents several algorithms that solve the following sorting problem:
Input: A sequence of n numbers ha 1 ; a 2 ; : : : ; a n i.
Output: A permutation (reordering) ha 0 1 ; a 0 2 ; : : : ; a 0 n i of the input sequence such

that a 0 1 හ a 0 2 හ හ a 0 n .
The input sequence is usually an n-element array, although it may be represented
in some other fashion, such as a linked list.

The structure of the data
In practice, the numbers to be sorted are rarely isolated values. Each is usually part
of a collection of data called a record. Each record contains a key, which is the
value to be sorted. The remainder of the record consists of satellite data, which are
usually carried around with the key. In practice, when a sorting algorithm permutes
the keys, it must permute the satellite data as well. If each record includes a large
amount of satellite data, it often pays to permute an array of pointers to the records
rather than the records themselves in order to minimize data movement.

In a sense, it is these implementation details that distinguish an algorithm from
a full-blown program. A sorting algorithm describes the method to determine the
sorted order, regardless of whether what’s being sorted are individual numbers or
large records containing many bytes of satellite data. Thus, when focusing on the
problem of sorting, we typically assume that the input consists only of numbers.
Translating an algorithm for sorting numbers into a program for sorting records
is conceptually straightforward, although in a given engineering situation other
subtleties may make the actual programming task a challenge.

158 Part II Sorting and Order Statistics

Why sorting?
Many computer scientists consider sorting to be the most fundamental problem in
the study of algorithms. There are several reasons:
 Sometimes an application inherently needs to sort information. For example,

in order to prepare customer statements, banks need to sort checks by check
number.

 Algorithms often use sorting as a key subroutine. For example, a program that
renders graphical objects which are layered on top of each other might have
to sort the objects according to an <above= relation so that it can draw these
objects from bottom to top. We will see numerous algorithms in this text that
use sorting as a subroutine.

 We can draw from among a wide variety of sorting algorithms, and they employ
a rich set of techniques. In fact, many important techniques used throughout
algorithm design appear in sorting algorithms that have been developed over
the years. In this way, sorting is also a problem of historical interest.

 We can prove a nontrivial lower bound for sorting (as we’ll do in Chapter 8).
Since the best upper bounds match the lower bound asymptotically, we can con-
clude that certain of our sorting algorithms are asymptotically optimal. More-
over, we can use the lower bound for sorting to prove lower bounds for various
other problems.

 Many engineering issues come to the fore when implementing sorting algo-
rithms. The fastest sorting program for a particular situation may depend on
many factors, such as prior knowledge about the keys and satellite data, the
memory hierarchy (caches and virtual memory) of the host computer, and the
software environment. Many of these issues are best dealt with at the algorith-
mic level, rather than by <tweaking= the code.

Sorting algorithms
We introduced two algorithms that sort n real numbers in Chapter 2. Insertion sort
takes ‚.n 2 / time in the worst case. Because its inner loops are tight, however, it is
a fast sorting algorithm for small input sizes. Moreover, unlike merge sort, it sorts
in place, meaning that at most a constant number of elements of the input array
are ever stored outside the array, which can be advantageous for space efûciency.
Merge sort has a better asymptotic running time, ‚.n lg n/, but the MERGE proce-
dure it uses does not operate in place. (We’ll see a parallelized version of merge
sort in Section 26.3.)

Part II Sorting and Order Statistics 159

This part introduces two more algorithms that sort arbitrary real numbers. Heap-
sort, presented in Chapter 6, sorts n numbers in place in O.n lg n/ time. It uses an
important data structure, called a heap, which can also implement a priority queue.
Quicksort, in Chapter 7, also sorts n numbers in place, but its worst-case running

time is ‚.n 2 /. Its expected running time is ‚.n lg n/, however, and it generally
outperforms heapsort in practice. Like insertion sort, quicksort has tight code, and
so the hidden constant factor in its running time is small. It is a popular algorithm
for sorting large arrays.

Insertion sort, merge sort, heapsort, and quicksort are all comparison sorts: they
determine the sorted order of an input array by comparing elements. Chapter 8 be-
gins by introducing the decision-tree model in order to study the performance limi-
tations of comparison sorts. Using this model, we prove a lower bound of �.n lg n/
on the worst-case running time of any comparison sort on n inputs, thus showing
that heapsort and merge sort are asymptotically optimal comparison sorts.
Chapter 8 then goes on to show that we might be able to beat this lower bound

of �.n lg n/ if an algorithm can gather information about the sorted order of the
input by means other than comparing elements. The counting sort algorithm, for
example, assumes that the input numbers belong to the set f0; 1; : : : ; kg. By using
array indexing as a tool for determining relative order, counting sort can sort n
numbers in ‚.k C n/ time. Thus, when k D O.n/, counting sort runs in time that
is linear in the size of the input array. A related algorithm, radix sort, can be used
to extend the range of counting sort. If there are n integers to sort, each integer
has d digits, and each digit can take on up to k possible values, then radix sort can
sort the numbers in ‚.d.n C k// time. When d is a constant and k is O.n/, radix
sort runs in linear time. A third algorithm, bucket sort, requires knowledge of the
probabilistic distribution of numbers in the input array. It can sort n real numbers
uniformly distributed in the half-open interval Œ0; 1/ in average-case O.n/ time.

The table on the following page summarizes the running times of the sorting al-
gorithms from Chapters 2 and 638. As usual, n denotes the number of items to sort.
For counting sort, the items to sort are integers in the set f0; 1; : : : ; kg. For radix
sort, each item is a d -digit number, where each digit takes on k possible values. For
bucket sort, we assume that the keys are real numbers uniformly distributed in the
half-open interval Œ0; 1/. The rightmost column gives the average-case or expected
running time, indicating which one it gives when it differs from the worst-case run-
ning time. We omit the average-case running time of heapsort because we do not
analyze it in this book.

160 Part II Sorting and Order Statistics

Worst-case Average-case/expected
Algorithm running time running time
Insertion sort ‚.n 2 / ‚.n 2 /
Merge sort ‚.n lg n/ ‚.n lg n/
Heapsort O.n lg n/ 4
Quicksort ‚.n 2 / ‚.n lg n/ (expected)
Counting sort ‚.k C n/ ‚.k C n/
Radix sort ‚.d.n C k// ‚.d.n C k//
Bucket sort ‚.n 2 / ‚.n/ (average-case)

Order statistics
The i th order statistic of a set of n numbers is the i th smallest number in the set.
You can, of course, select the i th order statistic by sorting the input and indexing
the i th element of the output. With no assumptions about the input distribution,
this method runs in �.n lg n/ time, as the lower bound proved in Chapter 8 shows.
Chapter 9 shows how to ûnd the i th smallest element in O.n/ time, even when

the elements are arbitrary real numbers. We present a randomized algorithm with
tight pseudocode that runs in ‚.n 2 / time in the worst case, but whose expected
running time is O.n/. We also give a more complicated algorithm that runs in
O.n/ worst-case time.

Background

Although most of this part does not rely on difûcult mathematics, some sections
do require mathematical sophistication. In particular, analyses of quicksort, bucket
sort, and the order-statistic algorithm use probability, which is reviewed in Ap-
pendix C, and the material on probabilistic analysis and randomized algorithms in
Chapter 5.

6 Heapsort

This chapter introduces another sorting algorithm: heapsort. Like merge sort, but
unlike insertion sort, heapsort’s running time is O.n lg n/. Like insertion sort, but
unlike merge sort, heapsort sorts in place: only a constant number of array elements
are stored outside the input array at any time. Thus, heapsort combines the better
attributes of the two sorting algorithms we have already discussed.

Heapsort also introduces another algorithm design technique: using a data struc-
ture, in this case one we call a <heap,= to manage information. Not only is the heap
data structure useful for heapsort, but it also makes an efûcient priority queue. The
heap data structure will reappear in algorithms in later chapters.

The term <heap= was originally coined in the context of heapsort, but it has since
come to refer to <garbage-collected storage,= such as the programming languages
Java and Python provide. Please don’t be confused. The heap data structure is not
garbage-collected storage. This book is consistent in using the term <heap= to refer
to the data structure, not the storage class.

6.1 Heaps

The (binary) heap data structure is an array object that we can view as a nearly
complete binary tree (see Section B.5.3), as shown in Figure 6.1. Each node of
the tree corresponds to an element of the array. The tree is completely ûlled on
all levels except possibly the lowest, which is ûlled from the left up to a point.
An array AŒ1 W n� that represents a heap is an object with an attribute A: heap-size,
which represents how many elements in the heap are stored within array A. That
is, although AŒ1 W n� may contain numbers, only the elements in AŒ1 W A: heap-size�,
where 0 හ A: heap-size හ n, are valid elements of the heap. If A: heap-size D 0,
then the heap is empty. The root of the tree is AŒ1�, and given the index i of a node,

162 Chapter 6 Heapsort

(a)

16 14 10 8 7 9 3 2 4 1

1 2 3 4 5 6 7 8 9 10

(b)

1

2 3

4 5 6 7

8 9 10

16

14 10

8 7 9 3

2 4 1

Figure 6.1 A max-heap viewed as (a) a binary tree and (b) an array. The number within the circle at
each node in the tree is the value stored at that node. The number above a node is the corresponding
index in the array. Above and below the array are lines showing parent-child relationships, with
parents always to the left of their children. The tree has height 3, and the node at index 4 (with
value 8) has height 1.

there’s a simple way to compute the indices of its parent, left child, and right child
with the one-line procedures PARENT, LEFT, and RIGHT.

PARENT.i/
1 return bi=2c

LEFT.i/
1 return 2i

RIGHT.i/
1 return 2i C 1

On most computers, the LEFT procedure can compute 2i in one instruction by
simply shifting the binary representation of i left by one bit position. Similarly, the
RIGHT procedure can quickly compute 2i C 1 by shifting the binary representation
of i left by one bit position and then adding 1. The PARENT procedure can compute
bi=2c by shifting i right one bit position. Good implementations of heapsort often
implement these procedures as macros or inline procedures.
There are two kinds of binary heaps: max-heaps and min-heaps. In both kinds,

the values in the nodes satisfy a heap property, the speciûcs of which depend on
the kind of heap. In a max-heap, the max-heap property is that for every node i
other than the root,
AŒPARENT.i/� AŒi� ;

6.1 Heaps 163

that is, the value of a node is at most the value of its parent. Thus, the largest
element in a max-heap is stored at the root, and the subtree rooted at a node contains
values no larger than that contained at the node itself. A min-heap is organized in
the opposite way: the min-heap property is that for every node i other than the
root,
AŒPARENT.i/� හ AŒi� :

The smallest element in a min-heap is at the root.
The heapsort algorithm uses max-heaps. Min-heaps commonly implement prior-

ity queues, which we discuss in Section 6.5. We’ll be precise in specifying whether
we need a max-heap or a min-heap for any particular application, and when prop-
erties apply to either max-heaps or min-heaps, we just use the term <heap.=
Viewing a heap as a tree, we deûne the height of a node in a heap to be the

number of edges on the longest simple downward path from the node to a leaf, and
we deûne the height of the heap to be the height of its root. Since a heap of n ele-
ments is based on a complete binary tree, its height is ‚.lg n/ (see Exercise 6.1-2).
As we’ll see, the basic operations on heaps run in time at most proportional to the
height of the tree and thus take O.lg n/ time. The remainder of this chapter presents
some basic procedures and shows how they are used in a sorting algorithm and a
priority-queue data structure.
 The MAX-HEAPIFY procedure, which runs in O.lg n/ time, is the key to main-

taining the max-heap property.
 The BUILD-MAX-HEAP procedure, which runs in linear time, produces a max-

heap from an unordered input array.
 The HEAPSORT procedure, which runs in O.n lg n/ time, sorts an array in

place.
 The procedures MAX-HEAP-I NSERT, MAX-HEAP-EXTRACT-MAX, MAX-

HEAP-I NCREASE-KEY, and MAX-HEAP-MAXIMUM allow the heap data
structure to implement a priority queue. They run in O.lg n/ time plus the
time for mapping between objects being inserted into the priority queue and
indices in the heap.

Exercises
6.1-1
What are the minimum and maximum numbers of elements in a heap of height h?
6.1-2
Show that an n-element heap has height blg nc.

164 Chapter 6 Heapsort

6.1-3
Show that in any subtree of a max-heap, the root of the subtree contains the largest
value occurring anywhere in that subtree.
6.1-4
Where in a max-heap might the smallest element reside, assuming that all elements
are distinct?
6.1-5
At which levels in a max-heap might the kth largest element reside, for 2 හ k හ
bn=2c, assuming that all elements are distinct?
6.1-6
Is an array that is in sorted order a min-heap?
6.1-7
Is the array with values h33; 19; 20; 15; 13; 10; 2; 13; 16; 12i a max-heap?
6.1-8
Show that, with the array representation for storing an n-element heap, the leaves
are the nodes indexed by bn=2c C 1; bn=2c C 2; : : : ; n.

6.2 Maintaining the heap property

The procedure MAX-HEAPIFY on the facing page maintains the max-heap prop-
erty. Its inputs are an array A with the heap-size attribute and an index i into the
array. When it is called, MAX-HEAPIFY assumes that the binary trees rooted at
LEFT.i/ and RIGHT.i/ are max-heaps, but that AŒi� might be smaller than its chil-
dren, thus violating the max-heap property. MAX-HEAPIFY lets the value at AŒi�
<üoat down= in the max-heap so that the subtree rooted at index i obeys the max-
heap property.
Figure 6.2 illustrates the action of MAX-HEAPIFY. Each step determines the

largest of the elements AŒi�, AŒLEFT.i/�, and AŒRIGHT.i/� and stores the index of
the largest element in largest . If AŒi� is largest, then the subtree rooted at node i is
already a max-heap and nothing else needs to be done. Otherwise, one of the two
children contains the largest element. Positions i and largest swap their contents,
which causes node i and its children to satisfy the max-heap property. The node in-
dexed by largest , however, just had its value decreased, and thus the subtree rooted
at largest might violate the max-heap property. Consequently, MAX-HEAPIFY
calls itself recursively on that subtree.

6.2 Maintaining the heap property 165

16

4 10

14 7 9

2 8 1
(a)

16

14 10

4 7 9 3

2 8 1
(b)

16

14 10

8 7 9 3

2 4 1
(c)

3

1

3

4 5 6 7

9 10

2

8

1

3

4 5 6 7

9 10

2

8

1

3

4 5 6 7

9 10

2

8

i

i

i

Figure 6.2 The action of MAX-HEAPIFY.A; 2/, where A: heap-size D 10. The node that poten-
tially violates the max-heap property is shown in blue. (a) The initial conûguration, with AŒ2� at
node i D 2 violating the max-heap property since it is not larger than both children. The max-heap
property is restored for node 2 in (b) by exchanging AŒ2� with AŒ4�, which destroys the max-heap
property for node 4. The recursive call MAX-HEAPIFY.A; 4/ now has i D 4. After AŒ4� and AŒ9�
are swapped, as shown in (c), node 4 is ûxed up, and the recursive call MAX-HEAPIFY.A; 9/ yields
no further change to the data structure.

MAX-HEAPIFY .A; i/
1 l D LEFT.i/
2 r D RIGHT.i/
3 if l හ A: heap-size and AŒl� > AŒi �
4 largest D l
5 else largest D i
6 if r හ A: heap-size and AŒr� > AŒlargest �
7 largest D r
8 if largest ¤ i
9 exchange AŒi� with AŒlargest �
10 MAX-HEAPIFY .A; largest /

166 Chapter 6 Heapsort

To analyze MAX-HEAPIFY, let T .n/ be the worst-case running time that the
procedure takes on a subtree of size at most n. For a tree rooted at a given node i ,
the running time is the ‚.1/ time to ûx up the relationships among the elements
AŒi�, AŒLEFT.i/�, and AŒRIGHT.i/�, plus the time to run MAX-HEAPIFY on a
subtree rooted at one of the children of node i (assuming that the recursive call oc-
curs). The children’s subtrees each have size at most 2n=3 (see Exercise 6.2-2), and
therefore we can describe the running time of MAX-HEAPIFY by the recurrence
T .n/ හ T .2n=3/ C ‚.1/ : (6.1)
The solution to this recurrence, by case 2 of the master theorem (Theorem 4.1 on
page 102), is T .n/ D O.lg n/. Alternatively, we can characterize the running time
of MAX-HEAPIFY on a node of height h as O.h/.

Exercises
6.2-1
Using Figure 6.2 as a model, illustrate the operation of MAX-HEAPIFY .A; 3/ on
the array A D h27; 17; 3; 16; 13; 10; 1; 5; 7; 12; 4; 8; 9; 0i.
6.2-2
Show that each child of the root of an n-node heap is the root of a subtree containing
at most 2n=3 nodes. What is the smallest constant ˛ such that each subtree has at
most ˛n nodes? How does that affect the recurrence (6.1) and its solution?
6.2-3
Starting with the procedure MAX-HEAPIFY, write pseudocode for the procedure
MIN-HEAPIFY .A; i/, which performs the corresponding manipulation on a min-
heap. How does the running time of MIN-HEAPIFY compare with that of MAX-
HEAPIFY?
6.2-4
What is the effect of calling MAX-HEAPIFY .A; i/ when the element AŒi� is larger
than its children?
6.2-5
What is the effect of calling MAX-HEAPIFY .A; i/ for i > A: heap-size=2?
6.2-6
The code for MAX-HEAPIFY is quite efûcient in terms of constant factors, except
possibly for the recursive call in line 10, for which some compilers might produce
inefûcient code. Write an efûcient MAX-HEAPIFY that uses an iterative control
construct (a loop) instead of recursion.

6.3 Building a heap 167

6.2-7
Show that the worst-case running time of MAX-HEAPIFY on a heap of size n
is �.lg n/. (Hint: For a heap with n nodes, give node values that cause MAX-
HEAPIFY to be called recursively at every node on a simple path from the root
down to a leaf.)

6.3 Building a heap

The procedure BUILD-MAX-HEAP converts an array AŒ1 W n� into a max-heap by
calling MAX-HEAPIFY in a bottom-up manner. Exercise 6.1-8 says that the ele-
ments in the subarray AŒbn=2c C 1 W n� are all leaves of the tree, and so each is
a 1-element heap to begin with. BUILD-MAX-HEAP goes through the remain-
ing nodes of the tree and runs MAX-HEAPIFY on each one. Figure 6.3 shows an
example of the action of BUILD-MAX-HEAP.

BUILD-MAX-HEAP .A; n/
1 A: heap-size D n
2 for i D bn=2c downto 1
3 MAX-HEAPIFY .A; i/

To show why BUILD-MAX-HEAP works correctly, we use the following loop
invariant:

At the start of each iteration of the for loop of lines 233, each node i C 1;
i C 2; : : : ; n is the root of a max-heap.

We need to show that this invariant is true prior to the ûrst loop iteration, that each
iteration of the loop maintains the invariant, that the loop terminates, and that the
invariant provides a useful property to show correctness when the loop terminates.
Initialization: Prior to the ûrst iteration of the loop, i D bn=2c. Each node

bn=2c C 1; bn=2c C 2; : : : ; n is a leaf and is thus the root of a trivial max-heap.
Maintenance: To see that each iteration maintains the loop invariant, observe

that the children of node i are numbered higher than i . By the loop invariant,
therefore, they are both roots of max-heaps. This is precisely the condition
required for the call MAX-HEAPIFY .A; i/ to make node i a max-heap root.
Moreover, the MAX-HEAPIFY call preserves the property that nodes i C 1;
i C 2; : : : ; n are all roots of max-heaps. Decrementing i in the for loop update
reestablishes the loop invariant for the next iteration.

168 Chapter 6 Heapsort

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

1

2 3

4 5 6 7

8 9 10

4

1 3

2 9 10

14 8 7
(a)

16

4 1 2 3 16 9 10 14 8 7

4

1 3

2 9 10

14 8 7
(b)

16

4

1 3

14 9 10

2 8 7
(c)

16

4

1 10

14 9 3

2 8 7
(d)

16

4

16 10

14 9 3

2 8 1
(e)

7

16

14 10

8 9 3

2 4 1
(f)

7

A

i i

i i

i

Figure 6.3 The operation of BUILD-MAX-HEAP, showing the data structure before the call to
MAX-HEAPIFY in line 3 of BUILD-MAX-HEAP. The node indexed by i in each iteration is shown
in blue. (a) A 10-element input array A and the binary tree it represents. The loop index i refers
to node 5 before the call MAX-HEAPIFY.A; i/. (b) The data structure that results. The loop in-
dex i for the next iteration refers to node 4. (c)–(e) Subsequent iterations of the for loop in
BUILD-MAX-HEAP. Observe that whenever MAX-HEAPIFY is called on a node, the two subtrees
of that node are both max-heaps. (f) The max-heap after BUILD-MAX-HEAP ûnishes.

6.3 Building a heap 169

Termination: The loop makes exactly bn=2c iterations, and so it terminates. At
termination, i D 0. By the loop invariant, each node 1; 2; : : : ; n is the root of a
max-heap. In particular, node 1 is.

We can compute a simple upper bound on the running time of BUILD-MAX-
HEAP as follows. Each call to MAX-HEAPIFY costs O.lg n/ time, and BUILD-
MAX-HEAP makes O.n/ such calls. Thus, the running time is O.n lg n/. This
upper bound, though correct, is not as tight as it can be.

We can derive a tighter asymptotic bound by observing that the time for MAX-
HEAPIFY to run at a node varies with the height of the node in the tree, and that the
heights of most nodes are small. Our tighter analysis relies on the properties that
an n-element heap has height blg nc (see Exercise 6.1-2) and at most Û

n=2 hC1

nodes of any height h (see Exercise 6.3-4).
The time required by MAX-HEAPIFY when called on a node of height h

is O.h/. Letting c be the constant implicit in the asymptotic notation, we can
express the total cost of BUILD-MAX-HEAP as being bounded from above by P blg nc

hD0

Û
n=2 hC1

ch. As Exercise 6.3-2 shows, we have Û n=2 hC1

 1=2 for
0 හ h හ blg nc. Since dx e හ 2x for any x 1=2, we have Û n=2 hC1

 හ n=2 h . We
thus obtain
blg nc X

hD0

å
n
2 hC1

æ
ch

හ
blg nc X

hD0

n
2 h
ch

D cn
blg nc X

hD0

h
2 h

හ cn
1 X

hD0

h
2 h

හ cn 1=2
.1 1=2/ 2 (by equation (A.11) on page 1142 with x D 1=2)

D O.n/ :

Hence, we can build a max-heap from an unordered array in linear time.
To build a min-heap, use the procedure BUILD-MIN-HEAP, which is the same as

BUILD-MAX-HEAP but with the call to MAX-HEAPIFY in line 3 replaced by a call
to MIN-HEAPIFY (see Exercise 6.2-3). BUILD-MIN-HEAP produces a min-heap
from an unordered linear array in linear time.

170 Chapter 6 Heapsort

Exercises
6.3-1
Using Figure 6.3 as a model, illustrate the operation of BUILD-MAX-HEAP on the
array A D h5; 3; 17; 10; 84; 19; 6; 22; 9i.
6.3-2
Show that Û n=2 hC1

 1=2 for 0 හ h හ blg nc.
6.3-3
Why does the loop index i in line 2 of BUILD-MAX-HEAP decrease from bn=2c
to 1 rather than increase from 1 to bn=2c?
6.3-4
Show that there are at most Û n=2 hC1

 nodes of height h in any n-element heap.

6.4 The heapsort algorithm

The heapsort algorithm, given by the procedure HEAPSORT, starts by calling the
BUILD-MAX-HEAP procedure to build a max-heap on the input array AŒ1 W n�.
Since the maximum element of the array is stored at the root AŒ1�, HEAPSORT can
place it into its correct ûnal position by exchanging it with AŒn�. If the procedure
then discards node n from the heap4and it can do so by simply decrementing
A: heap-size4the children of the root remain max-heaps, but the new root element
might violate the max-heap property. To restore the max-heap property, the pro-
cedure just calls MAX-HEAPIFY .A; 1/, which leaves a max-heap in AŒ1 W n 1�.
The HEAPSORT procedure then repeats this process for the max-heap of size n 1
down to a heap of size 2. (See Exercise 6.4-2 for a precise loop invariant.)

HEAPSORT .A; n/
1 BUILD-MAX-HEAP .A; n/
2 for i D n downto 2
3 exchange AŒ1� with AŒi�
4 A: heap-size D A: heap-size 1
5 MAX-HEAPIFY .A; 1/

Figure 6.4 shows an example of the operation of HEAPSORT after line 1 has built
the initial max-heap. The ûgure shows the max-heap before the ûrst iteration of
the for loop of lines 235 and after each iteration.

6.4 The heapsort algorithm 171

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

1 2 3 4 7 8 9 10 14 16

10

2
1 3

4 7 8 9

16 14

1

2 3

4 7 8 9

16 14 10

3

2 1

9 8 7 4

10 14 16

4

2 3

9 8 7 1

10 14 16

8

3 7

4 2 1 9

16 14 10

7

4 3

9 8 2 1

10 14 16

9
8 3

2 1 7 4

16 14 10

10

8 9

3 1 7 4

16 14 2

14

8 10

3 9 7 4

16 1 2

16

14 10

3 9 7 8

1 4 2

A

i
i

i
i i

i i
i

i

Figure 6.4 The operation of HEAPSORT. (a) The max-heap data structure just after BUILD-MAX-
HEAP has built it in line 1. (b)–(j) The max-heap just after each call of MAX-HEAPIFY in line 5,
showing the value of i at that time. Only blue nodes remain in the heap. Tan nodes contain the largest
values in the array, in sorted order. (k) The resulting sorted array A.

172 Chapter 6 Heapsort

The HEAPSORT procedure takes O.n lg n/ time, since the call to BUILD-MAX-
HEAP takes O.n/ time and each of the n 1 calls to MAX-HEAPIFY takes O.lg n/
time.

Exercises
6.4-1
Using Figure 6.4 as a model, illustrate the operation of HEAPSORT on the array
A D h5; 13; 2; 25; 7; 17; 20; 8; 4i.
6.4-2
Argue the correctness of HEAPSORT using the following loop invariant:

At the start of each iteration of the for loop of lines 235, the subarray AŒ1 W i �
is a max-heap containing the i smallest elements of AŒ1 W n�, and the subar-
ray AŒi C 1 W n� contains the n i largest elements of AŒ1 W n�, sorted.

6.4-3
What is the running time of HEAPSORT on an array A of length n that is already
sorted in increasing order? How about if the array is already sorted in decreasing
order?
6.4-4
Show that the worst-case running time of HEAPSORT is �.n lg n/.

? 6.4-5
Show that when all the elements of A are distinct, the best-case running time of
HEAPSORT is �.n lg n/.

6.5 Priority queues

In Chapter 8, we will see that any comparison-based sorting algorithm requires
�.n lg n/ comparisons and hence �.n lg n/ time. Therefore, heapsort is asymp-
totically optimal among comparison-based sorting algorithms. Yet, a good imple-
mentation of quicksort, presented in Chapter 7, usually beats it in practice. Never-
theless, the heap data structure itself has many uses. In this section, we present one
of the most popular applications of a heap: as an efûcient priority queue. As with
heaps, priority queues come in two forms: max-priority queues and min-priority
queues. We’ll focus here on how to implement max-priority queues, which are
in turn based on max-heaps. Exercise 6.5-3 asks you to write the procedures for
min-priority queues.

6.5 Priority queues 173

A priority queue is a data structure for maintaining a set S of elements, each
with an associated value called a key. A max-priority queue supports the following
operations:
I NSERT.S; x; k/ inserts the element x with key k into the set S , which is equivalent

to the operation S D S [fx g.
MAXIMUM.S/ returns the element of S with the largest key.
EXTRACT-MAX.S/ removes and returns the element of S with the largest key.
I NCREASE-KEY .S; x; k/ increases the value of element x ’s key to the new value k,

which is assumed to be at least as large as x ’s current key value.
Among their other applications, you can use max-priority queues to schedule

jobs on a computer shared among multiple users. The max-priority queue keeps
track of the jobs to be performed and their relative priorities. When a job is ûn-
ished or interrupted, the scheduler selects the highest-priority job from among
those pending by calling EXTRACT-MAX. The scheduler can add a new job to
the queue at any time by calling I NSERT.

Alternatively, a min-priority queue supports the operations I NSERT, MINIMUM,
EXTRACT-MIN, and DECREASE-KEY. A min-priority queue can be used in an
event-driven simulator. The items in the queue are events to be simulated, each
with an associated time of occurrence that serves as its key. The events must be
simulated in order of their time of occurrence, because the simulation of an event
can cause other events to be simulated in the future. The simulation program calls
EXTRACT-MIN at each step to choose the next event to simulate. As new events are
produced, the simulator inserts them into the min-priority queue by calling I NSERT.
We’ll see other uses for min-priority queues, highlighting the DECREASE-KEY
operation, in Chapters 21 and 22.

When you use a heap to implement a priority queue within a given application,
elements of the priority queue correspond to objects in the application. Each ob-
ject contains a key. If the priority queue is implemented by a heap, you need to
determine which application object corresponds to a given heap element, and vice
versa. Because the heap elements are stored in an array, you need a way to map
application objects to and from array indices.
One way to map between application objects and heap elements uses handles,

which are additional information stored in the objects and heap elements that give
enough information to perform the mapping. Handles are often implemented to
be opaque to the surrounding code, thereby maintaining an abstraction barrier be-
tween the application and the priority queue. For example, the handle within an
application object might contain the corresponding index into the heap array. But
since only the code for the priority queue accesses this index, the index is entirely
hidden from the application code. Because heap elements change locations within

174 Chapter 6 Heapsort

the array during heap operations, an actual implementation of the priority queue,
upon relocating a heap element, must also update the array indices in the corre-
sponding handles. Conversely, each element in the heap might contain a pointer
to the corresponding application object, but the heap element knows this pointer
as only an opaque handle and the application maps this handle to an application
object. Typically, the worst-case overhead for maintaining handles is O.1/ per
access.

As an alternative to incorporating handles in application objects, you can store
within the priority queue a mapping from application objects to array indices in the
heap. The advantage of doing so is that the mapping is contained entirely within
the priority queue, so that the application objects need no further embellishment.
The disadvantage lies in the additional cost of establishing and maintaining the
mapping. One option for the mapping is a hash table (see Chapter 11). 1 The added
expected time for a hash table to map an object to an array index is just O.1/,
though the worst-case time can be as bad as ‚.n/.
Let’s see how to implement the operations of a max-priority queue using a max-

heap. In the previous sections, we treated the array elements as the keys to be
sorted, implicitly assuming that any satellite data moved with the corresponding
keys. When a heap implements a priority queue, we instead treat each array ele-
ment as a pointer to an object in the priority queue, so that the object is analogous
to the satellite data when sorting. We further assume that each such object has an
attribute key, which determines where in the heap the object belongs. For a heap
implemented by an array A, we refer to AŒi�: key.

The procedure MAX-HEAP-MAXIMUM on the facing page implements the
MAXIMUM operation in ‚.1/ time, and MAX-HEAP-EXTRACT-MAX implements
the operation EXTRACT-MAX. MAX-HEAP-EXTRACT-MAX is similar to the for
loop body (lines 335) of the HEAPSORT procedure. We implicitly assume that
MAX-HEAPIFY compares priority-queue objects based on their key attributes. We
also assume that when MAX-HEAPIFY exchanges elements in the array, it is ex-
changing pointers and also that it updates the mapping between objects and ar-
ray indices. The running time of MAX-HEAP-EXTRACT-MAX is O.lg n/, since
it performs only a constant amount of work on top of the O.lg n/ time for
MAX-HEAPIFY , plus whatever overhead is incurred within MAX-HEAPIFY for
mapping priority-queue objects to array indices.

The procedure MAX-HEAP-I NCREASE-KEY on page 176 implements the
I NCREASE-KEY operation. It ûrst veriûes that the new key k will not cause the
key in the object x to decrease, and if there is no problem, it gives x the new key
value. The procedure then ûnds the index i in the array corresponding to object x ,

1 In Python, dictionaries are implemented with hash tables.

6.5 Priority queues 175

MAX-HEAP-MAXIMUM.A/
1 if A: heap-size < 1
2 error <heap underüow=
3 return AŒ1�

MAX-HEAP-EXTRACT-MAX .A/
1 max D MAX-HEAP-MAXIMUM.A/
2 AŒ1� D AŒA: heap-size�
3 A: heap-size D A: heap-size 1
4 MAX-HEAPIFY .A; 1/
5 return max

so that AŒi� is x . Because increasing the key of AŒi� might violate the max-heap
property, the procedure then, in a manner reminiscent of the insertion loop (lines
537) of I NSERTION-SORT on page 19, traverses a simple path from this node to-
ward the root to ûnd a proper place for the newly increased key . As MAX-HEAP-
I NCREASE-KEY traverses this path, it repeatedly compares an element’s key to
that of its parent, exchanging pointers and continuing if the element’s key is larger,
and terminating if the element’s key is smaller, since the max-heap property now
holds. (See Exercise 6.5-7 for a precise loop invariant.) Like MAX-HEAPIFY when
used in a priority queue, MAX-HEAP-I NCREASE-KEY updates the information
that maps objects to array indices when array elements are exchanged. Figure 6.5
shows an example of a MAX-HEAP-I NCREASE-KEY operation. In addition to
the overhead for mapping priority queue objects to array indices, the running time
of MAX-HEAP-I NCREASE-KEY on an n-element heap is O.lg n/, since the path
traced from the node updated in line 3 to the root has length O.lg n/.

The procedure MAX-HEAP-I NSERT on the next page implements the I NSERT
operation. It takes as inputs the array A implementing the max-heap, the new
object x to be inserted into the max-heap, and the size n of array A. The procedure
ûrst veriûes that the array has room for the new element. It then expands the
max-heap by adding to the tree a new leaf whose key is 1. Then it calls MAX-
HEAP-I NCREASE-KEY to set the key of this new element to its correct value and
maintain the max-heap property. The running time of MAX-HEAP-I NSERT on an
n-element heap is O.lg n/ plus the overhead for mapping priority queue objects to
indices.
In summary, a heap can support any priority-queue operation on a set of size n in

O.lg n/ time, plus the overhead for mapping priority queue objects to array indices.

176 Chapter 6 Heapsort

MAX-HEAP-I NCREASE-KEY .A; x; k/
1 if k < x: key
2 error <new key is smaller than current key=
3 x: key D k
4 ûnd the index i in array A where object x occurs
5 while i > 1 and AŒPARENT.i/�: key < AŒi�: key
6 exchange AŒi� with AŒPARENT.i/�, updating the information that maps

priority queue objects to array indices
7 i D PARENT.i/

MAX-HEAP-I NSERT .A; x; n/
1 if A: heap-size == n
2 error <heap overüow=
3 A: heap-size D A: heap-size C 1
4 k D x: key
5 x: key D 1
6 AŒA: heap-size� D x
7 map x to index heap-size in the array
8 MAX-HEAP-I NCREASE-KEY .A; x; k/

Exercises
6.5-1
Suppose that the objects in a max-priority queue are just keys. Illustrate the opera-
tion of MAX-HEAP-EXTRACT-MAX on the heap A D h15; 13; 9; 5; 12; 8; 7; 4; 0;
6; 2; 1i.
6.5-2
Suppose that the objects in a max-priority queue are just keys. Illustrate the opera-
tion of MAX-HEAP-I NSERT .A; 10/ on the heap A D h15; 13; 9; 5; 12; 8; 7; 4; 0; 6;
2; 1i.
6.5-3
Write pseudocode to implement a min-priority queue with a min-heap by writing
the procedures MIN-HEAP-MINIMUM, MIN-HEAP-EXTRACT-MIN, MIN-HEAP-
DECREASE-KEY, and MIN-HEAP-I NSERT.
6.5-4
Write pseudocode for the procedure MAX-HEAP-DECREASE-KEY .A; x; k/ in a
max-heap. What is the running time of your procedure?

6.5 Priority queues 177

16

14 10

8 7 9 3

2 4 1

(a)

i

16

14 10

8 7 9 3

2 15 1

(b)

16

14 10

8

7 9 3

2

15

1

(c)

i

i

16

14

10

8

7 9 3

2

15

1

(d)

i

Figure 6.5 The operation of MAX-HEAP-I NCREASE-KEY. Only the key of each element in the
priority queue is shown. The node indexed by i in each iteration is shown in blue. (a) The max-heap
of Figure 6.4(a) with i indexing the node whose key is about to be increased. (b) This node has its
key increased to 15. (c) After one iteration of the while loop of lines 537, the node and its parent
have exchanged keys, and the index i moves up to the parent. (d) The max-heap after one more
iteration of the while loop. At this point, AŒPARENT.i/� AŒi�. The max-heap property now holds
and the procedure terminates.

6.5-5
Why does MAX-HEAP-I NSERT bother setting the key of the inserted object to 1
in line 5 given that line 8 will set the object’s key to the desired value?
6.5-6
Professor Uriah suggests replacing the while loop of lines 537 in MAX-HEAP-
I NCREASE-KEY by a call to MAX-HEAPIFY. Explain the üaw in the professor’s
idea.
6.5-7
Argue the correctness of MAX-HEAP-I NCREASE-KEY using the following loop
invariant:

178 Chapter 6 Heapsort

At the start of each iteration of the while loop of lines 537:
a. If both nodes PARENT.i/ and LEFT.i/ exist, then AŒPARENT.i/�: key
AŒLEFT.i/�: key.

b. If both nodes PARENT.i/ and RIGHT.i/ exist, then AŒPARENT.i/�: key
AŒRIGHT.i/�: key.

c. The subarray AŒ1 W A: heap-size� satisûes the max-heap property, except
that there may be one violation, which is that AŒi�: key may be greater
than AŒPARENT.i/�: key.

You may assume that the subarray AŒ1 W A: heap-size� satisûes the max-heap prop-
erty at the time MAX-HEAP-I NCREASE-KEY is called.
6.5-8
Each exchange operation on line 6 of MAX-HEAP-I NCREASE-KEY typically re-
quires three assignments, not counting the updating of the mapping from objects
to array indices. Show how to use the idea of the inner loop of I NSERTION-SORT
to reduce the three assignments to just one assignment.
6.5-9
Show how to implement a ûrst-in, ûrst-out queue with a priority queue. Show
how to implement a stack with a priority queue. (Queues and stacks are deûned in
Section 10.1.3.)
6.5-10
The operation MAX-HEAP-DELETE .A; x/ deletes the object x from max-heap A.
Give an implementation of MAX-HEAP-DELETE for an n-element max-heap that
runs in O.lg n/ time plus the overhead for mapping priority queue objects to array
indices.
6.5-11
Give an O.n lg k/-time algorithm to merge k sorted lists into one sorted list,
where n is the total number of elements in all the input lists. (Hint: Use a min-
heap for k-way merging.)

Problems

6-1 Building a heap using insertion
One way to build a heap is by repeatedly calling MAX-HEAP-I NSERT to insert the
elements into the heap. Consider the procedure BUILD-MAX-HEAP 0 on the facing
page. It assumes that the objects being inserted are just the heap elements.

Problems for Chapter 6 179

BUILD-MAX-HEAP 0 .A; n/
1 A: heap-size D 1
2 for i D 2 to n
3 MAX-HEAP-I NSERT .A;AŒi �; n/

a. Do the procedures BUILD-MAX-HEAP and BUILD-MAX-HEAP 0 always create
the same heap when run on the same input array? Prove that they do, or provide
a counterexample.

b. Show that in the worst case, BUILD-MAX-HEAP 0 requires ‚.n lg n/ time to
build an n-element heap.

6-2 Analysis of d -ary heaps
A d -ary heap is like a binary heap, but (with one possible exception) nonleaf nodes
have d children instead of two children. In all parts of this problem, assume that
the time to maintain the mapping between objects and heap elements is O.1/ per
operation.
a. Describe how to represent a d -ary heap in an array.

b. Using ‚-notation, express the height of a d -ary heap of n elements in terms of
n and d .

c. Give an efûcient implementation of EXTRACT-MAX in a d -ary max-heap. An-
alyze its running time in terms of d and n.

d. Give an efûcient implementation of I NCREASE-KEY in a d -ary max-heap. An-
alyze its running time in terms of d and n.

e. Give an efûcient implementation of I NSERT in a d -ary max-heap. Analyze its
running time in terms of d and n.

6-3 Young tableaus
An m n Young tableau is an m n matrix such that the entries of each row are
in sorted order from left to right and the entries of each column are in sorted order
from top to bottom. Some of the entries of a Young tableau may be 1, which we
treat as nonexistent elements. Thus, a Young tableau can be used to hold r හ mn
ûnite numbers.
a. Draw a 4 4 Young tableau containing the elements f9; 16; 3; 2; 4; 8; 5; 14; 12g .

180 Chapter 6 Heapsort

b. Argue that an m n Young tableau Y is empty if Y Œ1; 1� D 1. Argue that Y
is full (contains mn elements) if Y Œm; n� < 1.

c. Give an algorithm to implement EXTRACT-MIN on a nonempty m n Young
tableau that runs in O.m C n/ time. Your algorithm should use a recur-
sive subroutine that solves an m n problem by recursively solving either
an .m 1/ n or an m .n 1/ subproblem. (Hint: Think about MAX-
HEAPIFY.) Explain why your implementation of EXTRACT-MIN runs in
O.m C n/ time.

d. Show how to insert a new element into a nonfull m n Young tableau in
O.m C n/ time.

e. Using no other sorting method as a subroutine, show how to use an n n Young
tableau to sort n 2 numbers in O.n 3 / time.

f. Give an O.m C n/-time algorithm to determine whether a given number is
stored in a given m n Young tableau.

Chapter notes

The heapsort algorithm was invented by Williams [456], who also described how
to implement a priority queue with a heap. The BUILD-MAX-HEAP procedure was
suggested by Floyd [145]. Schaffer and Sedgewick [395] showed that in the best
case, the number of times elements move in the heap during heapsort is approxi-
mately .n=2/ lg n and that the average number of moves is approximately n lg n.
We use min-heaps to implement min-priority queues in Chapters 15, 21, and 22.

Other, more complicated, data structures give better time bounds for certain min-
priority queue operations. Fredman and Tarjan [156] developed Fibonacci heaps,
which support I NSERT and DECREASE-KEY in O.1/ amortized time (see Chap-
ter 16). That is, the average worst-case running time for these operations is O.1/.
Brodal, Lagogiannis, and Tarjan [73] subsequently devised strict Fibonacci heaps,
which make these time bounds the actual running times. If the keys are unique
and drawn from the set f0; 1; : : : ; n 1g of nonnegative integers, van Emde Boas
trees [440, 441] support the operations I NSERT, DELETE, SEARCH, MINIMUM,
MAXIMUM, PREDECESSOR, and SUCCESSOR in O.lg lg n/ time.

If the data are b-bit integers, and the computer memory consists of addressable
b-bit words, Fredman and Willard [157] showed how to implement MINIMUM in
O.1/ time and I NSERT and EXTRACT-MIN in O.

p
lg n/ time. Thorup [436] has

Notes for Chapter 6 181

improved the O. p lg n/ bound to O.lg lg n/ time by using randomized hashing,
requiring only linear space.

An important special case of priority queues occurs when the sequence of
EXTRACT-MIN operations is monotone, that is, the values returned by succes-
sive EXTRACT-MIN operations are monotonically increasing over time. This case
arises in several important applications, such as Dijkstra’s single-source shortest-
paths algorithm, which we discuss in Chapter 22, and in discrete-event simula-
tion. For Dijkstra’s algorithm it is particularly important that the DECREASE-KEY
operation be implemented efûciently. For the monotone case, if the data are in-
tegers in the range 1; 2; : : : ; C , Ahuja, Mehlhorn, Orlin, and Tarjan [8] describe
how to implement EXTRACT-MIN and I NSERT in O.lg C/ amortized time (Chap-
ter 16 presents amortized analysis) and DECREASE-KEY in O.1/ time, using a data
structure called a radix heap. The O.lg C/ bound can be improved to O. p lg C/
using Fibonacci heaps in conjunction with radix heaps. Cherkassky, Goldberg,
and Silverstein [90] further improved the bound to O.lg 1=3C C/ expected time by
combining the multilevel bucketing structure of Denardo and Fox [112] with the
heap of Thorup mentioned earlier. Raman [375] further improved these results to
obtain a bound of O

ã min ̊ lg 1=4C C; lg 1=3C n
ä , for any ûxed � > 0.

Many other variants of heaps have been proposed. Brodal [72] surveys some of
these developments.

7 Quicksort

The quicksort algorithm has a worst-case running time of ‚.n 2 / on an input array
of n numbers. Despite this slow worst-case running time, quicksort is often the
best practical choice for sorting because it is remarkably efûcient on average: its
expected running time is ‚.n lg n/ when all numbers are distinct, and the constant
factors hidden in the ‚.n lg n/ notation are small. Unlike merge sort, it also has
the advantage of sorting in place (see page 158), and it works well even in virtual-
memory environments.
Our study of quicksort is broken into four sections. Section 7.1 describes the

algorithm and an important subroutine used by quicksort for partitioning. Because
the behavior of quicksort is complex, we’ll start with an intuitive discussion of
its performance in Section 7.2 and analyze it precisely at the end of the chapter.
Section 7.3 presents a randomized version of quicksort. When all elements are
distinct, 1 this randomized algorithm has a good expected running time and no par-
ticular input elicits its worst-case behavior. (See Problem 7-2 for the case in which
elements may be equal.) Section 7.4 analyzes the randomized algorithm, showing
that it runs in ‚.n 2 / time in the worst case and, assuming distinct elements, in
expected O.n lg n/ time.

1 You can enforce the assumption that the values in an array A are distinct at the cost of ‚.n/
additional space and only constant overhead in running time by converting each input value AŒi� to
an ordered pair .AŒi�; i/ with .AŒi�; i/ < .AŒj �; j / if AŒi� < AŒj � or if AŒi� D AŒj � and i < j .
There are also more practical variants of quicksort that work well when elements are not distinct.

7.1 Description of quicksort 183

7.1 Description of quicksort

Quicksort, like merge sort, applies the divide-and-conquer method introduced in
Section 2.3.1. Here is the three-step divide-and-conquer process for sorting a sub-
array AŒp W r�:
Divide by partitioning (rearranging) the array AŒp W r� into two (possibly empty)

subarrays AŒp W q 1� (the low side) and AŒq C 1 W r� (the high side) such
that each element in the low side of the partition is less than or equal to the
pivot AŒq�, which is, in turn, less than or equal to each element in the high side.
Compute the index q of the pivot as part of this partitioning procedure.

Conquer by calling quicksort recursively to sort each of the subarrays AŒp W q 1�
and AŒq C 1 W r�.

Combine by doing nothing: because the two subarrays are already sorted, no work
is needed to combine them. All elements in AŒp W q 1� are sorted and less than
or equal to AŒq�, and all elements in AŒq C 1 W r� are sorted and greater than or
equal to the pivot AŒq�. The entire subarray AŒp W r� cannot help but be sorted!
The QUICKSORT procedure implements quicksort. To sort an entire n-element

array AŒ1 W n�, the initial call is QUICKSORT.A; 1; n/.

QUICKSORT.A; p; r/
1 if p < r
2 // Partition the subarray around the pivot, which ends up in AŒq�.
3 q D PARTITION.A; p; r/
4 QUICKSORT.A; p; q 1/ // recursively sort the low side
5 QUICKSORT.A; q C 1; r/ // recursively sort the high side

Partitioning the array
The key to the algorithm is the PARTITION procedure on the next page, which
rearranges the subarray AŒp W r� in place, returning the index of the dividing point
between the two sides of the partition.
Figure 7.1 shows how PARTITION works on an 8-element array. PARTITION

always selects the element x D AŒr� as the pivot. As the procedure runs, each
element falls into exactly one of four regions, some of which may be empty. At
the start of each iteration of the for loop in lines 336, the regions satisfy certain
properties, shown in Figure 7.2. We state these properties as a loop invariant:

184 Chapter 7 Quicksort

PARTITION.A; p; r/
1 x D AŒr� // the pivot
2 i D p 1 // highest index into the low side
3 for j D p to r 1 // process each element other than the pivot
4 if AŒj � හ x // does this element belong on the low side?
5 i D i C 1 // index of a new slot in the low side
6 exchange AŒi� with AŒj � // put this element there
7 exchange AŒi C 1� with AŒr� // pivot goes just to the right of the low side
8 return i C 1 // new index of the pivot

At the beginning of each iteration of the loop of lines 336, for any array
index k, the following conditions hold:
1. if p හ k හ i , then AŒk� හ x (the tan region of Figure 7.2);
2. if i C 1 හ k හ j 1, then AŒk� > x (the blue region);
3. if k D r , then AŒk� D x (the yellow region).

We need to show that this loop invariant is true prior to the ûrst iteration, that
each iteration of the loop maintains the invariant, that the loop terminates, and that
correctness follows from the invariant when the loop terminates.
Initialization: Prior to the ûrst iteration of the loop, we have i D p 1 and
j D p. Because no values lie between p and i and no values lie between i C 1
and j 1, the ûrst two conditions of the loop invariant are trivially satisûed.
The assignment in line 1 satisûes the third condition.

Maintenance: As Figure 7.3 shows, we consider two cases, depending on the
outcome of the test in line 4. Figure 7.3(a) shows what happens when AŒj � > x:
the only action in the loop is to increment j . After j has been incremented, the
second condition holds for AŒj 1� and all other entries remain unchanged.
Figure 7.3(b) shows what happens when AŒj � හ x : the loop increments i ,
swaps AŒi� and AŒj �, and then increments j . Because of the swap, we now
have that AŒi� හ x , and condition 1 is satisûed. Similarly, we also have that
AŒj 1� > x , since the item that was swapped into AŒj 1� is, by the loop
invariant, greater than x .

Termination: Since the loop makes exactly r p iterations, it terminates, where-
upon j D r . At that point, the unexamined subarray AŒj W r 1� is empty, and
every entry in the array belongs to one of the other three sets described by the
invariant. Thus, the values in the array have been partitioned into three sets:
those less than or equal to x (the low side), those greater than x (the high side),
and a singleton set containing x (the pivot).

7.1 Description of quicksort 185

2 8 7 1 3 5 6 4
p,j r i

(a)

2 8 7 1 3 5 6 4
p,i r j

(b)

2 8 7 1 3 5 6 4
p,i r j

(c)

2 8 7 1 3 5 6 4
p,i r j

(d)

2 8 7 1 3 5 6 4
p r j

(e)
i

2 8 7 1 3 5 6 4
p r j

(f)
i

2 8 7 1 3 5 6 4
p r j

(g)
i

2 8 7 1 3 5 6 4
p r

(h)
i

2 8 7 1 3 5 6 4
p r

(i)
i

Figure 7.1 The operation of PARTITION on a sample array. Array entry AŒr� becomes the pivot
element x. Tan array elements all belong to the low side of the partition, with values at most x.
Blue elements belong to the high side, with values greater than x. White elements have not yet been
put into either side of the partition, and the yellow element is the pivot x. (a) The initial array and
variable settings. None of the elements have been placed into either side of the partition. (b) The
value 2 is <swapped with itself= and put into the low side. (c)–(d) The values 8 and 7 are placed into
to high side. (e) The values 1 and 8 are swapped, and the low side grows. (f) The values 3 and 7 are
swapped, and the low side grows. (g)–(h) The high side of the partition grows to include 5 and 6,
and the loop terminates. (i) Line 7 swaps the pivot element so that it lies between the two sides of
the partition, and line 8 returns the pivot’s new index.

The ûnal two lines of PARTITION ûnish up by swapping the pivot with the left-
most element greater than x , thereby moving the pivot into its correct place in
the partitioned array, and then returning the pivot’s new index. The output of
PARTITION now satisûes the speciûcations given for the divide step. In fact, it
satisûes a slightly stronger condition: after line 3 of QUICKSORT, AŒq� is strictly
less than every element of AŒq C 1 W r�.

186 Chapter 7 Quicksort

≤ x > x unknown

x
p i j r

Figure 7.2 The four regions maintained by the procedure PARTITION on a subarray AŒp W r�. The
tan values in AŒp W i � are all less than or equal to x, the blue values in AŒi C 1 W j 1� are all greater
than x, the white values in AŒj W r 1� have unknown relationships to x, and AŒr� D x.

≤ x > x

x
p i j r

> x (a)

≤ x > x

x
p i j r

≤ x > x

x
p i j r

≤ x (b)

≤ x > x

x
p i j r

Figure 7.3 The two cases for one iteration of procedure PARTITION. (a) If AŒj � > x , the only
action is to increment j , which maintains the loop invariant. (b) If AŒj � හ x, index i is incremented,
AŒi� and AŒj � are swapped, and then j is incremented. Again, the loop invariant is maintained.

Exercise 7.1-3 asks you to show that the running time of PARTITION on a sub-
array AŒp W r� of n D r p C 1 elements is ‚.n/.

Exercises
7.1-1
Using Figure 7.1 as a model, illustrate the operation of PARTITION on the array
A D h13; 19; 9; 5; 12; 8; 7; 4; 21; 2; 6; 11i.

7.2 Performance of quicksort 187

7.1-2
What value of q does PARTITION return when all elements in the subarray AŒp W r�
have the same value? Modify PARTITION so that q D b.p C r/=2c when all
elements in the subarray AŒp W r� have the same value.
7.1-3
Give a brief argument that the running time of PARTITION on a subarray of size n
is ‚.n/.
7.1-4
Modify QUICKSORT to sort into monotonically decreasing order.

7.2 Performance of quicksort

The running time of quicksort depends on how balanced each partitioning is, which
in turn depends on which elements are used as pivots. If the two sides of a parti-
tion are about the same size4the partitioning is balanced4then the algorithm runs
asymptotically as fast as merge sort. If the partitioning is unbalanced, however, it
can run asymptotically as slowly as insertion sort. To allow you to gain some intu-
ition before diving into a formal analysis, this section informally investigates how
quicksort performs under the assumptions of balanced versus unbalanced partition-
ing.
But ûrst, let’s brieüy look at the maximum amount of memory that quicksort re-

quires. Although quicksort sorts in place according to the deûnition on page 158,
the amount of memory it uses4aside from the array being sorted4is not constant.
Since each recursive call requires a constant amount of space on the runtime stack,
outside of the array being sorted, quicksort requires space proportional to the max-
imum depth of the recursion. As we’ll see now, that could be as bad as ‚.n/ in the
worst case.

Worst-case partitioning
The worst-case behavior for quicksort occurs when the partitioning produces one
subproblem with n 1 elements and one with 0 elements. (See Section 7.4.1.)
Let us assume that this unbalanced partitioning arises in each recursive call. The
partitioning costs ‚.n/ time. Since the recursive call on an array of size 0 just
returns without doing anything, T .0/ D ‚.1/, and the recurrence for the running
time is

188 Chapter 7 Quicksort

T .n/ D T .n 1/ C T .0/ C ‚.n/
D T .n 1/ C ‚.n/ :

By summing the costs incurred at each level of the recursion, we obtain an
arithmetic series (equation (A.3) on page 1141), which evaluates to ‚.n 2 /. In-
deed, the substitution method can be used to prove that the recurrence T .n/ D
T .n 1/ C ‚.n/ has the solution T .n/ D ‚.n 2 /. (See Exercise 7.2-1.)

Thus, if the partitioning is maximally unbalanced at every recursive level of the
algorithm, the running time is ‚.n 2 /. The worst-case running time of quicksort is
therefore no better than that of insertion sort. Moreover, the ‚.n 2 / running time
occurs when the input array is already completely sorted4a situation in which
insertion sort runs in O.n/ time.

Best-case partitioning
In the most even possible split, PARTITION produces two subproblems, each of
size no more than n=2, since one is of size b.n 1/=2c හ n=2 and one of size
d.n 1/=2e 1 හ n=2. In this case, quicksort runs much faster. An upper bound
on the running time can then be described by the recurrence
T .n/ D 2T .n=2/ C ‚.n/ :

By case 2 of the master theorem (Theorem 4.1 on page 102), this recurrence has the
solution T .n/ D ‚.n lg n/. Thus, if the partitioning is equally balanced at every
level of the recursion, an asymptotically faster algorithm results.

Balanced partitioning
As the analyses in Section 7.4 will show, the average-case running time of quicksort
is much closer to the best case than to the worst case. By appreciating how the
balance of the partitioning affects the recurrence describing the running time, we
can gain an understanding of why.

Suppose, for example, that the partitioning algorithm always produces a 9-to-1
proportional split, which at ûrst blush seems quite unbalanced. We then obtain the
recurrence
T .n/ D T .9n=10/ C T .n=10/ C ‚.n/ ;

on the running time of quicksort. Figure 7.4 shows the recursion tree for this re-
currence, where for simplicity the ‚.n/ driving function has been replaced by n,
which won’t affect the asymptotic solution of the recurrence (as Exercise 4.7-1
on page 118 justiûes). Every level of the tree has cost n, until the recursion bot-
toms out in a base case at depth log 10 n D ‚.lg n/, and then the levels have cost

7.2 Performance of quicksort 189

n

n

n

n

n

හ n

හ n

1

1

O.n lg n/

log 10 n

log 10=9 n

1
10 n 9

10 n

1
100 n 9

100 n 9
100 n 81

100 n

81
1000 n 729

1000 n

Figure 7.4 A recursion tree for QUICKSORT in which PARTITION always produces a 9-to-1 split,
yielding a running time of O.n lg n/. Nodes show subproblem sizes, with per-level costs on the right.

at most n. The recursion terminates at depth log 10=9 n D ‚.lg n/. Thus, with a
9-to-1 proportional split at every level of recursion, which intuitively seems highly
unbalanced, quicksort runs in O.n lg n/ time4asymptotically the same as if the
split were right down the middle. Indeed, even a 99-to-1 split yields an O.n lg n/
running time. In fact, any split of constant proportionality yields a recursion tree of
depth ‚.lg n/, where the cost at each level is O.n/. The running time is therefore
O.n lg n/ whenever the split has constant proportionality. The ratio of the split
affects only the constant hidden in the O-notation.

Intuition for the average case
To develop a clear notion of the expected behavior of quicksort, we must assume
something about how its inputs are distributed. Because quicksort determines the
sorted order using only comparisons between input elements, its behavior depends
on the relative ordering of the values in the array elements given as the input, not
on the particular values in the array. As in the probabilistic analysis of the hiring
problem in Section 5.2, assume that all permutations of the input numbers are
equally likely and that the elements are distinct.

When quicksort runs on a random input array, the partitioning is highly unlikely
to happen in the same way at every level, as our informal analysis has assumed.

190 Chapter 7 Quicksort

n

0 n31

(n31)/2 3 1 (n31)/2

n

(n31)/2

(a) (b)

(n31)/2

Θ(n) Θ(n)

Figure 7.5 (a) Two levels of a recursion tree for quicksort. The partitioning at the root costs n
and produces a <bad= split: two subarrays of sizes 0 and n 1. The partitioning of the subarray of
size n 1 costs n 1 and produces a <good= split: subarrays of size .n 1/=2 1 and .n 1/=2.
(b) A single level of a recursion tree that is well balanced. In both parts, the partitioning cost for the
subproblems shown with blue shading is ‚.n/. Yet the subproblems remaining to be solved in (a),
shown with tan shading, are no larger than the corresponding subproblems remaining to be solved
in (b).

We expect that some of the splits will be reasonably well balanced and that some
will be fairly unbalanced. For example, Exercise 7.2-6 asks you to show that about
80% of the time PARTITION produces a split that is at least as balanced as 9 to 1,
and about 20% of the time it produces a split that is less balanced than 9 to 1.

In the average case, PARTITION produces a mix of <good= and <bad= splits. In a
recursion tree for an average-case execution of PARTITION, the good and bad splits
are distributed randomly throughout the tree. Suppose for the sake of intuition that
the good and bad splits alternate levels in the tree, and that the good splits are best-
case splits and the bad splits are worst-case splits. Figure 7.5(a) shows the splits
at two consecutive levels in the recursion tree. At the root of the tree, the cost is n
for partitioning, and the subarrays produced have sizes n 1 and 0: the worst case.
At the next level, the subarray of size n 1 undergoes best-case partitioning into
subarrays of size .n 1/=2 1 and .n 1/=2. Let’s assume that the base-case cost
is 1 for the subarray of size 0.

The combination of the bad split followed by the good split produces three sub-
arrays of sizes 0, .n 1/=2 1, and .n 1/=2 at a combined partitioning cost of
‚.n/ C ‚.n 1/ D ‚.n/. This situation is at most a constant factor worse than
that in Figure 7.5(b), namely, where a single level of partitioning produces two
subarrays of size .n 1/=2, at a cost of ‚.n/. Yet this latter situation is balanced!
Intuitively, the ‚.n 1/ cost of the bad split in Figure 7.5(a) can be absorbed
into the ‚.n/ cost of the good split, and the resulting split is good. Thus, the run-
ning time of quicksort, when levels alternate between good and bad splits, is like
the running time for good splits alone: still O.n lg n/, but with a slightly larger
constant hidden by the O-notation. We’ll analyze the expected running time of a
randomized version of quicksort rigorously in Section 7.4.2.

7.3 A randomized version of quicksort 191

Exercises
7.2-1
Use the substitution method to prove that the recurrence T .n/ D T .n 1/ C ‚.n/
has the solution T .n/ D ‚.n 2 /, as claimed at the beginning of Section 7.2.
7.2-2
What is the running time of QUICKSORT when all elements of array A have the
same value?
7.2-3
Show that the running time of QUICKSORT is ‚.n 2 / when the array A contains
distinct elements and is sorted in decreasing order.
7.2-4
Banks often record transactions on an account in order of the times of the trans-
actions, but many people like to receive their bank statements with checks listed
in order by check number. People usually write checks in order by check num-
ber, and merchants usually cash them with reasonable dispatch. The problem of
converting time-of-transaction ordering to check-number ordering is therefore the
problem of sorting almost-sorted input. Explain persuasively why the procedure
I NSERTION-SORT might tend to beat the procedure QUICKSORT on this problem.
7.2-5
Suppose that the splits at every level of quicksort are in the constant proportion ˛
to ˇ, where ˛ C ˇ D 1 and 0 < ˛ හ ˇ < 1. Show that the minimum depth of a
leaf in the recursion tree is approximately log 1=˛ n and that the maximum depth is
approximately log 1=ˇ n. (Don’t worry about integer round-off.)
7.2-6
Consider an array with distinct elements and for which all permutations of the ele-
ments are equally likely. Argue that for any constant 0 < ˛ හ 1=2, the probability
is approximately 1 2˛ that PARTITION produces a split at least as balanced as
1 ˛ to ˛.

7.3 A randomized version of quicksort

In exploring the average-case behavior of quicksort, we have assumed that all per-
mutations of the input numbers are equally likely. This assumption does not al-
ways hold, however, as, for example, in the situation laid out in the premise for

192 Chapter 7 Quicksort

Exercise 7.2-4. Section 5.3 showed that judicious randomization can sometimes
be added to an algorithm to obtain good expected performance over all inputs. For
quicksort, randomization yields a fast and practical algorithm. Many software li-
braries provide a randomized version of quicksort as their algorithm of choice for
sorting large data sets.
In Section 5.3, the RANDOMIZED-HIRE-ASSISTANT procedure explicitly per-

mutes its input and then runs the deterministic HIRE-ASSISTANT procedure. We
could do the same for quicksort as well, but a different randomization technique
yields a simpler analysis. Instead of always using AŒr� as the pivot, a randomized
version randomly chooses the pivot from the subarray AŒp W r�, where each element
in AŒp W r� has an equal probability of being chosen. It then exchanges that element
with AŒr� before partitioning. Because the pivot is chosen randomly, we expect the
split of the input array to be reasonably well balanced on average.

The changes to PARTITION and QUICKSORT are small. The new partition-
ing procedure, RANDOMIZED-PARTITION, simply swaps before performing the
partitioning. The new quicksort procedure, RANDOMIZED-QUICKSORT, calls
RANDOMIZED-PARTITION instead of PARTITION. We’ll analyze this algorithm
in the next section.

RANDOMIZED-PARTITION .A; p; r/
1 i D RANDOM.p; r/
2 exchange AŒr� with AŒi�
3 return PARTITION.A; p; r/

RANDOMIZED-QUICKSORT .A; p; r/
1 if p < r
2 q D RANDOMIZED-PARTITION .A; p; r/
3 RANDOMIZED-QUICKSORT .A; p; q 1/
4 RANDOMIZED-QUICKSORT .A; q C 1; r/

Exercises
7.3-1
Why do we analyze the expected running time of a randomized algorithm and not
its worst-case running time?

7.4 Analysis of quicksort 193

7.3-2
When RANDOMIZED-QUICKSORT runs, how many calls are made to the random-
number generator RANDOM in the worst case? How about in the best case? Give
your answer in terms of ‚-notation.

7.4 Analysis of quicksort

Section 7.2 gave some intuition for the worst-case behavior of quicksort and for
why we expect the algorithm to run quickly. This section analyzes the behavior of
quicksort more rigorously. We begin with a worst-case analysis, which applies to
either QUICKSORT or RANDOMIZED-QUICKSORT, and conclude with an analysis
of the expected running time of RANDOMIZED-QUICKSORT.

7.4.1 Worst-case analysis
We saw in Section 7.2 that a worst-case split at every level of recursion in quicksort
produces a ‚.n 2 / running time, which, intuitively, is the worst-case running time
of the algorithm. We now prove this assertion.
We’ll use the substitution method (see Section 4.3) to show that the running

time of quicksort is O.n 2 /. Let T .n/ be the worst-case time for the procedure
QUICKSORT on an input of size n. Because the procedure PARTITION produces
two subproblems with total size n 1, we obtain the recurrence
T .n/ D max fT .q/ C T .n 1 q/ W 0 හ q හ n 1g C ‚.n/ ; (7.1)
We guess that T .n/ හ cn 2 for some constant c > 0. Substituting this guess into
recurrence (7.1) yields
T .n/ හ max ̊

cq 2 C c.n 1 q/ 2 W 0 හ q හ n 1
 C ‚.n/

D c max ̊
q 2 C .n 1 q/ 2 W 0 හ q හ n 1

 C ‚.n/ :

Let’s focus our attention on the maximization. For q D 0; 1; : : : ; n 1, we have
q 2 C .n 1 q/ 2 D q 2 C .n 1/ 2 2q.n 1/ C q 2

D .n 1/ 2 C 2q.q .n 1//
හ .n 1/ 2

because q හ n 1 implies that 2q.q .n 1// හ 0. Thus every term in the
maximization is bounded by .n 1/ 2 .

Continuing with our analysis of T .n/, we obtain

194 Chapter 7 Quicksort

T .n/ හ c.n 1/ 2 C ‚.n/
හ cn 2 c.2n 1/ C ‚.n/
හ cn 2 ;

by picking the constant c large enough that the c.2n 1/ term dominates the ‚.n/
term. Thus T .n/ D O.n 2 /. Section 7.2 showed a speciûc case where quicksort
takes �.n 2 / time: when partitioning is maximally unbalanced. Thus, the worst-
case running time of quicksort is ‚.n 2 /.

7.4.2 Expected running time
We have already seen the intuition behind why the expected running time of
RANDOMIZED-QUICKSORT is O.n lg n/: if, in each level of recursion, the split
induced by RANDOMIZED-PARTITION puts any constant fraction of the elements
on one side of the partition, then the recursion tree has depth ‚.lg n/ and O.n/
work is performed at each level. Even if we add a few new levels with the most un-
balanced split possible between these levels, the total time remains O.n lg n/. We
can analyze the expected running time of RANDOMIZED-QUICKSORT precisely
by ûrst understanding how the partitioning procedure operates and then using this
understanding to derive an O.n lg n/ bound on the expected running time. This
upper bound on the expected running time, combined with the ‚.n lg n/ best-case
bound we saw in Section 7.2, yields a ‚.n lg n/ expected running time. We assume
throughout that the values of the elements being sorted are distinct.

Running time and comparisons
The QUICKSORT and RANDOMIZED-QUICKSORT procedures differ only in how
they select pivot elements. They are the same in all other respects. We can there-
fore analyze RANDOMIZED-QUICKSORT by considering the QUICKSORT and
PARTITION procedures, but with the assumption that pivot elements are selected
randomly from the subarray passed to RANDOMIZED-PARTITION. Let’s start by
relating the asymptotic running time of QUICKSORT to the number of times ele-
ments are compared (all in line 4 of PARTITION), understanding that this analysis
also applies to RANDOMIZED-QUICKSORT. Note that we are counting the number
of times that array elements are compared, not comparisons of indices.

Lemma 7.1
The running time of QUICKSORT on an n-element array is O.n C X/, where X is
the number of element comparisons performed.

7.4 Analysis of quicksort 195

Proof The running time of QUICKSORT is dominated by the time spent in the
PARTITION procedure. Each time PARTITION is called, it selects a pivot ele-
ment, which is never included in any future recursive calls to QUICKSORT and
PARTITION. Thus, there can be at most n calls to PARTITION over the entire ex-
ecution of the quicksort algorithm. Each time QUICKSORT calls PARTITION, it
also recursively calls itself twice, so there are at most 2n calls to the QUICKSORT
procedure itself.
One call to PARTITION takes O.1/ time plus an amount of time that is propor-

tional to the number of iterations of the for loop in lines 336. Each iteration of this
for loop performs one comparison in line 4, comparing the pivot element to an-
other element of the array A. Therefore, the total time spent in the for loop across
all executions is proportional to X . Since there are at most n calls to PARTITION
and the time spent outside the for loop is O.1/ for each call, the total time spent
in PARTITION outside of the for loop is O.n/. Thus the total time for quicksort is
O.n C X/.

Our goal for analyzing RANDOMIZED-QUICKSORT, therefore, is to compute
the expected value E ŒX� of the random variable X denoting the total number of
comparisons performed in all calls to PARTITION. To do so, we must understand
when the quicksort algorithm compares two elements of the array and when it does
not. For ease of analysis, let’s index the elements of the array A by their position
in the sorted output, rather than their position in the input. That is, although the
elements in A may start out in any order, we’ll refer to them by ´ 1 ; ´ 2 ; : : : ; ´ n ,
where ´ 1 < ´ 2 < < ´ n , with strict inequality because we assume that all
elements are distinct. We denote the set f´ i ; ´ i C1 ; : : : ; ´ j g by Z ij .

The next lemma characterizes when two elements are compared.

Lemma 7.2
During the execution of RANDOMIZED-QUICKSORT on an array of n distinct ele-
ments ´ 1 < ´ 2 < < ´ n , an element ´ i is compared with an element ´ j , where
i < j , if and only if one of them is chosen as a pivot before any other element in
the set Z ij . Moreover, no two elements are ever compared twice.

Proof Let’s look at the ûrst time that an element x 2 Z ij is chosen as a pivot
during the execution of the algorithm. There are three cases to consider. If x is
neither ´ i nor ´ j 4that is, ´ i < x < ´ j 4then ´ i and ´ j are not compared at any
subsequent time, because they fall into different sides of the partition around x .
If x D ´ i , then PARTITION compares ´ i with every other item in Z ij . Similarly,
if x D ´ j , then PARTITION compares ´ j with every other item in Z ij . Thus,
´ i and ´ j are compared if and only if the ûrst element to be chosen as a pivot
from Z ij is either ´ i or ´ j . In the latter two cases, where one of ´ i and ´ j is chosen

196 Chapter 7 Quicksort

as a pivot, since the pivot is removed from future comparisons, it is never compared
again with the other element.

As an example of this lemma, consider an input to quicksort of the numbers 1
through 10 in some arbitrary order. Suppose that the ûrst pivot element is 7. Then
the ûrst call to PARTITION separates the numbers into two sets: f1; 2; 3; 4; 5; 6g and
f8; 9; 10g. In the process, the pivot element 7 is compared with all other elements,
but no number from the ûrst set (e.g., 2) is or ever will be compared with any
number from the second set (e.g., 9). The values 7 and 9 are compared because 7
is the ûrst item from Z 7;9 to be chosen as a pivot. In contrast, 2 and 9 are never
compared because the ûrst pivot element chosen from Z 2;9 is 7.

The next lemma gives the probability that two elements are compared.

Lemma 7.3
Consider an execution of the procedure RANDOMIZED-QUICKSORT on an array
of n distinct elements ´ 1 < ´ 2 < < ´ n . Given two arbitrary elements ´ i and ´ j
where i < j , the probability that they are compared is 2=.j i C 1/.

Proof Let’s look at the tree of recursive calls that RANDOMIZED-QUICKSORT
makes, and consider the sets of elements provided as input to each call. Initially, the
root set contains all the elements of Z ij , since the root set contains every element
in A. The elements belonging to Z ij all stay together for each recursive call of
RANDOMIZED-QUICKSORT until PARTITION chooses some element x 2 Z ij as a
pivot. From that point on, the pivot x appears in no subsequent input set. The ûrst
time that RANDOMIZED-SELECT chooses a pivot x 2 Z ij from a set containing
all the elements of Z ij , each element in Z ij is equally likely to be x because the
pivot is chosen uniformly at random. Since jZ ij j D j i C 1, the probability is
1=.j i C 1/ that any given element in Z ij is the ûrst pivot chosen from Z ij . Thus,
by Lemma 7.2, we have
Pr f´ i is compared with ´ j g D Pr f´ i or ´ j is the ûrst pivot chosen from Z ij g

D Pr f´ i is the ûrst pivot chosen from Z ij g
C Pr f´ j is the ûrst pivot chosen from Z ij g

D
2

j i C 1
;

where the second line follows from the ûrst because the two events are mutually
exclusive.

We can now complete the analysis of randomized quicksort.

7.4 Analysis of quicksort 197

Theorem 7.4
The expected running time of RANDOMIZED-QUICKSORT on an input of n distinct
elements is O.n lg n/.

Proof The analysis uses indicator random variables (see Section 5.2). Let the n
distinct elements be ´ 1 < ´ 2 < < ´ n , and for 1 හ i < j හ n, deûne the
indicator random variable X ij D I f´ i is compared with ´ j g. From Lemma 7.2,
each pair is compared at most once, and so we can express X as follows:

X D
n1 X

i D1

n X

j Di C1

X ij :

By taking expectations of both sides and using linearity of expectation (equa-
tion (C.24) on page 1192) and Lemma 5.1 on page 130, we obtain

E ŒX� D E
"
n1 X

i D1

n X

j Di C1

X ij

D
n1 X

i D1

n X

j Di C1

E ŒX ij � (by linearity of expectation)

D
n1 X

i D1

n X

j Di C1

Pr f´ i is compared with ´ j g (by Lemma 5.1)

D
n1 X

i D1

n X

j Di C1

2
j i C 1

(by Lemma 7.3) .

We can evaluate this sum using a change of variables (k D j i) and the bound
on the harmonic series in equation (A.9) on page 1142:

E ŒX� D
n1 X

i D1

n X

j Di C1

2
j i C 1

D
n1 X

i D1

ni X

kD1

2
k C 1

<
n1 X

i D1

n X

kD1

2
k

D
n1 X

i D1

O.lg n/

D O.n lg n/ :

198 Chapter 7 Quicksort

This bound and Lemma 7.1 allow us to conclude that the expected running time
of RANDOMIZED-QUICKSORT is O.n lg n/ (assuming that the element values are
distinct).

Exercises
7.4-1
Show that the recurrence
T .n/ D max fT .q/ C T .n q 1/ W 0 හ q හ n 1g C ‚.n/

has a lower bound of T .n/ D �.n 2 /.
7.4-2
Show that quicksort’s best-case running time is �.n lg n/.
7.4-3
Show that the expression q 2 C .n q 1/ 2 achieves its maximum value over
q D 0; 1; : : : ; n 1 when q D 0 or q D n 1.
7.4-4
Show that RANDOMIZED-QUICKSORT’s expected running time is �.n lg n/.
7.4-5
Coarsening the recursion, as we did in Problem 2-1 for merge sort, is a common
way to improve the running time of quicksort in practice. We modify the base
case of the recursion so that if the array has fewer than k elements, the subarray is
sorted by insertion sort, rather than by continued recursive calls to quicksort. Argue
that the randomized version of this sorting algorithm runs in O.nk C n lg.n=k//
expected time. How should you pick k, both in theory and in practice?

? 7.4-6
Consider modifying the PARTITION procedure by randomly picking three elements
from subarray AŒp W r� and partitioning about their median (the middle value of the
three elements). Approximate the probability of getting worse than an ˛-to-.1 ̨ /
split, as a function of ˛ in the range 0 < ˛ < 1=2.

Problems for Chapter 7 199

Problems

7-1 Hoare partition correctness
The version of PARTITION given in this chapter is not the original partitioning al-
gorithm. Here is the original partitioning algorithm, which is due to C. A. R. Hoare.

HOARE-PARTITION .A; p; r/
1 x D AŒp�
2 i D p 1
3 j D r C 1
4 while TRUE
5 repeat
6 j D j 1
7 until AŒj � හ x
8 repeat
9 i D i C 1
10 until AŒi� x
11 if i < j
12 exchange AŒi� with AŒj �
13 else return j

a. Demonstrate the operation of HOARE-PARTITION on the array A D h13; 19;
9; 5; 12; 8; 7; 4; 11; 2; 6; 21i, showing the values of the array and the indices i
and j after each iteration of the while loop in lines 4313.

b. Describe how the PARTITION procedure in Section 7.1 differs from HOARE-
PARTITION when all elements in AŒp W r� are equal. Describe a practical advan-
tage of HOARE-PARTITION over PARTITION for use in quicksort.

The next three questions ask you to give a careful argument that the procedure
HOARE-PARTITION is correct. Assuming that the subarray AŒp W r� contains at
least two elements, prove the following:
c. The indices i and j are such that the procedure never accesses an element of A

outside the subarray AŒp W r�.

d. When HOARE-PARTITION terminates, it returns a value j such that p හ j < r .

e. Every element of AŒp W j � is less than or equal to every element of AŒj C 1 W r�
when HOARE-PARTITION terminates.

200 Chapter 7 Quicksort

The PARTITION procedure in Section 7.1 separates the pivot value (originally
in AŒr�) from the two partitions it forms. The HOARE-PARTITION procedure, on
the other hand, always places the pivot value (originally in AŒp�) into one of the
two partitions AŒp W j � and AŒj C 1 W r�. Since p හ j < r , neither partition is
empty.
f. Rewrite the QUICKSORT procedure to use HOARE-PARTITION.

7-2 Quicksort with equal element values
The analysis of the expected running time of randomized quicksort in Section 7.4.2
assumes that all element values are distinct. This problem examines what happens
when they are not.
a. Suppose that all element values are equal. What is randomized quicksort’s

running time in this case?

b. The PARTITION procedure returns an index q such that each element of
AŒp W q 1� is less than or equal to AŒq� and each element of AŒq C 1 W r� is
greater than AŒq�. Modify the PARTITION procedure to produce a procedure
PARTITION 0 .A; p; r/, which permutes the elements of AŒp W r� and returns two
indices q and t , where p හ q හ t හ r , such that
 all elements of AŒq W t � are equal,
 each element of AŒp W q 1� is less than AŒq�, and
 each element of AŒt C 1 W r� is greater than AŒq�.
Like PARTITION, your PARTITION 0 procedure should take ‚.r p/ time.

c. Modify the RANDOMIZED-PARTITION procedure to call PARTITION 0 , and
name the new procedure RANDOMIZED-PARTITION 0 . Then modify the
QUICKSORT procedure to produce a procedure QUICKSORT 0 .A; p; r/ that calls
RANDOMIZED-PARTITION 0 and recurses only on partitions where elements are
not known to be equal to each other.

d. Using QUICKSORT 0 , adjust the analysis in Section 7.4.2 to avoid the assumption
that all elements are distinct.

7-3 Alternative quicksort analysis
An alternative analysis of the running time of randomized quicksort focuses on
the expected running time of each individual recursive call to RANDOMIZED-
QUICKSORT, rather than on the number of comparisons performed. As in the
analysis of Section 7.4.2, assume that the values of the elements are distinct.

Problems for Chapter 7 201

a. Argue that, given an array of size n, the probability that any particular element
is chosen as the pivot is 1=n. Use this probability to deûne indicator random
variables X i D I fi th smallest element is chosen as the pivotg. What is E ŒX i �?

b. Let T .n/ be a random variable denoting the running time of quicksort on an
array of size n. Argue that

E ŒT .n/� D E
"

n X

qD1

X q .T .q 1/ C T .n q/ C ‚.n//

: (7.2)

c. Show how to rewrite equation (7.2) as

E ŒT .n/� D
2
n

n1 X

qD1

E ŒT .q/� C ‚.n/ : (7.3)

d. Show that
n1 X

qD1

q lg q හ
n 2

2
lg n

n 2

8
(7.4)

for n 2. (Hint: Split the summation into two parts, one summation for q D
1; 2; : : : ; dn=2e 1 and one summation for q D dn=2e ; : : : ; n 1.)

e. Using the bound from equation (7.4), show that the recurrence in equation (7.3)
has the solution E ŒT .n/� D O.n lg n/. (Hint: Show, by substitution, that
E ŒT .n/� හ an lg n for sufûciently large n and for some positive constant a.)

7-4 Stooge sort
Professors Howard, Fine, and Howard have proposed a deceptively simple sorting
algorithm, named stooge sort in their honor, appearing on the following page.
a. Argue that the call STOOGE-SORT.A; 1; n/ correctly sorts the array AŒ1 W n�.

b. Give a recurrence for the worst-case running time of STOOGE-SORT and a tight
asymptotic (‚-notation) bound on the worst-case running time.

c. Compare the worst-case running time of STOOGE-SORT with that of insertion
sort, merge sort, heapsort, and quicksort. Do the professors deserve tenure?

202 Chapter 7 Quicksort

STOOGE-SORT.A; p; r/
1 if AŒp� > AŒr�
2 exchange AŒp� with AŒr�
3 if p C 1 < r
4 k D b.r p C 1/=3c // round down
5 STOOGE-SORT.A; p; r k/ // ûrst two-thirds
6 STOOGE-SORT.A; p C k; r/ // last two-thirds
7 STOOGE-SORT.A; p; r k/ // ûrst two-thirds again

7-5 Stack depth for quicksort
The QUICKSORT procedure of Section 7.1 makes two recursive calls to itself. After
QUICKSORT calls PARTITION, it recursively sorts the low side of the partition
and then it recursively sorts the high side of the partition. The second recursive
call in QUICKSORT is not really necessary, because the procedure can instead use
an iterative control structure. This transformation technique, called tail-recursion
elimination, is provided automatically by good compilers. Applying tail-recursion
elimination transforms QUICKSORT into the TRE-QUICKSORT procedure.

TRE-QUICKSORT .A; p; r/
1 while p < r
2 // Partition and then sort the low side.
3 q D PARTITION.A; p; r/
4 TRE-QUICKSORT.A; p; q 1/
5 p D q C 1

a. Argue that TRE-QUICKSORT .A; 1; n/ correctly sorts the array AŒ1 W n�.
Compilers usually execute recursive procedures by using a stack that contains per-
tinent information, including the parameter values, for each recursive call. The
information for the most recent call is at the top of the stack, and the information
for the initial call is at the bottom. When a procedure is called, its information is
pushed onto the stack, and when it terminates, its information is popped. Since
we assume that array parameters are represented by pointers, the information for
each procedure call on the stack requires O.1/ stack space. The stack depth is the
maximum amount of stack space used at any time during a computation.
b. Describe a scenario in which TRE-QUICKSORT’s stack depth is ‚.n/ on an
n-element input array.

Problems for Chapter 7 203

c. Modify TRE-QUICKSORT so that the worst-case stack depth is ‚.lg n/. Main-
tain the O.n lg n/ expected running time of the algorithm.

7-6 Median-of-3 partition
One way to improve the RANDOMIZED-QUICKSORT procedure is to partition
around a pivot that is chosen more carefully than by picking a random element
from the subarray. A common approach is the median-of-3 method: choose the
pivot as the median (middle element) of a set of 3 elements randomly selected
from the subarray. (See Exercise 7.4-6.) For this problem, assume that the n ele-
ments in the input subarray AŒp W r� are distinct and that n 3. Denote the sorted
version of AŒp W r� by ´ 1 ; ´ 2 ; : : : ; ´ n . Using the median-of-3 method to choose the
pivot element x , deûne p i D Pr fx D ´ i g.
a. Give an exact formula for p i as a function of n and i for i D 2; 3; : : : ; n 1.

(Observe that p 1 D p n D 0.)

b. By what amount does the median-of-3 method increase the likelihood of choos-
ing the pivot to be x D ´ b.nC1/=2c , the median of AŒp W r�, compared with the
ordinary implementation? Assume that n ! 1, and give the limiting ratio of
these probabilities.

c. Suppose that we deûne a <good= split to mean choosing the pivot as x D ´ i ,
where n=3 හ i හ 2n=3. By what amount does the median-of-3 method in-
crease the likelihood of getting a good split compared with the ordinary imple-
mentation? (Hint: Approximate the sum by an integral.)

d. Argue that in the �.n lg n/ running time of quicksort, the median-of-3 method
affects only the constant factor.

7-7 Fuzzy sorting of intervals
Consider a sorting problem in which you do not know the numbers exactly. In-
stead, for each number, you know an interval on the real line to which it belongs.
That is, you are given n closed intervals of the form Œa i ; b i �, where a i හ b i . The
goal is to fuzzy-sort these intervals: to produce a permutation hi 1 ; i 2 ; : : : ; i n i of
the intervals such that for j D 1; 2; : : : ; n, there exist c j 2 Œa i j ; b i j � satisfying
c 1 හ c 2 හ හ c n .
a. Design a randomized algorithm for fuzzy-sorting n intervals. Your algorithm

should have the general structure of an algorithm that quicksorts the left end-
points (the a i values), but it should take advantage of overlapping intervals to
improve the running time. (As the intervals overlap more and more, the prob-

204 Chapter 7 Quicksort

lem of fuzzy-sorting the intervals becomes progressively easier. Your algorithm
should take advantage of such overlapping, to the extent that it exists.)

b. Argue that your algorithm runs in ‚.n lg n/ expected time in general, but runs
in ‚.n/ expected time when all of the intervals overlap (i.e., when there exists a
value x such that x 2 Œa i ; b i � for all i). Your algorithm should not be checking
for this case explicitly, but rather, its performance should naturally improve as
the amount of overlap increases.

Chapter notes

Quicksort was invented by Hoare [219], and his version of PARTITION appears in
Problem 7-1. Bentley [51, p. 117] attributes the PARTITION procedure given in
Section 7.1 to N. Lomuto. The analysis in Section 7.4 based on an analysis due
to Motwani and Raghavan [336]. Sedgewick [401] and Bentley [51] provide good
references on the details of implementation and how they matter.
McIlroy [323] shows how to engineer a <killer adversary= that produces an array

on which virtually any implementation of quicksort takes ‚.n 2 / time.

8 Sorting in Linear Time

We have now seen a handful of algorithms that can sort n numbers in O.n lg n/
time. Whereas merge sort and heapsort achieve this upper bound in the worst case,
quicksort achieves it on average. Moreover, for each of these algorithms, we can
produce a sequence of n input numbers that causes the algorithm to run in �.n lg n/
time.

These algorithms share an interesting property: the sorted order they determine
is based only on comparisons between the input elements. We call such sorting
algorithms comparison sorts. All the sorting algorithms introduced thus far are
comparison sorts.
In Section 8.1, we’ll prove that any comparison sort must make �.n lg n/ com-

parisons in the worst case to sort n elements. Thus, merge sort and heapsort are
asymptotically optimal, and no comparison sort exists that is faster by more than a
constant factor.
Sections 8.2, 8.3, and 8.4 examine three sorting algorithms4counting sort, radix

sort, and bucket sort4that run in linear time on certain types of inputs. Of course,
these algorithms use operations other than comparisons to determine the sorted
order. Consequently, the �.n lg n/ lower bound does not apply to them.

8.1 Lower bounds for sorting

A comparison sort uses only comparisons between elements to gain order infor-
mation about an input sequence ha 1 ; a 2 ; : : : ; a n i. That is, given two elements a i
and a j , it performs one of the tests a i < a j , a i හ a j , a i D a j , a i a j , or a i > a j
to determine their relative order. It may not inspect the values of the elements or
gain order information about them in any other way.

Since we are proving a lower bound, we assume without loss of generality in
this section that all the input elements are distinct. After all, a lower bound for
distinct elements applies when elements may or may not be distinct. Consequently,

206 Chapter 8 Sorting in Linear Time

≤ >

≤ >

1:2

2:3 1:3

〈1,2,3〉 1:3 〈2,1,3〉 2:3

〈1,3,2〉 〈3,1,2〉 〈3,2,1〉

≤ >

≤ >

≤ >
〈2,3,1〉

Figure 8.1 The decision tree for insertion sort operating on three elements. An internal node
(shown in blue) annotated by i :j indicates a comparison between a i and a j . A leaf annotated by the
permutation h�.1/; �.2/; : : : ; �.n/ i indicates the ordering a .1/ හ a .2/ හ හ a .n/ . The high-
lighted path indicates the decisions made when sorting the input sequence ha 1 D 6;a 2 D 8;a 3 D 5i.
Going left from the root node, labeled 1:2, indicates that a 1 හ a 2 . Going right from the node labeled
2:3 indicates that a 2 > a 3 . Going right from the node labeled 1:3 indicates that a 1 > a 3 . Therefore,
we have the ordering a 3 හ a 1 හ a 2 , as indicated in the leaf labeled h3; 1; 2i. Because the three input
elements have 3Š D 6 possible permutations, the decision tree must have at least 6 leaves.

comparisons of the form a i D a j are useless, which means that we can assume
that no comparisons for exact equality occur. Moreover, the comparisons a i හ a j ,
a i a j , a i > a j , and a i < a j are all equivalent in that they yield identical
information about the relative order of a i and a j . We therefore assume that all
comparisons have the form a i හ a j .

The decision-tree model
We can view comparison sorts abstractly in terms of decision trees. A decision
tree is a full binary tree (each node is either a leaf or has both children) that repre-
sents the comparisons between elements that are performed by a particular sorting
algorithm operating on an input of a given size. Control, data movement, and all
other aspects of the algorithm are ignored. Figure 8.1 shows the decision tree cor-
responding to the insertion sort algorithm from Section 2.1 operating on an input
sequence of three elements.

A decision tree has each internal node annotated by i :j for some i and j in the
range 1 හ i; j හ n, where n is the number of elements in the input sequence.
We also annotate each leaf by a permutation h�.1/; �.2/; : : : ; �.n/ i. (See Sec-
tion C.1 for background on permutations.) Indices in the internal nodes and the
leaves always refer to the original positions of the array elements at the start of the
sorting algorithm. The execution of the comparison sorting algorithm corresponds
to tracing a simple path from the root of the decision tree down to a leaf. Each
internal node indicates a comparison a i හ a j . The left subtree then dictates sub-

8.1 Lower bounds for sorting 207

sequent comparisons once we know that a i හ a j , and the right subtree dictates
subsequent comparisons when a i > a j . Arriving at a leaf, the sorting algorithm
has established the ordering a .1/ හ a .2/ හ හ a .n/ . Because any correct sort-
ing algorithm must be able to produce each permutation of its input, each of the nŠ
permutations on n elements must appear as at least one of the leaves of the decision
tree for a comparison sort to be correct. Furthermore, each of these leaves must be
reachable from the root by a downward path corresponding to an actual execution
of the comparison sort. (We call such leaves <reachable.=) Thus, we consider only
decision trees in which each permutation appears as a reachable leaf.

A lower bound for the worst case
The length of the longest simple path from the root of a decision tree to any of
its reachable leaves represents the worst-case number of comparisons that the cor-
responding sorting algorithm performs. Consequently, the worst-case number of
comparisons for a given comparison sort algorithm equals the height of its decision
tree. A lower bound on the heights of all decision trees in which each permutation
appears as a reachable leaf is therefore a lower bound on the running time of any
comparison sort algorithm. The following theorem establishes such a lower bound.

Theorem 8.1
Any comparison sort algorithm requires �.n lg n/ comparisons in the worst case.

Proof From the preceding discussion, it sufûces to determine the height of a
decision tree in which each permutation appears as a reachable leaf. Consider
a decision tree of height h with l reachable leaves corresponding to a comparison
sort on n elements. Because each of the nŠ permutations of the input appears as
one or more leaves, we have nŠ හ l . Since a binary tree of height h has no more
than 2 h leaves, we have
nŠ හ l හ 2 h ;

which, by taking logarithms, implies
h lg.nŠ/ (since the lg function is monotonically increasing)

D �.n lg n/ (by equation (3.28) on page 67) .

Corollary 8.2
Heapsort and merge sort are asymptotically optimal comparison sorts.

Proof The O.n lg n/ upper bounds on the running times for heapsort and merge
sort match the �.n lg n/ worst-case lower bound from Theorem 8.1.

208 Chapter 8 Sorting in Linear Time

Exercises
8.1-1
What is the smallest possible depth of a leaf in a decision tree for a comparison
sort?
8.1-2
Obtain asymptotically tight bounds on lg.nŠ/ without using Stirling’s approxi-
mation. Instead, evaluate the summation P n

kD1 lg k using techniques from Sec-
tion A.2.
8.1-3
Show that there is no comparison sort whose running time is linear for at least half
of the nŠ inputs of length n. What about a fraction of 1=n of the inputs of length n?
What about a fraction 1=2 n ?
8.1-4
You are given an n-element input sequence, and you know in advance that it is
partly sorted in the following sense. Each element initially in position i such that
i mod 4 D 0 is either already in its correct position, or it is one place away from
its correct position. For example, you know that after sorting, the element initially
in position 12 belongs in position 11, 12, or 13. You have no advance information
about the other elements, in positions i where i mod 4 ¤ 0. Show that an �.n lg n/
lower bound on comparison-based sorting still holds in this case.

8.2 Counting sort

Counting sort assumes that each of the n input elements is an integer in the range
0 to k, for some integer k. It runs in ‚.n C k/ time, so that when k D O.n/,
counting sort runs in ‚.n/ time.
Counting sort ûrst determines, for each input element x , the number of elements

less than or equal to x . It then uses this information to place element x directly into
its position in the output array. For example, if 17 elements are less than or equal
to x , then x belongs in output position 17. We must modify this scheme slightly
to handle the situation in which several elements have the same value, since we do
not want them all to end up in the same position.

The COUNTING-SORT procedure on the facing page takes as input an array
AŒ1 W n�, the size n of this array, and the limit k on the nonnegative integer values
in A. It returns its sorted output in the array BŒ1 W n� and uses an array CŒ0 W k� for
temporary working storage.

8.2 Counting sort 209

COUNTING-SORT.A; n; k/
1 let BŒ1 W n� and CŒ0 W k� be new arrays
2 for i D 0 to k
3 CŒi� D 0
4 for j D 1 to n
5 CŒAŒj �� D CŒAŒj �� C 1
6 // CŒi� now contains the number of elements equal to i .
7 for i D 1 to k
8 CŒi� D CŒi� C CŒi 1�
9 // CŒi� now contains the number of elements less than or equal to i .
10 // Copy A to B , starting from the end of A.
11 for j D n downto 1
12 BŒC ŒAŒj ��� D AŒj �
13 CŒAŒj �� D CŒAŒj �� 1 // to handle duplicate values
14 return B

Figure 8.2 illustrates counting sort. After the for loop of lines 233 initializes the
array C to all zeros, the for loop of lines 435 makes a pass over the array A to
inspect each input element. Each time it ûnds an input element whose value is i , it
increments CŒi�. Thus, after line 5, CŒi� holds the number of input elements equal
to i for each integer i D 0; 1; : : : ; k. Lines 738 determine for each i D 0; 1; : : : ; k
how many input elements are less than or equal to i by keeping a running sum of
the array C .

Finally, the for loop of lines 11313 makes another pass over A, but in reverse,
to place each element AŒj � into its correct sorted position in the output array B .
If all n elements are distinct, then when line 11 is ûrst entered, for each AŒj �, the
value CŒAŒj �� is the correct ûnal position of AŒj � in the output array, since there
are CŒAŒj �� elements less than or equal to AŒj �. Because the elements might not
be distinct, the loop decrements CŒAŒj �� each time it places a value AŒj � into B .
Decrementing CŒAŒj �� causes the previous element in A with a value equal to AŒj �,
if one exists, to go to the position immediately before AŒj � in the output array B .
How much time does counting sort require? The for loop of lines 233 takes ‚.k/

time, the for loop of lines 435 takes ‚.n/ time, the for loop of lines 738 takes ‚.k/
time, and the for loop of lines 11313 takes ‚.n/ time. Thus, the overall time is
‚.k C n/. In practice, we usually use counting sort when we have k D O.n/, in
which case the running time is ‚.n/.

Counting sort can beat the lower bound of �.n lg n/ proved in Section 8.1 be-
cause it is not a comparison sort. In fact, no comparisons between input elements
occur anywhere in the code. Instead, counting sort uses the actual values of the

210 Chapter 8 Sorting in Linear Time

2 5 3 0 2 3 0 3
1 2 3 4 5 6 7 8

2 0 2 3 0 1
1 2 3 4 5

A

C

(a)

2 2 4 7 7 8 C

(b)

3
1 2 3 4 5 6 7 8

2 2 4 6 7 8

B

C

(c)

3
1 2 3 4 5 6 7 8

1 2 4 6 7 8

B

C

(d)

0 3
1 2 3 4 5 6 7 8

1 2 4 5 7 8

B

C

(e)

0 3

3
1 2 3 4 5 6 7 8

B

(f)

0 3 0 2 2 3 5

0

1 2 3 4 5 0

1 2 3 4 5 0 1 2 3 4 5 0

1 2 3 4 5 0

Figure 8.2 The operation of COUNTING-SORT on an input array AŒ1 W 8�, where each element of A
is a nonnegative integer no larger than k D 5. (a) The array A and the auxiliary array C after line 5.
(b) The array C after line 8. (c)–(e) The output array B and the auxiliary array C after one, two, and
three iterations of the loop in lines 11313, respectively. Only the tan elements of array B have been
ûlled in. (f) The ûnal sorted output array B.

elements to index into an array. The �.n lg n/ lower bound for sorting does not
apply when we depart from the comparison sort model.

An important property of counting sort is that it is stable: elements with the same
value appear in the output array in the same order as they do in the input array. That
is, it breaks ties between two elements by the rule that whichever element appears
ûrst in the input array appears ûrst in the output array. Normally, the property of
stability is important only when satellite data are carried around with the element
being sorted. Counting sort’s stability is important for another reason: counting
sort is often used as a subroutine in radix sort. As we shall see in the next section,
in order for radix sort to work correctly, counting sort must be stable.

Exercises
8.2-1
Using Figure 8.2 as a model, illustrate the operation of COUNTING-SORT on the
array A D h6; 0; 2; 0; 1; 3; 4; 6; 1; 3; 2i.
8.2-2
Prove that COUNTING-SORT is stable.

8.3 Radix sort 211

8.2-3
Suppose that we were to rewrite the for loop header in line 11 of the COUNTING-
SORT as
11 for j D 1 to n

Show that the algorithm still works properly, but that it is not stable. Then rewrite
the pseudocode for counting sort so that elements with the same value are written
into the output array in order of increasing index and the algorithm is stable.
8.2-4
Prove the following loop invariant for COUNTING-SORT:

At the start of each iteration of the for loop of lines 11313, the last element
in A with value i that has not yet been copied into B belongs in BŒC Œi ��.

8.2-5
Suppose that the array being sorted contains only integers in the range 0 to k and
that there are no satellite data to move with those keys. Modify counting sort to
use just the arrays A and C , putting the sorted result back into array A instead of
into a new array B .
8.2-6
Describe an algorithm that, given n integers in the range 0 to k, preprocesses its
input and then answers any query about how many of the n integers fall into a
range Œa W b� in O.1/ time. Your algorithm should use ‚.n C k/ preprocessing
time.
8.2-7
Counting sort can also work efûciently if the input values have fractional parts, but
the number of digits in the fractional part is small. Suppose that you are given n
numbers in the range 0 to k, each with at most d decimal (base 10) digits to the
right of the decimal point. Modify counting sort to run in ‚.n C 10 d k/ time.

8.3 Radix sort

Radix sort is the algorithm used by the card-sorting machines you now ûnd only in
computer museums. The cards have 80 columns, and in each column a machine can
punch a hole in one of 12 places. The sorter can be mechanically <programmed=
to examine a given column of each card in a deck and distribute the card into one

212 Chapter 8 Sorting in Linear Time

329
457
657
839
436
720
355

329

457
657

839

436

720
355 329

457
657

839
436

720

355

329

457
657

839

436

720

355

Figure 8.3 The operation of radix sort on seven 3-digit numbers. The leftmost column is the input.
The remaining columns show the numbers after successive sorts on increasingly signiûcant digit
positions. Tan shading indicates the digit position sorted on to produce each list from the previous
one.

of 12 bins depending on which place has been punched. An operator can then
gather the cards bin by bin, so that cards with the ûrst place punched are on top of
cards with the second place punched, and so on.
For decimal digits, each column uses only 10 places. (The other two places are

reserved for encoding nonnumeric characters.) A d -digit number occupies a ûeld
of d columns. Since the card sorter can look at only one column at a time, the
problem of sorting n cards on a d -digit number requires a sorting algorithm.

Intuitively, you might sort numbers on their most significant (leftmost) digit,
sort each of the resulting bins recursively, and then combine the decks in order.
Unfortunately, since the cards in 9 of the 10 bins must be put aside to sort each of
the bins, this procedure generates many intermediate piles of cards that you would
have to keep track of. (See Exercise 8.3-6.)
Radix sort solves the problem of card sorting4counterintuitively4by sorting on

the least significant digit ûrst. The algorithm then combines the cards into a single
deck, with the cards in the 0 bin preceding the cards in the 1 bin preceding the
cards in the 2 bin, and so on. Then it sorts the entire deck again on the second-least
signiûcant digit and recombines the deck in a like manner. The process continues
until the cards have been sorted on all d digits. Remarkably, at that point the cards
are fully sorted on the d -digit number. Thus, only d passes through the deck are
required to sort. Figure 8.3 shows how radix sort operates on a <deck= of seven
3-digit numbers.

In order for radix sort to work correctly, the digit sorts must be stable. The sort
performed by a card sorter is stable, but the operator must be careful not to change
the order of the cards as they come out of a bin, even though all the cards in a bin
have the same digit in the chosen column.
In a typical computer, which is a sequential random-access machine, we some-

times use radix sort to sort records of information that are keyed by multiple ûelds.
For example, we might wish to sort dates by three keys: year, month, and day. We
could run a sorting algorithm with a comparison function that, given two dates,

8.3 Radix sort 213

compares years, and if there is a tie, compares months, and if another tie occurs,
compares days. Alternatively, we could sort the information three times with a
stable sort: ûrst on day (the <least signiûcant= part), next on month, and ûnally on
year.

The code for radix sort is straightforward. The RADIX-SORT procedure assumes
that each element in array AŒ1 W n� has d digits, where digit 1 is the lowest-order
digit and digit d is the highest-order digit.

RADIX-SORT.A; n; d/
1 for i D 1 to d
2 use a stable sort to sort array AŒ1 W n� on digit i

Although the pseudocode for RADIX-SORT does not specify which stable sort to
use, COUNTING-SORT is commonly used. If you use COUNTING-SORT as the sta-
ble sort, you can make RADIX-SORT a little more efûcient by revising COUNTING-
SORT to take a pointer to the output array as a parameter, having RADIX-SORT
preallocate this array, and alternating input and output between the two arrays in
successive iterations of the for loop in RADIX-SORT.

Lemma 8.3
Given n d -digit numbers in which each digit can take on up to k possible values,
RADIX-SORT correctly sorts these numbers in ‚.d.n C k// time if the stable sort
it uses takes ‚.n C k/ time.

Proof The correctness of radix sort follows by induction on the column being
sorted (see Exercise 8.3-3). The analysis of the running time depends on the stable
sort used as the intermediate sorting algorithm. When each digit lies in the range 0
to k 1 (so that it can take on k possible values), and k is not too large, counting
sort is the obvious choice. Each pass over n d -digit numbers then takes ‚.n C k/
time. There are d passes, and so the total time for radix sort is ‚.d.n C k//.

When d is constant and k D O.n/, we can make radix sort run in linear time.
More generally, we have some üexibility in how to break each key into digits.

Lemma 8.4
Given n b-bit numbers and any positive integer r හ b, RADIX-SORT correctly sorts
these numbers in ‚..b=r/.n C 2 r // time if the stable sort it uses takes ‚.n C k/
time for inputs in the range 0 to k.

214 Chapter 8 Sorting in Linear Time

Proof For a value r හ b, view each key as having d D db=r e digits of r bits
each. Each digit is an integer in the range 0 to 2 r 1, so that we can use counting
sort with k D 2 r 1. (For example, we can view a 32-bit word as having four 8-bit
digits, so that b D 32, r D 8, k D 2 r 1 D 255, and d D b=r D 4.) Each pass of
counting sort takes ‚.n C k/ D ‚.n C 2 r / time and there are d passes, for a total
running time of ‚.d.n C 2 r // D ‚..b=r/.n C 2 r //.

Given n and b, what value of r හ b minimizes the expression .b=r/.n C 2 r /?
As r decreases, the factor b=r increases, but as r increases so does 2 r . The answer
depends on whether b < blg nc. If b < blg nc, then r හ b implies .nC2 r / D ‚.n/.
Thus, choosing r D b yields a running time of .b=b/.n C 2 b / D ‚.n/, which is
asymptotically optimal. If b blg nc, then choosing r D blg nc gives the best
running time to within a constant factor, which we can see as follows. 1 Choosing
r D blg nc yields a running time of ‚.bn= lg n/. As r increases above blg nc, the
2 r term in the numerator increases faster than the r term in the denominator, and so
increasing r above blg nc yields a running time of �.bn= lg n/. If instead r were
to decrease below blg nc, then the b=r term increases and the n C 2 r term remains
at ‚.n/.
Is radix sort preferable to a comparison-based sorting algorithm, such as quick-

sort? If b D O.lg n/, as is often the case, and r lg n, then radix sort’s running
time is ‚.n/, which appears to be better than quicksort’s expected running time
of ‚.n lg n/. The constant factors hidden in the ‚-notation differ, however. Al-
though radix sort may make fewer passes than quicksort over the n keys, each
pass of radix sort may take signiûcantly longer. Which sorting algorithm to prefer
depends on the characteristics of the implementations, of the underlying machine
(e.g., quicksort often uses hardware caches more effectively than radix sort), and
of the input data. Moreover, the version of radix sort that uses counting sort as the
intermediate stable sort does not sort in place, which many of the ‚.n lg n/-time
comparison sorts do. Thus, when primary memory storage is at a premium, an
in-place algorithm such as quicksort could be the better choice.

Exercises
8.3-1
Using Figure 8.3 as a model, illustrate the operation of RADIX-SORT on the fol-
lowing list of English words: COW, DOG, SEA, RUG, ROW, MOB, BOX, TAB,
BAR, EAR, TAR, DIG, BIG, TEA, NOW, FOX.

1 The choice of r D blg nc assumes that n > 1. If n හ 1, there is nothing to sort.

8.4 Bucket sort 215

8.3-2
Which of the following sorting algorithms are stable: insertion sort, merge sort,
heapsort, and quicksort? Give a simple scheme that makes any comparison sort
stable. How much additional time and space does your scheme entail?
8.3-3
Use induction to prove that radix sort works. Where does your proof need the
assumption that the intermediate sort is stable?
8.3-4
Suppose that COUNTING-SORT is used as the stable sort within RADIX-SORT. If
RADIX-SORT calls COUNTING-SORT d times, then since each call of COUNTING-
SORT makes two passes over the data (lines 435 and 11313), altogether 2d passes
over the data occur. Describe how to reduce the total number of passes to d C 1.
8.3-5
Show how to sort n integers in the range 0 to n 3 1 in O.n/ time.

? 8.3-6
In the ûrst card-sorting algorithm in this section, which sorts on the most signiûcant
digit ûrst, exactly how many sorting passes are needed to sort d -digit decimal
numbers in the worst case? How many piles of cards does an operator need to keep
track of in the worst case?

8.4 Bucket sort

Bucket sort assumes that the input is drawn from a uniform distribution and has an
average-case running time of O.n/. Like counting sort, bucket sort is fast because
it assumes something about the input. Whereas counting sort assumes that the input
consists of integers in a small range, bucket sort assumes that the input is generated
by a random process that distributes elements uniformly and independently over
the interval Œ0; 1/. (See Section C.2 for a deûnition of a uniform distribution.)

Bucket sort divides the interval Œ0; 1/ into n equal-sized subintervals, or buckets,
and then distributes the n input numbers into the buckets. Since the inputs are uni-
formly and independently distributed over Œ0; 1/, we do not expect many numbers
to fall into each bucket. To produce the output, we simply sort the numbers in each
bucket and then go through the buckets in order, listing the elements in each.

The BUCKET-SORT procedure on the next page assumes that the input is an
array AŒ1 W n� and that each element AŒi� in the array satisûes 0 හ AŒi� < 1. The
code requires an auxiliary array BŒ0 W n 1� of linked lists (buckets) and assumes

216 Chapter 8 Sorting in Linear Time

1

2
3

4

5

6

7

8

9
10

.78

.17

.39

.72

.94

.21

.12

.23

.68

A

(a)

1

2
3

4

5

6

7

8

9

B

(b)

0
.12 .17
.21 .23

.26
.26

.39

.68

.72 .78

.94

Figure 8.4 The operation of BUCKET-SORT for n D 10. (a) The input array AŒ1 W 10�. (b) The
array BŒ0 W 9� of sorted lists (buckets) after line 7 of the algorithm, with slashes indicating the end of
each bucket. Bucket i holds values in the half-open interval Œi=10; .i C 1/=10/. The sorted output
consists of a concatenation of the lists BŒ0�; BŒ1�; : : : ; BŒ9� in order.

that there is a mechanism for maintaining such lists. (Section 10.2 describes how
to implement basic operations on linked lists.) Figure 8.4 shows the operation of
bucket sort on an input array of 10 numbers.

BUCKET-SORT.A; n/
1 let BŒ0 W n 1� be a new array
2 for i D 0 to n 1
3 make BŒi� an empty list
4 for i D 1 to n
5 insert AŒi� into list BŒbn AŒi�c�
6 for i D 0 to n 1
7 sort list BŒi� with insertion sort
8 concatenate the lists BŒ0�;BŒ1�; : : : ; BŒn 1� together in order
9 return the concatenated lists

To see that this algorithm works, consider two elements AŒi� and AŒj �. Assume
without loss of generality that AŒi� හ AŒj �. Since bn AŒi�c හ bn AŒj �c, either
element AŒi� goes into the same bucket as AŒj � or it goes into a bucket with a lower
index. If AŒi� and AŒj � go into the same bucket, then the for loop of lines 637 puts
them into the proper order. If AŒi� and AŒj � go into different buckets, then line 8
puts them into the proper order. Therefore, bucket sort works correctly.

8.4 Bucket sort 217

To analyze the running time, observe that, together, all lines except line 7 take
O.n/ time in the worst case. We need to analyze the total time taken by the n calls
to insertion sort in line 7.

To analyze the cost of the calls to insertion sort, let n i be the random variable
denoting the number of elements placed in bucket BŒi�. Since insertion sort runs
in quadratic time (see Section 2.2), the running time of bucket sort is

T .n/ D ‚.n/ C
n1 X

i D0

O.n 2
i / : (8.1)

We now analyze the average-case running time of bucket sort, by computing the
expected value of the running time, where we take the expectation over the input
distribution. Taking expectations of both sides and using linearity of expectation
(equation (C.24) on page 1192), we have

E ŒT .n/� D E
"

‚.n/ C
n1 X

i D0

O.n 2
i /

D ‚.n/ C
n1 X

i D0

E í O.n 2
i /
î (by linearity of expectation)

D ‚.n/ C
n1 X

i D0

O
ã E í n 2

i

îä (by equation (C.25) on page 1193) . (8.2)

We claim that
E í n 2

i

î D 2 1=n (8.3)
for i D 0; 1; : : : ; n 1. It is no surprise that each bucket i has the same value
of E Œn 2

i �, since each value in the input array A is equally likely to fall in any
bucket.
To prove equation (8.3), view each random variable n i as the number of suc-

cesses in n Bernoulli trials (see Section C.4). Success in a trial occurs when
an element goes into bucket BŒi�, with a probability p D 1=n of success and
q D 1 1=n of failure. A binomial distribution counts n i , the number of suc-
cesses, in the n trials. By equations (C.41) and (C.44) on pages 119931200, we
have E Œn i � D np D n.1=n/ D 1 and Var Œn i � D npq D 1 1=n. Equation (C.31)
on page 1194 gives
E í n 2

i

î D Var Œn i � C E 2 Œn i �
D .1 1=n/ C 1 2

D 2 1=n ;

218 Chapter 8 Sorting in Linear Time

which proves equation (8.3). Using this expected value in equation (8.2), we get
that the average-case running time for bucket sort is ‚.n/ Cn O.2 1=n/ D ‚.n/.

Even if the input is not drawn from a uniform distribution, bucket sort may still
run in linear time. As long as the input has the property that the sum of the squares
of the bucket sizes is linear in the total number of elements, equation (8.1) tells us
that bucket sort runs in linear time.

Exercises
8.4-1
Using Figure 8.4 as a model, illustrate the operation of BUCKET-SORT on the array
A D h:79; :13; :16; :64; :39; :20; :89; :53; :71; :42 i.
8.4-2
Explain why the worst-case running time for bucket sort is ‚.n 2 /. What simple
change to the algorithm preserves its linear average-case running time and makes
its worst-case running time O.n lg n/?
8.4-3
Let X be a random variable that is equal to the number of heads in two üips of a
fair coin. What is E ŒX 2 �? What is E 2 ŒX�?
8.4-4
An array A of size n > 10 is ûlled in the following way. For each element AŒi�,
choose two random variables x i and y i uniformly and independently from Œ0; 1/.
Then set
AŒi� D

b10x i c
10

C
y i
n
:

Modify bucket sort so that it sorts the array A in O.n/ expected time.
? 8.4-5

You are given n points in the unit disk, p i D .x i ; y i /, such that 0 < x 2
i C y 2

i හ 1
for i D 1; 2; : : : ; n. Suppose that the points are uniformly distributed, that is, the
probability of ûnding a point in any region of the disk is proportional to the area
of that region. Design an algorithm with an average-case running time of ‚.n/ to
sort the n points by their distances d i D

p
x 2
i C y 2

i from the origin. (Hint: Design
the bucket sizes in BUCKET-SORT to reüect the uniform distribution of the points
in the unit disk.)

? 8.4-6
A probability distribution function P.x/ for a random variable X is deûned
by P.x/ D Pr fX හ x g. Suppose that you draw a list of n random variables

Problems for Chapter 8 219

X 1 ; X 2 ; : : : ; X n from a continuous probability distribution function P that is com-
putable in O.1/ time (given y you can ûnd x such that P.x/ D y in O.1/ time).
Give an algorithm that sorts these numbers in linear average-case time.

Problems

8-1 Probabilistic lower bounds on comparison sorting
In this problem, you will prove a probabilistic �.n lg n/ lower bound on the run-
ning time of any deterministic or randomized comparison sort on n distinct input
elements. You’ll begin by examining a deterministic comparison sort A with deci-
sion tree T A . Assume that every permutation of A’s inputs is equally likely.
a. Suppose that each leaf of T A is labeled with the probability that it is reached

given a random input. Prove that exactly nŠ leaves are labeled 1=nŠ and that the
rest are labeled 0.

b. Let D.T / denote the external path length of a decision tree T 4the sum of the
depths of all the leaves of T . Let T be a decision tree with k > 1 leaves,
and let LT and RT be the left and right subtrees of T . Show that D.T / D
D.LT / C D.RT / C k.

c. Let d.k/ be the minimum value of D.T / over all decision trees T with k > 1
leaves. Show that d.k/ D min fd.i/ C d.k i/ C k W 1 හ i හ k 1g. (Hint:
Consider a decision tree T with k leaves that achieves the minimum. Let i 0 be
the number of leaves in LT and k i 0 the number of leaves in RT .)

d. Prove that for a given value of k > 1 and i in the range 1 හ i හ k 1, the
function i lg i C .k i/ lg.k i/ is minimized at i D k=2. Conclude that
d.k/ D �.k lg k/.

e. Prove that D.T A / D �.nŠ lg.nŠ//, and conclude that the average-case time to
sort n elements is �.n lg n/.

Now consider a randomized comparison sort B . We can extend the decision-tree
model to handle randomization by incorporating two kinds of nodes: ordinary com-
parison nodes and <randomization= nodes. A randomization node models a random
choice of the form RANDOM.1; r/ made by algorithm B . The node has r children,
each of which is equally likely to be chosen during an execution of the algorithm.
f. Show that for any randomized comparison sort B , there exists a deterministic

comparison sort A whose expected number of comparisons is no more than
those made by B .

220 Chapter 8 Sorting in Linear Time

8-2 Sorting in place in linear time
You have an array of n data records to sort, each with a key of 0 or 1. An algorithm
for sorting such a set of records might possess some subset of the following three
desirable characteristics:
1. The algorithm runs in O.n/ time.
2. The algorithm is stable.
3. The algorithm sorts in place, using no more than a constant amount of storage

space in addition to the original array.
a. Give an algorithm that satisûes criteria 1 and 2 above.

b. Give an algorithm that satisûes criteria 1 and 3 above.

c. Give an algorithm that satisûes criteria 2 and 3 above.

d. Can you use any of your sorting algorithms from parts (a)–(c) as the sorting
method used in line 2 of RADIX-SORT, so that RADIX-SORT sorts n records
with b-bit keys in O.bn/ time? Explain how or why not.

e. Suppose that the n records have keys in the range from 1 to k. Show how to
modify counting sort so that it sorts the records in place in O.n C k/ time. You
may use O.k/ storage outside the input array. Is your algorithm stable?

8-3 Sorting variable-length items
a. You are given an array of integers, where different integers may have different

numbers of digits, but the total number of digits over all the integers in the array
is n. Show how to sort the array in O.n/ time.

b. You are given an array of strings, where different strings may have different
numbers of characters, but the total number of characters over all the strings
is n. Show how to sort the strings in O.n/ time. (The desired order is the
standard alphabetical order: for example, a < ab < b.)

8-4 Water jugs
You are given n red and n blue water jugs, all of different shapes and sizes. All the
red jugs hold different amounts of water, as do all the blue jugs, and you cannot
tell from the size of a jug how much water it holds. Moreover, for every jug of one
color, there is a jug of the other color that holds the same amount of water.

Your task is to group the jugs into pairs of red and blue jugs that hold the same
amount of water. To do so, you may perform the following operation: pick a pair

Problems for Chapter 8 221

of jugs in which one is red and one is blue, ûll the red jug with water, and then pour
the water into the blue jug. This operation tells you whether the red jug or the blue
jug can hold more water, or that they have the same volume. Assume that such
a comparison takes one time unit. Your goal is to ûnd an algorithm that makes a
minimum number of comparisons to determine the grouping. Remember that you
may not directly compare two red jugs or two blue jugs.
a. Describe a deterministic algorithm that uses ‚.n 2 / comparisons to group the

jugs into pairs.

b. Prove a lower bound of �.n lg n/ for the number of comparisons that an algo-
rithm solving this problem must make.

c. Give a randomized algorithm whose expected number of comparisons is
O.n lg n/, and prove that this bound is correct. What is the worst-case num-
ber of comparisons for your algorithm?

8-5 Average sorting
Suppose that, instead of sorting an array, we just require that the elements increase
on average. More precisely, we call an n-element array A k-sorted if, for all
i D 1; 2; : : : ; n k, the following holds: P i Ck1

j Di AŒj �
k

හ
P i Ck

j Di C1 AŒj �
k

:

a. What does it mean for an array to be 1-sorted?

b. Give a permutation of the numbers 1; 2; : : : ; 10 that is 2-sorted, but not sorted.

c. Prove that an n-element array is k-sorted if and only if AŒi� හ AŒi C k� for all
i D 1; 2; : : : ; n k.

d. Give an algorithm that k-sorts an n-element array in O.n lg.n=k// time.
We can also show a lower bound on the time to produce a k-sorted array, when k
is a constant.
e. Show how to sort a k-sorted array of length n in O.n lg k/ time. (Hint: Use the

solution to Exercise 6.5-11.)

f. Show that when k is a constant, k-sorting an n-element array requires �.n lg n/
time. (Hint: Use the solution to part (e) along with the lower bound on compar-
ison sorts.)

222 Chapter 8 Sorting in Linear Time

8-6 Lower bound on merging sorted lists
The problem of merging two sorted lists arises frequently. We have seen a proce-
dure for it as the subroutine MERGE in Section 2.3.1. In this problem, you will
prove a lower bound of 2n 1 on the worst-case number of comparisons required
to merge two sorted lists, each containing n items. First, you will show a lower
bound of 2n o.n/ comparisons by using a decision tree.
a. Given 2n numbers, compute the number of possible ways to divide them into

two sorted lists, each with n numbers.
b. Using a decision tree and your answer to part (a), show that any algorithm that

correctly merges two sorted lists must perform at least 2n o.n/ comparisons.
Now you will show a slightly tighter 2n 1 bound.
c. Show that if two elements are consecutive in the sorted order and from different

lists, then they must be compared.
d. Use your answer to part (c) to show a lower bound of 2n 1 comparisons for

merging two sorted lists.

8-7 The 0-1 sorting lemma and columnsort
A compare-exchange operation on two array elements AŒi� and AŒj �, where i < j ,
has the form

COMPARE-EXCHANGE .A; i; j /
1 if AŒi� > AŒj �
2 exchange AŒi� with AŒj �

After the compare-exchange operation, we know that AŒi� හ AŒj �.
An oblivious compare-exchange algorithm operates solely by a sequence of

prespeciûed compare-exchange operations. The indices of the positions compared
in the sequence must be determined in advance, and although they can depend
on the number of elements being sorted, they cannot depend on the values being
sorted, nor can they depend on the result of any prior compare-exchange operation.
For example, the COMPARE-EXCHANGE-I NSERTION-SORT procedure on the fac-
ing page shows a variation of insertion sort as an oblivious compare-exchange algo-
rithm. (Unlike the I NSERTION-SORT procedure on page 19, the oblivious version
runs in ‚.n 2 / time in all cases.)

The 0-1 sorting lemma provides a powerful way to prove that an oblivious
compare-exchange algorithm produces a sorted result. It states that if an oblivi-
ous compare-exchange algorithm correctly sorts all input sequences consisting of
only 0s and 1s, then it correctly sorts all inputs containing arbitrary values.

Problems for Chapter 8 223

COMPARE-EXCHANGE-I NSERTION-SORT .A; n/
1 for i D 2 to n
2 for j D i 1 downto 1
3 COMPARE-EXCHANGE .A; j; j C 1/

You will prove the 0-1 sorting lemma by proving its contrapositive: if an oblivi-
ous compare-exchange algorithm fails to sort an input containing arbitrary values,
then it fails to sort some 0-1 input. Assume that an oblivious compare-exchange
algorithm X fails to correctly sort the array AŒ1 W n�. Let AŒp� be the smallest value
in A that algorithm X puts into the wrong location, and let AŒq� be the value that
algorithm X moves to the location into which AŒp� should have gone. Deûne an
array BŒ1 W n� of 0s and 1s as follows:

BŒi� D

(
0 if AŒi� හ AŒp� ;
1 if AŒi� > AŒp� :

a. Argue that AŒq� > AŒp�, so that BŒp� D 0 and BŒq� D 1.

b. To complete the proof of the 0-1 sorting lemma, prove that algorithm X fails to
sort array B correctly.
Now you will use the 0-1 sorting lemma to prove that a particular sorting algo-

rithm works correctly. The algorithm, columnsort, works on a rectangular array
of n elements. The array has r rows and s columns (so that n D rs), subject to
three restrictions:
 r must be even,
 s must be a divisor of r , and
 r 2s 2 .
When columnsort completes, the array is sorted in column-major order: reading
down each column in turn, from left to right, the elements monotonically increase.

Columnsort operates in eight steps, regardless of the value of n. The odd steps
are all the same: sort each column individually. Each even step is a ûxed permuta-
tion. Here are the steps:
1. Sort each column.
2. Transpose the array, but reshape it back to r rows and s columns. In other

words, turn the leftmost column into the top r=s rows, in order; turn the next
column into the next r=s rows, in order; and so on.

224 Chapter 8 Sorting in Linear Time

10 14 5
8 7 17
12 1 6
16 9 11
4 15 2
18 3 13

(a)

4 1 2
8 3 5
10 7 6
12 9 11
16 14 13
18 15 17

(b)

4 8 10
12 16 18
1 3 7
9 14 15
2 5 6
11 13 17

(c)

1 3 6
2 5 7
4 8 10
9 13 15
11 14 17
12 16 18

(d)

1 4 11
3 8 14
6 10 17
2 9 12
5 13 16
7 15 18

(e)

1 4 11
2 8 12
3 9 14
5 10 16
6 13 17
7 15 18

(f)

5 10 16
6 13 17
7 15 18

1 4 11
2 8 12
3 9 14

(g)

4 10 16
5 11 17
6 12 18

1 7 13
2 8 14
3 9 15

(h)

1 7 13
2 8 14
3 9 15
4 10 16
5 11 17
6 12 18

(i)

Figure 8.5 The steps of columnsort. (a) The input array with 6 rows and 3 columns. (This example
does not obey the r 2s 2 requirement, but it works.) (b) After sorting each column in step 1.
(c) After transposing and reshaping in step 2. (d) After sorting each column in step 3. (e) After
performing step 4, which inverts the permutation from step 2 . (f) After sorting each column in
step 5. (g) After shifting by half a column in step 6. (h) After sorting each column in step 7. (i) After
performing step 8, which inverts the permutation from step 6. Steps 638 sort the bottom half of each
column with the top half of the next column. After step 8, the array is sorted in column-major order.

3. Sort each column.
4. Perform the inverse of the permutation performed in step 2.
5. Sort each column.
6. Shift the top half of each column into the bottom half of the same column, and

shift the bottom half of each column into the top half of the next column to the
right. Leave the top half of the leftmost column empty. Shift the bottom half
of the last column into the top half of a new rightmost column, and leave the
bottom half of this new column empty.

7. Sort each column.
8. Perform the inverse of the permutation performed in step 6.
You can think of steps 638 as a single step that sorts the bottom half of each column
and the top half of the next column. Figure 8.5 shows an example of the steps
of columnsort with r D 6 and s D 3. (Even though this example violates the
requirement that r 2s 2 , it happens to work.)
c. Argue that we can treat columnsort as an oblivious compare-exchange algo-

rithm, even if we do not know what sorting method the odd steps use.

Notes for Chapter 8 225

Although it might seem hard to believe that columnsort actually sorts, you will
use the 0-1 sorting lemma to prove that it does. The 0-1 sorting lemma applies
because we can treat columnsort as an oblivious compare-exchange algorithm. A
couple of deûnitions will help you apply the 0-1 sorting lemma. We say that an
area of an array is clean if we know that it contains either all 0s or all 1s or if it is
empty. Otherwise, the area might contain mixed 0s and 1s, and it is dirty. From
here on, assume that the input array contains only 0s and 1s, and that we can treat
it as an array with r rows and s columns.
d. Prove that after steps 133, the array consists of clean rows of 0s at the top, clean

rows of 1s at the bottom, and at most s dirty rows between them. (One of the
clean rows could be empty.)

e. Prove that after step 4, the array, read in column-major order, starts with a clean
area of 0s, ends with a clean area of 1s, and has a dirty area of at most s 2

elements in the middle. (Again, one of the clean areas could be empty.)

f. Prove that steps 538 produce a fully sorted 0-1 output. Conclude that column-
sort correctly sorts all inputs containing arbitrary values.

g. Now suppose that s does not divide r . Prove that after steps 133, the array
consists of clean rows of 0s at the top, clean rows of 1s at the bottom, and at
most 2s 1 dirty rows between them. (Once again, one of the clean areas could
be empty.) How large must r be, compared with s , for columnsort to correctly
sort when s does not divide r ?

h. Suggest a simple change to step 1 that allows us to maintain the requirement
that r 2s 2 even when s does not divide r , and prove that with your change,
columnsort correctly sorts.

Chapter notes

The decision-tree model for studying comparison sorts was introduced by Ford
and Johnson [150]. Knuth’s comprehensive treatise on sorting [261] covers many
variations on the sorting problem, including the information-theoretic lower bound
on the complexity of sorting given here. Ben-Or [46] studied lower bounds for
sorting using generalizations of the decision-tree model.
Knuth credits H. H. Seward with inventing counting sort in 1954, as well as with

the idea of combining counting sort with radix sort. Radix sorting starting with the
least signiûcant digit appears to be a folk algorithm widely used by operators of

226 Chapter 8 Sorting in Linear Time

mechanical card-sorting machines. According to Knuth, the ûrst published refer-
ence to the method is a 1929 document by L. J. Comrie describing punched-card
equipment. Bucket sorting has been in use since 1956, when the basic idea was
proposed by Isaac and Singleton [235].
Munro and Raman [338] give a stable sorting algorithm that performs O.n 1C /

comparisons in the worst case, where 0 < � හ 1 is any ûxed constant. Although
any of the O.n lg n/-time algorithms make fewer comparisons, the algorithm by
Munro and Raman moves data only O.n/ times and operates in place.

The case of sorting n b-bit integers in o.n lg n/ time has been considered by
many researchers. Several positive results have been obtained, each under slightly
different assumptions about the model of computation and the restrictions placed
on the algorithm. All the results assume that the computer memory is divided into
addressable b-bit words. Fredman and Willard [157] introduced the fusion tree data
structure and used it to sort n integers in O.n lg n= lg lg n/ time. This bound was
later improved to O.n

p lg n/ time by Andersson [17]. These algorithms require
the use of multiplication and several precomputed constants. Andersson, Hagerup,
Nilsson, and Raman [18] have shown how to sort n integers in O.n lg lg n/ time
without using multiplication, but their method requires storage that can be un-
bounded in terms of n. Using multiplicative hashing, we can reduce the storage
needed to O.n/, but then the O.n lg lg n/ worst-case bound on the running time
becomes an expected-time bound. Generalizing the exponential search trees of
Andersson [17], Thorup [434] gave an O.n.lg lg n/ 2 /-time sorting algorithm that
does not use multiplication or randomization, and it uses linear space. Combining
these techniques with some new ideas, Han [207] improved the bound for sorting
to O.n lg lg n lg lg lg n/ time. Although these algorithms are important theoretical
breakthroughs, they are all fairly complicated and at the present time seem unlikely
to compete with existing sorting algorithms in practice.
The columnsort algorithm in Problem 8-7 is by Leighton [286].

9 Medians and Order Statistics

The i th order statistic of a set of n elements is the i th smallest element. For
example, the minimum of a set of elements is the ûrst order statistic (i D 1),
and the maximum is the nth order statistic (i D n). A median, informally, is
the <halfway point= of the set. When n is odd, the median is unique, occurring at
i D .n C1/=2. When n is even, there are two medians, the lower median occurring
at i D n=2 and the upper median occurring at i D n=2 C 1. Thus, regardless of
the parity of n, medians occur at i D b.n C 1/=2c and i D d.n C 1/=2e. For
simplicity in this text, however, we consistently use the phrase <the median= to
refer to the lower median.

This chapter addresses the problem of selecting the i th order statistic from a
set of n distinct numbers. We assume for convenience that the set contains dis-
tinct numbers, although virtually everything that we do extends to the situation in
which a set contains repeated values. We formally specify the selection problem
as follows:
Input: A set A of n distinct numbers 1 and an integer i , with 1 හ i හ n.
Output: The element x 2 A that is larger than exactly i 1 other elements of A.
We can solve the selection problem in O.n lg n/ time simply by sorting the num-
bers using heapsort or merge sort and then outputting the i th element in the sorted
array. This chapter presents asymptotically faster algorithms.
Section 9.1 examines the problem of selecting the minimum and maximum of

a set of elements. More interesting is the general selection problem, which we
investigate in the subsequent two sections. Section 9.2 analyzes a practical ran-
domized algorithm that achieves an O.n/ expected running time, assuming dis-

1 As in the footnote on page 182, you can enforce the assumption that the numbers are distinct by
converting each input value AŒi� to an ordered pair .AŒi�; i/ with .AŒi�; i/ < .AŒj �; j / if either
AŒi� < AŒj � or AŒi� D AŒj � and i < j .

228 Chapter 9 Medians and Order Statistics

tinct elements. Section 9.3 contains an algorithm of more theoretical interest that
achieves the O.n/ running time in the worst case.

9.1 Minimum and maximum

How many comparisons are necessary to determine the minimum of a set of n
elements? To obtain an upper bound of n 1 comparisons, just examine each
element of the set in turn and keep track of the smallest element seen so far. The
MINIMUM procedure assumes that the set resides in array AŒ1 W n�.

MINIMUM.A; n/
1 min D AŒ1�
2 for i D 2 to n
3 if min > AŒi�
4 min D AŒi�
5 return min

It’s no more difûcult to ûnd the maximum with n 1 comparisons.
Is this algorithm for minimum the best we can do? Yes, because it turns out that

there’s a lower bound of n 1 comparisons for the problem of determining the
minimum. Think of any algorithm that determines the minimum as a tournament
among the elements. Each comparison is a match in the tournament in which the
smaller of the two elements wins. Since every element except the winner must
lose at least one match, we can conclude that n 1 comparisons are necessary to
determine the minimum. Hence the algorithm MINIMUM is optimal with respect
to the number of comparisons performed.

Simultaneous minimum and maximum

Some applications need to ûnd both the minimum and the maximum of a set of n
elements. For example, a graphics program may need to scale a set of .x; y/ data
to ût onto a rectangular display screen or other graphical output device. To do
so, the program must ûrst determine the minimum and maximum value of each
coordinate.
Of course, we can determine both the minimum and the maximum of n ele-

ments using ‚.n/ comparisons. We simply ûnd the minimum and maximum in-
dependently, using n 1 comparisons for each, for a total of 2n 2 D ‚.n/
comparisons.

9.1 Minimum and maximum 229

Although 2n 2 comparisons is asymptotically optimal, it is possible to improve
the leading constant. We can ûnd both the minimum and the maximum using at
most 3 bn=2c comparisons. The trick is to maintain both the minimum and maxi-
mum elements seen thus far. Rather than processing each element of the input by
comparing it against the current minimum and maximum, at a cost of 2 compar-
isons per element, process elements in pairs. Compare pairs of elements from the
input ûrst with each other, and then compare the smaller with the current mini-
mum and the larger to the current maximum, at a cost of 3 comparisons for every
2 elements.

How you set up initial values for the current minimum and maximum depends
on whether n is odd or even. If n is odd, set both the minimum and maximum to
the value of the ûrst element, and then process the rest of the elements in pairs.
If n is even, perform 1 comparison on the ûrst 2 elements to determine the initial
values of the minimum and maximum, and then process the rest of the elements in
pairs as in the case for odd n.
Let’s count the total number of comparisons. If n is odd, then 3 bn=2c com-

parisons occur. If n is even, 1 initial comparison occurs, followed by another
3.n 2/=2 comparisons, for a total of 3n=2 2. Thus, in either case, the total
number of comparisons is at most 3 bn=2c.

Exercises
9.1-1
Show that the second smallest of n elements can be found with n C dlg ne 2
comparisons in the worst case. (Hint: Also ûnd the smallest element.)
9.1-2
Given n > 2 distinct numbers, you want to ûnd a number that is neither the min-
imum nor the maximum. What is the smallest number of comparisons that you
need to perform?
9.1-3
A racetrack can run races with ûve horses at a time to determine their relative
speeds. For 25 horses, it takes six races to determine the fastest horse, assum-
ing transitivity (see page 1159). What’s the minimum number of races it takes to
determine the fastest three horses out of 25?

? 9.1-4
Prove the lower bound of d3n=2e 2 comparisons in the worst case to ûnd both
the maximum and minimum of n numbers. (Hint: Consider how many numbers
are potentially either the maximum or minimum, and investigate how a comparison
affects these counts.)

230 Chapter 9 Medians and Order Statistics

9.2 Selection in expected linear time

The general selection problem4ûnding the i th order statistic for any value of i 4
appears more difûcult than the simple problem of ûnding a minimum. Yet, sur-
prisingly, the asymptotic running time for both problems is the same: ‚.n/. This
section presents a divide-and-conquer algorithm for the selection problem. The al-
gorithm RANDOMIZED-SELECT is modeled after the quicksort algorithm of Chap-
ter 7. Like quicksort it partitions the input array recursively. But unlike quicksort,
which recursively processes both sides of the partition, RANDOMIZED-SELECT
works on only one side of the partition. This difference shows up in the analysis:
whereas quicksort has an expected running time of ‚.n lg n/, the expected running
time of RANDOMIZED-SELECT is ‚.n/, assuming that the elements are distinct.

RANDOMIZED-SELECT uses the procedure RANDOMIZED-PARTITION intro-
duced in Section 7.3. Like RANDOMIZED-QUICKSORT, it is a randomized algo-
rithm, since its behavior is determined in part by the output of a random-number
generator. The RANDOMIZED-SELECT procedure returns the i th smallest element
of the array AŒp W r�, where 1 හ i හ r p C 1.

RANDOMIZED-SELECT .A; p; r; i/
1 if p = = r
2 return AŒp� // 1 හ i හ r p C 1 when p == r means that i D 1
3 q D RANDOMIZED-PARTITION .A; p; r/
4 k D q p C 1
5 if i == k
6 return AŒq� // the pivot value is the answer
7 elseif i < k
8 return RANDOMIZED-SELECT .A; p; q 1; i/
9 else return RANDOMIZED-SELECT .A; q C 1; r; i k/

Figure 9.1 illustrates how the RANDOMIZED-SELECT procedure works. Line 1
checks for the base case of the recursion, in which the subarray AŒp W r� consists
of just one element. In this case, i must equal 1, and line 2 simply returns AŒp�
as the i th smallest element. Otherwise, the call to RANDOMIZED-PARTITION in
line 3 partitions the array AŒp W r� into two (possibly empty) subarrays AŒp W q 1�
and AŒq C 1 W r� such that each element of AŒp W q 1� is less than or equal to AŒq�,
which in turn is less than each element of AŒq C 1 W r�. (Although our analysis
assumes that the elements are distinct, the procedure still yields the correct result
even if equal elements are present.) As in quicksort, we’ll refer to AŒq� as the pivot
element. Line 4 computes the number k of elements in the subarray AŒp W q�, that is,

9.2 Selection in expected linear time 231

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
6 19 4 12 14 9 15 7 8 11 3 13 2 5 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
6 4 12 10 9 7 8 11 3 13 2 5 14 19 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 2 4 10 9 7 8 11 6 13 5 12 14 19 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 2 4 10 9 7 8 11 6 12 5 13 14 19 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 2 4 5 6 7 8 11 9 12 10 13 14 19 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
3 2 4 5 6 7 8 11 9 12 10 13 14 19 15

partitioning p r i helpful?

1 15 5

1 no

1 12 5

2 yes
4 12 2

3 no

4 11 2

4 yes
4 5 2

5 yes
5 5 1

A .0/

A .1/

A .2/

A .3/

A .4/

A .5/

Figure 9.1 The action of RANDOMIZED-SELECT as successive partitionings narrow the subarray
AŒp W r�, showing the values of the parameters p, r , and i at each recursive call. The subarray AŒp W r�
in each recursive step is shown in tan, with the dark tan element selected as the pivot for the next
partitioning. Blue elements are outside AŒp W r�. The answer is the tan element in the bottom array,
where p D r D 5 and i D 1. The array designations A .0/ ; A .1/ ; : : : ; A .5/ , the partitioning numbers,
and whether the partitioning is helpful are explained on the following page.

the number of elements in the low side of the partition, plus 1 for the pivot element.
Line 5 then checks whether AŒq� is the i th smallest element. If it is, then line 6
returns AŒq�. Otherwise, the algorithm determines in which of the two subarrays
AŒp W q 1� and AŒq C 1 W r� the i th smallest element lies. If i < k, then the desired
element lies on the low side of the partition, and line 8 recursively selects it from
the subarray. If i > k, however, then the desired element lies on the high side of
the partition. Since we already know k values that are smaller than the i th smallest
element of AŒp W r�4namely, the elements of AŒp W q�4the desired element is the
.i k/th smallest element of AŒq C 1 W r�, which line 9 ûnds recursively. The code
appears to allow recursive calls to subarrays with 0 elements, but Exercise 9.2-1
asks you to show that this situation cannot happen.
The worst-case running time for RANDOMIZED-SELECT is ‚.n 2 /, even to

ûnd the minimum, because it could be extremely unlucky and always partition
around the largest remaining element before identifying the i th smallest when
only one element remains. In this worst case, each recursive step removes only
the pivot from consideration. Because partitioning n elements takes ‚.n/ time,
the recurrence for the worst-case running time is the same as for QUICKSORT:

232 Chapter 9 Medians and Order Statistics

T .n/ D T .n 1/ C ‚.n/, with the solution T .n/ D ‚.n 2 /. We’ll see that the al-
gorithm has a linear expected running time, however, and because it is randomized,
no particular input elicits the worst-case behavior.

To see the intuition behind the linear expected running time, suppose that each
time the algorithm randomly selects a pivot element, the pivot lies somewhere
within the second and third quartiles4the <middle half=4of the remaining ele-
ments in sorted order. If the i th smallest element is less than the pivot, then all
the elements greater than the pivot are ignored in all future recursive calls. These
ignored elements include at least the uppermost quartile, and possibly more. Like-
wise, if the i th smallest element is greater than the pivot, then all the elements
less than the pivot4at least the ûrst quartile4are ignored in all future recursive
calls. Either way, therefore, at least 1=4 of the remaining elements are ignored in
all future recursive calls, leaving at most 3=4 of the remaining elements in play:
residing in the subarray AŒp W r�. Since RANDOMIZED-PARTITION takes ‚.n/
time on a subarray of n elements, the recurrence for the worst-case running time
is T .n/ D T .3n=4/ C ‚.n/. By case 3 of the master method (Theorem 4.1 on
page 102), this recurrence has solution T .n/ D ‚.n/.
Of course, the pivot does not necessarily fall into the middle half every time.

Since the pivot is selected at random, the probability that it falls into the middle
half is about 1=2 each time. We can view the process of selecting the pivot as a
Bernoulli trial (see Section C.4) with success equating to the pivot residing in the
middle half. Thus the expected number of trials needed for success is given by a
geometric distribution: just two trials on average (equation (C.36) on page 1197).
In other words, we expect that half of the partitionings reduce the number of ele-
ments still in play by at least 3=4 and that half of the partitionings do not help as
much. Consequently, the expected number of partitionings at most doubles from
the case when the pivot always falls into the middle half. The cost of each extra
partitioning is less than the one that preceded it, so that the expected running time
is still ‚.n/.
To make the above argument rigorous, we start by deûning the random vari-

able A .j / as the set of elements of A that are still in play after j partitionings (that
is, within the subarray AŒp W r� after j calls of RANDOMIZED-SELECT), so that
A .0/ consists of all the elements in A. Since each partitioning removes at least
one element4the pivot4from being in play, the sequence jA .0/ j; jA .1/ j; jA .2/ j; : : :
strictly decreases. Set A .j 1/ is in play before the j th partitioning, and set A .j /

remains in play afterward. For convenience, assume that the initial set A .0/ is the
result of a 0th <dummy= partitioning.
Let’s call the j th partitioning helpful if jA .j / j හ .3=4/jA .j 1/ j. Figure 9.1

shows the sets A .j / and whether partitionings are helpful for an example array.
A helpful partitioning corresponds to a successful Bernoulli trial. The following
lemma shows that a partitioning is at least as likely to be helpful as not.

9.2 Selection in expected linear time 233

Lemma 9.1
A partitioning is helpful with probability at least 1=2.

Proof Whether a partitioning is helpful depends on the randomly chosen pivot.
We discussed the <middle half= in the informal argument above. Let’s more pre-
cisely deûne the middle half of an n-element subarray as all but the smallest
dn=4e 1 and greatest dn=4e 1 elements (that is, all but the ûrst dn=4e 1
and last dn=4e 1 elements if the subarray were sorted). We’ll prove that if the
pivot falls into the middle half, then the pivot leads to a helpful partitioning, and
we’ll also prove that the probability of the pivot falling into the middle half is at
least 1=2.

Regardless of where the pivot falls, either all the elements greater than it or all
the elements less than it, along with the pivot itself, will no longer be in play after
partitioning. If the pivot falls into the middle half, therefore, at least dn=4e 1
elements less than the pivot or dn=4e 1 elements greater than the pivot, plus
the pivot, will no longer be in play after partitioning. That is, at least dn=4e ele-
ments will no longer be in play. The number of elements remaining in play will
be at most n dn=4e, which equals b3n=4c by Exercise 3.3-2 on page 70. Since
b3n=4c හ 3n=4, the partitioning is helpful.

To determine a lower bound on the probability that a randomly chosen pivot falls
into the middle half, we determine an upper bound on the probability that it does
not. That probability is
2.dn=4e 1/

n
හ
2..n=4 C 1/ 1/

n
(by inequality (3.2) on page 64)

D
n=2
n

D 1=2 :

Thus, the pivot has a probability of at least 1=2 of falling into the middle half, and
so the probability is at least 1=2 that a partitioning is helpful.

We can now bound the expected running time of RANDOMIZED-SELECT.

Theorem 9.2
The procedure RANDOMIZED-SELECT on an input array of n distinct elements has
an expected running time of ‚.n/.

Proof Since not every partitioning is necessarily helpful, let’s give each parti-
tioning an index starting at 0 and denote by hh 0 ; h 1 ; h 2 ; : : : ; h m i the sequence
of partitionings that are helpful, so that the h k th partitioning is helpful for k D
0; 1; 2; : : : ;m. Although the number m of helpful partitionings is a random vari-

234 Chapter 9 Medians and Order Statistics

… … …

generation 0 generation 1 generation k

… …

A .0/
A .1/ A .2/ A .h 1 1/

A .h 1 /

A .h 1 C1/

A .h 1 C2/
A .h 2 1/

A .h 2 /

A .h k 1/
A .h k /

A .h k C1/

A .h k C2/
A .h kC1 1/

A .h kC1 /

A .hm/

Figure 9.2 The sets within each generation in the proof of Theorem 9.2. Vertical lines represent the
sets, with the height of each line indicating the size of the set, which equals the number of elements in
play. Each generation starts with a set A .h k / , which is the result of a helpful partitioning. These sets
are drawn in black and are at most 3=4 the size of the sets to their immediate left. Sets drawn in orange
are not the ûrst within a generation. A generation may contain just one set. The sets in generation k
are A .h k / ; A .h k C1/ ; : : : ; A .h kC1 1/ . The sets A .h k / are deûned so that jA .h k / j හ .3=4/jA .h k1 / j.
If the partitioning gets all the way to generation h m , set A .h m / has at most one element in play.

able, we can bound it, since after at most dlog 4=3 ne helpful partitionings, only one
element remains in play. Consider the dummy 0th partitioning as helpful, so that
h 0 D 0. Denote jA .h k / j by n k , where n 0 D jA .0/ j is the original problem size.
Since the h k th partitioning is helpful and the sizes of the sets A .j / strictly decrease,
we have n k D jA .h k / j හ .3=4/jA .h k 1/ j D .3=4/ n k1 for k D 1; 2; : : : ;m. By
iterating n k හ .3=4/ n k1 , we have that n k හ .3=4/ k n 0 for k D 0; 1; 2; : : : ;m.

As Figure 9.2 depicts, we break up the sequence of sets A .j / into m genera-
tions consisting of consecutively partitioned sets, starting with the result A .h k / of
a helpful partitioning and ending with the last set A .h kC1 1/ before the next help-
ful partitioning, so that the sets in generation k are A .h k / ; A .h k C1/ ; : : : ; A .h kC1 1/ .
Then for each set of elements A .j / in the kth generation, we have that jA .j / j හ
jA .h k / j D n k හ .3=4/ k n 0 .
Next, we deûne the random variable

X k D h kC1 h k

for k D 0; 1; 2; : : : ;m 1. That is, X k is the number of sets in the kth generation,
so that the sets in the kth generation are A .h k / ; A .h k C1/ ; : : : ; A .h k CX k 1/ .
By Lemma 9.1, the probability that a partitioning is helpful is at least 1=2. The

probability is actually even higher, since a partitioning is helpful even if the pivot

9.2 Selection in expected linear time 235

does not fall into the middle half but the i th smallest element happens to lie in the
smaller side of the partitioning. We’ll just use the lower bound of 1=2, however,
and then equation (C.36) gives that E ŒX k � හ 2 for k D 0; 1; 2; : : : ;m 1.
Let’s derive an upper bound on how many comparisons are made altogether dur-

ing partitioning, since the running time is dominated by the comparisons. Since
we are calculating an upper bound, assume that the recursion goes all the way un-
til only one element remains in play. The j th partitioning takes the set A .j 1/ of
elements in play, and it compares the randomly chosen pivot with all the other
jA .j 1/ j 1 elements, so that the j th partitioning makes fewer than jA .j 1/ j
comparisons. The sets in the kth generation have sizes jA .h k / j; jA .h k C1/ j; : : : ;
jA .h k CX k 1/ j. Thus, the total number of comparisons during partitioning is less
than
m1 X

kD0

h k CX k 1 X

j Dh k

jA .j / j හ
m1 X

kD0

h k CX k 1 X

j Dh k

jA .h k / j

D
m1 X

kD0

X k jA .h k / j

හ
m1 X

kD0

X k

Ï
3
4

Ð k

n 0 :

Since E ŒX k � හ 2, we have that the expected total number of comparisons during
partitioning is less than

E
"

m1 X

kD0

X k

Ï
3
4

Ð k

n 0

D
m1 X

kD0

E
"

X k

Ï
3
4

Ð k

n 0

(by linearity of expectation)

D n 0

m1 X

kD0

Ï
3
4

Ð k

E ŒX k �

හ 2n 0

m1 X

kD0

Ï
3
4

Ð k

< 2n 0

1 X

kD0

Ï
3
4

Ð k

D 8n 0 (by equation (A.7) on page 1142) .
Since n 0 is the size of the original array A, we conclude that the expected num-
ber of comparisons, and thus the expected running time, for RANDOMIZED-
SELECT is O.n/. All n elements are examined in the ûrst call of RANDOMIZED-

236 Chapter 9 Medians and Order Statistics

PARTITION, giving a lower bound of �.n/. Hence the expected running time
is ‚.n/.

Exercises
9.2-1
Show that RANDOMIZED-SELECT never makes a recursive call to a 0-length array.
9.2-2
Write an iterative version of RANDOMIZED-SELECT.
9.2-3
Suppose that RANDOMIZED-SELECT is used to select the minimum element of the
array A D h2; 3; 0; 5; 7; 9; 1; 8; 6; 4i. Describe a sequence of partitions that results
in a worst-case performance of RANDOMIZED-SELECT.
9.2-4
Argue that the expected running time of RANDOMIZED-SELECT does not depend
on the order of the elements in its input array AŒp W r�. That is, the expected running
time is the same for any permutation of the input array AŒp W r�. (Hint: Argue by
induction on the length n of the input array.)

9.3 Selection in worst-case linear time

We’ll now examine a remarkable and theoretically interesting selection algorithm
whose running time is ‚.n/ in the worst case. Although the RANDOMIZED-
SELECT algorithm from Section 9.2 achieves linear expected time, we saw that
its running time in the worst case was quadratic. The selection algorithm presented
in this section achieves linear time in the worst case, but it is not nearly as practical
as RANDOMIZED-SELECT. It is mostly of theoretical interest.
Like the expected linear-time RANDOMIZED-SELECT, the worst-case linear-

time algorithm SELECT ûnds the desired element by recursively partitioning the
input array. Unlike RANDOMIZED-SELECT, however, SELECT guarantees a good
split by choosing a provably good pivot when partitioning the array. The cleverness
in the algorithm is that it ûnds the pivot recursively. Thus, there are two invocations
of SELECT: one to ûnd a good pivot, and a second to recursively ûnd the desired
order statistic.

The partitioning algorithm used by SELECT is like the deterministic partitioning
algorithm PARTITION from quicksort (see Section 7.1), but modiûed to take the
element to partition around as an additional input parameter. Like PARTITION, the

9.3 Selection in worst-case linear time 237

PARTITION-AROUND algorithm returns the index of the pivot. Since it’s so similar
to PARTITION, the pseudocode for PARTITION-AROUND is omitted.

The SELECT procedure takes as input a subarray AŒp W r] of n D r p C 1
elements and an integer i in the range 1 හ i හ n. It returns the i th smallest element
of A. The pseudocode is actually more understandable than it might appear at ûrst.

SELECT.A; p; r; i/
1 while .r p C 1/ mod 5 ¤ 0
2 for j D p C 1 to r // put the minimum into AŒp�
3 if AŒp� > AŒj �
4 exchange AŒp� with AŒj �
5 // If we want the minimum of AŒp W r�, we’re done.
6 if i == 1
7 return AŒp�
8 // Otherwise, we want the .i 1/st element of AŒp C 1 W r�.
9 p D p C 1
10 i D i 1
11 g D .r p C 1/=5 // number of 5-element groups
12 for j D p to p C g 1 // sort each group
13 sort hAŒj �;AŒj C g�;AŒj C 2g�;AŒj C 3g�;AŒj C 4g�i in place
14 // All group medians now lie in the middle ûfth of AŒp W r�.
15 // Find the pivot x recursively as the median of the group medians.
16 x D SELECT .A; p C 2g; p C 3g 1; dg=2e/
17 q D PARTITION-AROUND.A; p; r; x/ // partition around the pivot
18 // The rest is just like lines 339 of RANDOMIZED-SELECT.
19 k D q p C 1
20 if i == k
21 return AŒq� // the pivot value is the answer
22 elseif i < k
23 return SELECT.A; p; q 1; i/
24 else return SELECT.A; q C 1; r; i k/

The pseudocode starts by executing the while loop in lines 1310 to reduce the
number r p C 1 of elements in the subarray until it is divisible by 5. The while
loop executes 0 to 4 times, each time rearranging the elements of AŒp W r� so that
AŒp� contains the minimum element. If i D 1, which means that we actually want
the minimum element, then the procedure simply returns it in line 7. Otherwise,
SELECT eliminates the minimum from the subarray AŒp W r� and iterates to ûnd
the .i 1/st element in AŒp C 1 W r�. Lines 9310 do so by incrementing p and
decrementing i . If the while loop completes all of its iterations without returning a

238 Chapter 9 Medians and Order Statistics

x

g
dg=2e

bg=2c C 1

Figure 9.3 The relationships between elements (shown as circles) immediately after line 17 of the
selection algorithm SELECT. There are g D .r p C 1/=5 groups of 5 elements, each of which oc-
cupies a column. For example, the leftmost column contains elements AŒp�, AŒp C g�, AŒp C 2g�,
AŒp C 3g�, AŒp C 4g�, and the next column contains AŒp C 1�, AŒp C g C 1�, AŒp C 2g C 1�,
AŒp C 3g C 1�, AŒp C 4g C 1�. The medians of the groups are red, and the pivot x is labeled.
Arrows go from smaller elements to larger. The elements on the blue background are all known to
be less than or equal to x and cannot fall into the high side of the partition around x. The elements
on the yellow background are known to be greater than or equal to x and cannot fall into the low side
of the partition around x. The pivot x belongs to both the blue and yellow regions and is shown on a
green background. The elements on the white background could lie on either side of the partition.

result, the procedure executes the core of the algorithm in lines 11324, assured that
the number r p C 1 of elements in AŒp W r� is evenly divisible by 5.

The next part of the algorithm implements the following idea, illustrated in Fig-
ure 9.3. Divide the elements in AŒp W r� into g D .r p C1/=5 groups of 5 elements
each. The ûrst 5-element group is
hAŒp�;AŒp C g�;AŒp C 2g�;AŒp C 3g�;AŒp C 4g�i ;
the second is
hAŒp C 1�;AŒp C g C 1�;AŒp C 2g C 1�;AŒp C 3g C 1�;AŒp C 4g C 1�i ;
and so forth until the last, which is
hAŒp C g 1�;AŒp C 2g 1�;AŒp C 3g 1�;AŒp C 4g 1�;AŒr�i :
(Note that r D p C 5g 1.) Line 13 puts each group in order using, for example,
insertion sort (Section 2.1), so that for j D p;p C 1; : : : ; p C g 1, we have

9.3 Selection in worst-case linear time 239

AŒj � හ AŒj C g� හ AŒj C 2g� හ AŒj C 3g� හ AŒj C 4g� :

Each vertical column in Figure 9.3 depicts a sorted group of 5 elements. The
median of each 5-element group is AŒj C 2g�, and thus all the 5-element medians,
shown in red, lie in the range AŒp C 2g W p C 3g 1�.
Next, line 16 determines the pivot x by recursively calling SELECT to ûnd the

median (speciûcally, the dg=2eth smallest) of the g group medians. Line 17 uses
the modiûed PARTITION-AROUND algorithm to partition the elements of AŒp W r�
around x , returning the index q of x , so that AŒq� D x , elements in AŒp W q� are all
at most x , and elements in AŒq W r� are greater than or equal to x .

The remainder of the code mirrors that of RANDOMIZED-SELECT . If the pivot x
is the i th largest, the procedure returns it. Otherwise, the procedure recursively
calls itself on either AŒp W q 1� or AŒq C 1 W r�, depending on the value of i .
Let’s analyze the running time of SELECT and see how the judicious choice of

the pivot x plays into a guarantee on its worst-case running time.

Theorem 9.3
The running time of SELECT on an input of n elements is ‚.n/.

Proof Deûne T .n/ as the worst-case time to run SELECT on any input subarray
AŒp W r� of size at most n, that is, for which r p C 1 හ n. By this deûnition, T .n/
is monotonically increasing.
We ûrst determine an upper bound on the time spent outside the recursive calls

in lines 16, 23, and 24. The while loop in lines 1310 executes 0 to 4 times,
which is O.1/ times. Since the dominant time within the loop is the computa-
tion of the minimum in lines 234, which takes ‚.n/ time, lines 1310 execute in
O.1/ ‚.n/ D O.n/ time. The sorting of the 5-element groups in lines 12313
takes ‚.n/ time because each 5-element group takes ‚.1/ time to sort (even using
an asymptotically inefûcient sorting algorithm such as insertion sort), and there are
g elements to sort, where n=5 1 < g හ n=5. Finally, the time to partition in
line 17 is ‚.n/, as Exercise 7.1-3 on page 187 asks you to show. Because the re-
maining bookkeeping only costs ‚.1/ time, the total amount of time spent outside
of the recursive calls is O.n/ C ‚.n/ C ‚.n/ C ‚.1/ D ‚.n/.
Now let’s determine the running time for the recursive calls. The recursive call

to ûnd the pivot in line 16 takes T .g/ හ T .n=5/ time, since g හ n=5 and T .n/
monotonically increases. Of the two recursive calls in lines 23 and 24, at most
one is executed. But we’ll see that no matter which of these two recursive calls
to SELECT actually executes, the number of elements in the recursive call turns
out to be at most 7n=10, and hence the worst-case cost for lines 23 and 24 is at
most T .7n=10/. Let’s now show that the machinations with group medians and the
choice of the pivot x as the median of the group medians guarantees this property.

240 Chapter 9 Medians and Order Statistics

Figure 9.3 helps to visualize what’s going on. There are g හ n=5 groups of 5 el-
ements, with each group shown as a column sorted from bottom to top. The arrows
show the ordering of elements within the columns. The columns are ordered from
left to right with groups to the left of x ’s group having a group median less than x
and those to the right of x ’s group having a group median greater than x . Although
the relative order within each group matters, the relative order among groups to the
left of x ’s column doesn’t really matter, and neither does the relative order among
groups to the right of x ’s column. The important thing is that the groups to the
left have group medians less than x (shown by the horizontal arrows entering x),
and that the groups to the right have group medians greater than x (shown by the
horizontal arrows leaving x). Thus, the yellow region contains elements that we
know are greater than or equal to x , and the blue region contains elements that we
know are less than or equal to x .

These two regions each contain at least 3g=2 elements. The number of group
medians in the yellow region is bg=2c C 1, and for each group median, two ad-
ditional elements are greater than it, making a total of 3.bg=2c C 1/ 3g=2
elements. Similarly, the number of group medians in the blue region is dg=2e, and
for each group median, two additional elements are less than it, making a total of
3 dg=2e 3g=2.

The elements in the yellow region cannot fall into the low side of the partition
around x , and those in the blue region cannot fall into the high side. The elements
in neither region4those lying on a white background4could fall into either side
of the partition. But since the low side of the partition excludes the elements in the
yellow region, and there are a total of 5g elements, we know that the low side of
the partition can contain at most 5g 3g=2 D 7g=2 හ 7n=10 elements. Likewise,
the high side of the partition excludes the elements in the blue region, and a similar
calculation shows that it also contains at most 7n=10 elements.
All of which leads to the following recurrence for the worst-case running time

of SELECT:
T .n/ හ T .n=5/ C T .7n=10/ C ‚.n/ : (9.1)
We can show that T .n/ D O.n/ by substitution. 2 More speciûcally, we’ll prove
that T .n/ හ cn for some suitably large constant c > 0 and all n > 0. Substituting
this inductive hypothesis into the right-hand side of recurrence (9.1) and assuming
that n 5 yields

2 We could also use the Akra-Bazzi method from Section 4.7, which involves calculus, to solve this
recurrence. Indeed, a similar recurrence (4.24) on page 117 was used to illustrate that method.

9.3 Selection in worst-case linear time 241

T .n/ හ c.n=5/ C c.7n=10/ C ‚.n/
හ 9cn=10 C ‚.n/
D cn cn=10 C ‚.n/
හ cn

if c is chosen large enough that c=10 dominates the upper-bound constant hidden by
the ‚.n/. In addition to this constraint, we can pick c large enough that T .n/ හ cn
for all n හ 4, which is the base case of the recursion within SELECT. The running
time of SELECT is therefore O.n/ in the worst case, and because line 13 alone
takes ‚.n/ time, the total time is ‚.n/.

As in a comparison sort (see Section 8.1), SELECT and RANDOMIZED-SELECT
determine information about the relative order of elements only by comparing ele-
ments. Recall from Chapter 8 that sorting requires �.n lg n/ time in the compari-
son model, even on average (see Problem 8-1). The linear-time sorting algorithms
in Chapter 8 make assumptions about the type of the input. In contrast, the linear-
time selection algorithms in this chapter do not require any assumptions about the
input’s type, only that the elements are distinct and can be pairwise compared ac-
cording to a linear order. The algorithms in this chapter are not subject to the
�.n lg n/ lower bound, because they manage to solve the selection problem with-
out sorting all the elements. Thus, solving the selection problem by sorting and
indexing, as presented in the introduction to this chapter, is asymptotically inefû-
cient in the comparison model.

Exercises
9.3-1
In the algorithm SELECT, the input elements are divided into groups of 5. Show
that the algorithm works in linear time if the input elements are divided into groups
of 7 instead of 5.
9.3-2
Suppose that the preprocessing in lines 1310 of SELECT is replaced by a base case
for n n 0 , where n 0 is a suitable constant; that g is chosen as br p C 1/=5c;
and that the elements in AŒ5g W n� belong to no group. Show that although the
recurrence for the running time becomes messier, it still solves to ‚.n/.
9.3-3
Show how to use SELECT as a subroutine to make quicksort run in O.n lg n/ time
in the worst case, assuming that all elements are distinct.

242 Chapter 9 Medians and Order Statistics

Figure 9.4 Professor Olay needs to determine the position of the east-west oil pipeline that mini-
mizes the total length of the north-south spurs.

? 9.3-4
Suppose that an algorithm uses only comparisons to ûnd the i th smallest element
in a set of n elements. Show that it can also ûnd the i 1 smaller elements and
the n i larger elements without performing any additional comparisons.
9.3-5
Show how to determine the median of a 5-element set using only 6 comparisons.
9.3-6
You have a <black-box= worst-case linear-time median subroutine. Give a sim-
ple, linear-time algorithm that solves the selection problem for an arbitrary order
statistic.
9.3-7
Professor Olay is consulting for an oil company, which is planning a large pipeline
running east to west through an oil ûeld of n wells. The company wants to connect
a spur pipeline from each well directly to the main pipeline along a shortest route
(either north or south), as shown in Figure 9.4. Given the x - and y -coordinates of
the wells, how should the professor pick an optimal location of the main pipeline to
minimize the total length of the spurs? Show how to determine an optimal location
in linear time.
9.3-8
The kth quantiles of an n-element set are the k 1 order statistics that divide the
sorted set into k equal-sized sets (to within 1). Give an O.n lg k/-time algorithm
to list the kth quantiles of a set.

Problems for Chapter 9 243

9.3-9
Describe an O.n/-time algorithm that, given a set S of n distinct numbers and
a positive integer k හ n, determines the k numbers in S that are closest to the
median of S .
9.3-10
Let XŒ1 W n� and Y Œ1 W n� be two arrays, each containing n numbers already in sorted
order. Give an O.lg n/-time algorithm to ûnd the median of all 2n elements in
arrays X and Y . Assume that all 2n numbers are distinct.

Problems

9-1 Largest i numbers in sorted order
You are given a set of n numbers, and you wish to ûnd the i largest in sorted order
using a comparison-based algorithm. Describe the algorithm that implements each
of the following methods with the best asymptotic worst-case running time, and
analyze the running times of the algorithms in terms of n and i .
a. Sort the numbers, and list the i largest.

b. Build a max-priority queue from the numbers, and call EXTRACT-MAX i times.

c. Use an order-statistic algorithm to ûnd the i th largest number, partition around
that number, and sort the i largest numbers.

9-2 Variant of randomized selection
Professor Mendel has proposed simplifying RANDOMIZED-SELECT by eliminat-
ing the check for whether i and k are equal. The simpliûed procedure is SIMPLER-
RANDOMIZED-SELECT.

SIMPLER-RANDOMIZED-SELECT .A; p; r; i/
1 if p == r
2 return AŒp� // 1 හ i හ r p C 1 means that i D 1
3 q D RANDOMIZED-PARTITION .A; p; r/
4 k D q p C 1
5 if i හ k
6 return SIMPLER-RANDOMIZED-SELECT .A; p; q; i/
7 else return SIMPLER-RANDOMIZED-SELECT .A; q C 1; r; i k/

244 Chapter 9 Medians and Order Statistics

a. Argue that in the worst case, SIMPLER-RANDOMIZED-SELECT never termi-
nates.

b. Prove that the expected running time of SIMPLER-RANDOMIZED-SELECT is
still O.n/.

9-3 Weighted median
Consider n elements x 1 ; x 2 ; : : : ; x n with positive weights w 1 ; w 2 ; : : : ; w n such that P n

i D1 w i D 1. The weighted (lower) median is an element x k satisfying
X

x i <x k

w i <
1
2

and X

x i >x k

w i හ
1
2
:

For example, consider the following elements x i and weights w i :
i 1 2 3 4 5 6 7
x i 3 8 2 5 4 1 6
w i 0:12 0:35 0:025 0:08 0:15 0:075 0:2

For these elements, the median is x 5 D 4, but the weighted median is x 7 D 6. To
see why the weighted median is x 7 , observe that the elements less than x 7 are x 1 ,
x 3 , x 4 , x 5 , and x 6 , and the sum w 1 C w 3 C w 4 C w 5 C w 6 D 0:45, which is less
than 1=2. Furthermore, only element x 2 is greater than x 7 , and w 2 D 0:35, which
is no greater than 1=2.
a. Argue that the median of x 1 ; x 2 ; : : : ; x n is the weighted median of the x i with

weights w i D 1=n for i D 1; 2; : : : ; n.

b. Show how to compute the weighted median of n elements in O.n lg n/ worst-
case time using sorting.

c. Show how to compute the weighted median in ‚.n/ worst-case time using a
linear-time median algorithm such as SELECT from Section 9.3.

The post-ofûce location problem is deûned as follows. The input is n points
p 1 ; p 2 ; : : : ; p n with associated weights w 1 ; w 2 ; : : : ; w n . A solution is a point p
(not necessarily one of the input points) that minimizes the sum P n

i D1 w i d.p; p i /,
where d.a; b/ is the distance between points a and b.

Problems for Chapter 9 245

d. Argue that the weighted median is a best solution for the one-dimensional post-
ofûce location problem, in which points are simply real numbers and the dis-
tance between points a and b is d.a; b/ D ja bj.

e. Find the best solution for the two-dimensional post-ofûce location problem, in
which the points are .x; y/ coordinate pairs and the distance between points
a D .x 1 ; y 1 / and b D .x 2 ; y 2 / is the Manhattan distance given by d.a; b/ D
jx 1 x 2 j C jy 1 y 2 j.

9-4 Small order statistics
Let’s denote by S.n/ the worst-case number of comparisons used by SELECT to
select the i th order statistic from n numbers. Although S.n/ D ‚.n/, the constant
hidden by the ‚-notation is rather large. When i is small relative to n, there is an
algorithm that uses SELECT as a subroutine but makes fewer comparisons in the
worst case.
a. Describe an algorithm that uses U i .n/ comparisons to ûnd the i th smallest of n

elements, where

U i .n/ D

(
S.n/ if i n=2 ;
bn=2c C U i .dn=2e/ C S.2i/ otherwise :

(Hint: Begin with bn=2c disjoint pairwise comparisons, and recurse on the set
containing the smaller element from each pair.)

b. Show that, if i < n=2, then U i .n/ D n C O.S.2i/ lg.n=i//.

c. Show that if i is a constant less than n=2, then U i .n/ D n C O.lg n/.

d. Show that if i D n=k for k 2, then U i .n/ D n C O.S.2n=k/ lg k/.

9-5 Alternative analysis of randomized selection
In this problem, you will use indicator random variables to analyze the proce-
dure RANDOMIZED-SELECT in a manner akin to our analysis of RANDOMIZED-
QUICKSORT in Section 7.4.2.

As in the quicksort analysis, we assume that all elements are distinct, and we
rename the elements of the input array A as ´ 1 ; ´ 2 ; : : : ; ´ n , where ´ i is the i th
smallest element. Thus the call RANDOMIZED-SELECT .A; 1; n; i/ returns ´ i .

For 1 හ j < k හ n, let
X ij k D I f ́ j is compared with ´ k sometime during the execution of the algorithm

to ûnd ´ i g :

246 Chapter 9 Medians and Order Statistics

a. Give an exact expression for E ŒX ij k �. (Hint: Your expression may have differ-
ent values, depending on the values of i , j , and k.)

b. Let X i denote the total number of comparisons between elements of array A
when ûnding ´ i . Show that

E ŒX i � හ 2

i X

j D1

n X

kDi

1
k j C 1

C
n X

kDi C1

k i 1
k i C 1

C
i 2 X

j D1

i j 1
i j C 1

!

:

c. Show that E ŒX i � හ 4n.
d. Conclude that, assuming all elements of array A are distinct, RANDOMIZED-

SELECT runs in O.n/ expected time.

9-6 Select with groups of 3
Exercise 9.3-1 asks you to show that the SELECT algorithm still runs in linear time
if the elements are divided into groups of 7. This problem asks about dividing into
groups of 3.
a. Show that SELECT runs in linear time if you divide the elements into groups

whose size is any odd constant greater than 3.
b. Show that SELECT runs in O.n lg n/ time if you divide the elements into groups

of size 3.
Because the bound in part (b) is just an upper bound, we do not know whether

the groups-of-3 strategy actually runs in O.n/ time. But by repeating the groups-
of-3 idea on the middle group of medians, we can pick a pivot that guarantees O.n/
time. The SELECT3 algorithm on the next page determines the i th smallest of an
input array of n > 1 distinct elements.
c. Describe in English how the SELECT3 algorithm works. Include in your de-

scription one or more suitable diagrams.
d. Show that SELECT3 runs in O.n/ time in the worst case.

Chapter notes

The worst-case linear-time median-ûnding algorithm was devised by Blum, Floyd,
Pratt, Rivest, and Tarjan [62]. The fast randomized version is due to Hoare [218].
Floyd and Rivest [147] have developed an improved randomized version that parti-
tions around an element recursively selected from a small sample of the elements.

Notes for Chapter 9 247

SELECT3 .A; p; r; i/
1 while .r p C 1/ mod 9 ¤ 0
2 for j D p C 1 to r // put the minimum into AŒp�
3 if AŒp� > AŒj �
4 exchange AŒp� with AŒj �
5 // If we want the minimum of AŒp W r�, we’re done.
6 if i == 1
7 return AŒp�
8 // Otherwise, we want the .i 1/st element of AŒp C 1 W r�.
9 p D p C 1
10 i D i 1
11 g D .r p C 1/=3 // number of 3-element groups
12 for j D p to p C g 1 // run through the groups
13 sort hAŒj �;AŒj C g�;AŒj C 2g�i in place
14 // All group medians now lie in the middle third of AŒp W r�.
15 g 0 D g=3 // number of 3-element subgroups
16 for j D p C g to p C g C g 0 1 // sort the subgroups
17 sort hAŒj �;AŒj C g 0 �; AŒj C 2g 0 �i in place
18 // All subgroup medians now lie in the middle ninth of AŒp W r�.
19 // Find the pivot x recursively as the median of the subgroup medians.
20 x D SELECT3 .A; p C 4g 0 ; p C 5g 0 1; dg 0 =2e/
21 q D PARTITION-AROUND.A; p; r; x/ // partition around the pivot
22 // The rest is just like lines 19324 of SELECT.
23 k D q p C 1
24 if i == k
25 return AŒq� // the pivot value is the answer
26 elseif i < k
27 return SELECT3 .A; p; q 1; i/
28 else return SELECT3 .A; q C 1; r; i k/

It is still unknown exactly how many comparisons are needed to determine the
median. Bent and John [48] gave a lower bound of 2n comparisons for median
ûnding, and Sch¨ onhage, Paterson, and Pippenger [397] gave an upper bound of 3n.
Dor and Zwick have improved on both of these bounds. Their upper bound [123]
is slightly less than 2:95n, and their lower bound [124] is .2 C �/n, for a small
positive constant � , thereby improving slightly on related work by Dor et al. [122].
Paterson [354] describes some of these results along with other related work.
Problem 9-6 was inspired by a paper by Chen and Dumitrescu [84].

Part III Data Structures

Introduction

Sets are as fundamental to computer science as they are to mathematics. Whereas
mathematical sets are unchanging, the sets manipulated by algorithms can grow,
shrink, or otherwise change over time. We call such sets dynamic. The next four
chapters present some basic techniques for representing ûnite dynamic sets and
manipulating them on a computer.

Algorithms may require several types of operations to be performed on sets. For
example, many algorithms need only the ability to insert elements into, delete el-
ements from, and test membership in a set. We call a dynamic set that supports
these operations a dictionary. Other algorithms require more complicated opera-
tions. For example, min-priority queues, which Chapter 6 introduced in the context
of the heap data structure, support the operations of inserting an element into and
extracting the smallest element from a set. The best way to implement a dynamic
set depends upon the operations that you need to support.

Elements of a dynamic set
In a typical implementation of a dynamic set, each element is represented by an
object whose attributes can be examined and manipulated given a pointer to the
object. Some kinds of dynamic sets assume that one of the object’s attributes is
an identifying key. If the keys are all different, we can think of the dynamic set as
being a set of key values. The object may contain satellite data, which are carried
around in other object attributes but are otherwise unused by the set implementa-
tion. It may also have attributes that are manipulated by the set operations. These
attributes may contain data or pointers to other objects in the set.

Some dynamic sets presuppose that the keys are drawn from a totally ordered
set, such as the real numbers, or the set of all words under the usual alphabetic

250 Part III Data Structures

ordering. A total ordering allows us to deûne the minimum element of the set, for
example, or to speak of the next element larger than a given element in a set.

Operations on dynamic sets
Operations on a dynamic set can be grouped into two categories: queries, which
simply return information about the set, and modifying operations, which change
the set. Here is a list of typical operations. Any speciûc application will usually
require only a few of these to be implemented.
SEARCH.S; k/

A query that, given a set S and a key value k, returns a pointer x to an element
in S such that x: key D k, or NIL if no such element belongs to S .

I NSERT.S; x/
A modifying operation that adds the element pointed to by x to the set S . We
usually assume that any attributes in element x needed by the set implementa-
tion have already been initialized.

DELETE .S; x/
A modifying operation that, given a pointer x to an element in the set S , re-
moves x from S . (Note that this operation takes a pointer to an element x , not
a key value.)

MINIMUM.S/ and MAXIMUM.S/
Queries on a totally ordered set S that return a pointer to the element of S with
the smallest (for MINIMUM) or largest (for MAXIMUM) key.

SUCCESSOR.S; x/
A query that, given an element x whose key is from a totally ordered set S ,
returns a pointer to the next larger element in S , or NIL if x is the maximum
element.

PREDECESSOR .S; x/
A query that, given an element x whose key is from a totally ordered set S ,
returns a pointer to the next smaller element in S , or NIL if x is the minimum
element.

In some situations, we can extend the queries SUCCESSOR and PREDECESSOR
so that they apply to sets with nondistinct keys. For a set on n keys, the normal
presumption is that a call to MINIMUM followed by n 1 calls to SUCCESSOR
enumerates the elements in the set in sorted order.

We usually measure the time taken to execute a set operation in terms of the size
of the set. For example, Chapter 13 describes a data structure that can support any
of the operations listed above on a set of size n in O.lg n/ time.

Part III Data Structures 251

Of course, you can always choose to implement a dynamic set with an array.
The advantage of doing so is that the algorithms for the dynamic-set operations
are simple. The downside, however, is that many of these operations have a worst-
case running time of ‚.n/. If the array is not sorted, I NSERT and DELETE can
take ‚.1/ time, but the remaining operations take ‚.n/ time. If instead the ar-
ray is maintained in sorted order, then MINIMUM, MAXIMUM, SUCCESSOR, and
PREDECESSOR take ‚.1/ time; SEARCH takes O.lg n/ time if implemented with
binary search; but I NSERT and DELETE take ‚.n/ time in the worst case. The data
structures studied in this part improve on the array implementation for many of the
dynamic-set operations.

Overview of Part III
Chapters 10313 describe several data structures that we can use to implement dy-
namic sets. We’ll use many of these data structures later to construct efûcient algo-
rithms for a variety of problems. We already saw another important data structure
4the heap4in Chapter 6.
Chapter 10 presents the essentials of working with simple data structures such

as arrays, matrices, stacks, queues, linked lists, and rooted trees. If you have taken
an introductory programming course, then much of this material should be familiar
to you.
Chapter 11 introduces hash tables, a widely used data structure supporting the

dictionary operations I NSERT, DELETE, and SEARCH. In the worst case, hash ta-
bles require ‚.n/ time to perform a SEARCH operation, but the expected time for
hash-table operations is O.1/. We rely on probability to analyze hash-table opera-
tions, but you can understand how the operations work even without probability.
Binary search trees, which are covered in Chapter 12, support all the dynamic-

set operations listed above. In the worst case, each operation takes ‚.n/ time on
a tree with n elements. Binary search trees serve as the basis for many other data
structures.
Chapter 13 introduces red-black trees, which are a variant of binary search trees.

Unlike ordinary binary search trees, red-black trees are guaranteed to perform well:
operations take O.lg n/ time in the worst case. A red-black tree is a balanced search
tree. Chapter 18 in Part V presents another kind of balanced search tree, called a
B-tree. Although the mechanics of red-black trees are somewhat intricate, you can
glean most of their properties from the chapter without studying the mechanics
in detail. Nevertheless, you probably will ûnd walking through the code to be
instructive.

10 Elementary Data Structures

In this chapter, we examine the representation of dynamic sets by simple data struc-
tures that use pointers. Although you can construct many complex data structures
using pointers, we present only the rudimentary ones: arrays, matrices, stacks,
queues, linked lists, and rooted trees.

10.1 Simple array-based data structures: arrays, matrices, stacks, queues

10.1.1 Arrays
We assume that, as in most programming languages, an array is stored as a con-
tiguous sequence of bytes in memory. If the ûrst element of an array has index s
(for example, in an array with 1-origin indexing, s D 1), the array starts at memory
address a, and each array element occupies b bytes, then the i th element occupies
bytes a C b.i s/ through a C b.i s C 1/ 1. Since most of the arrays in this book
are indexed starting at 1, and a few starting at 0, we can simplify these formulas a
little. When s D 1, the i th element occupies bytes a C b.i 1/ through a C bi 1,
and when s D 0, the i th element occupies bytes a C bi through a C b.i C 1/ 1.
Assuming that the computer can access all memory locations in the same amount
of time (as in the RAM model described in Section 2.2), it takes constant time to
access any array element, regardless of the index.

Most programming languages require each element of a particular array to be
the same size. If the elements of a given array might occupy different numbers
of bytes, then the above formulas fail to apply, since the element size b is not a
constant. In such cases, the array elements are usually objects of varying sizes,
and what actually appears in each array element is a pointer to the object. The
number of bytes occupied by a pointer is typically the same, no matter what the
pointer references, so that to access an object in an array, the above formulas give
the address of the pointer to the object and then the pointer must be followed to
access the object itself.

10.1 Simple array-based data structures: arrays, matrices, stacks, queues 253

1 2 3 4 5 6

(a)

1 4 2 5 3 6

(b)

1 2 3
4 5 6

(c)

2 5
3 6

1 4

(d)

Figure 10.1 Four ways to store the 2 3 matrix M from equation (10.1). (a) In row-major order,
in a single array. (b) In column-major order, in a single array. (c) In row-major order, with one array
per row (tan) and a single array (blue) of pointers to the row arrays. (d) In column-major order, with
one array per column (tan) and a single array (blue) of pointers to the column arrays.

10.1.2 Matrices
We typically represent a matrix or two-dimensional array by one or more one-
dimensional arrays. The two most common ways to store a matrix are row-major
and column-major order. Let’s consider an mn matrix4a matrix with m rows and
n columns. In row-major order, the matrix is stored row by row, and in column-
major order, the matrix is stored column by column. For example, consider the
2 3 matrix

M D
Ï
1 2 3
4 5 6

Ð
: (10.1)

Row-major order stores the two rows 1 2 3 and 4 5 6, whereas column-major
order stores the three columns 1 4; 2 5; and 3 6.
Parts (a) and (b) of Figure 10.1 show how to store this matrix using a single

one-dimensional array. It’s stored in row-major order in part (a) and in column-
major order in part (b). If the rows, columns, and the single array all are indexed
starting at s , then MŒi; j �4the element in row i and column j 4is at array in-
dex s C .n.i s// C .j s/ with row-major order and s C .m.j s// C .i s/
with column-major order. When s D 1, the single-array indices are n.i 1/ C j
with row-major order and i C m.j 1/ with column-major order. When s D 0,
the single-array indices are simpler: ni C j with row-major order and i C mj
with column-major order. For the example matrix M with 1-origin indexing, ele-
ment MŒ2; 1� is stored at index 3.2 1/ C1 D 4 in the single array using row-major
order and at index 2 C 2.1 1/ D 2 using column-major order.
Parts (c) and (d) of Figure 10.1 show multiple-array strategies for storing the

example matrix. In part (c), each row is stored in its own array of length n, shown
in tan. Another array, with m elements, shown in blue, points to the m row arrays.
If we call the blue array A, then AŒi� points to the array storing the entries for row i
of M , and array element AŒi�Œj � stores matrix element MŒi; j �. Part (d) shows the
column-major version of the multiple-array representation, with n arrays, each of

254 Chapter 10 Elementary Data Structures

length m, representing the n columns. Matrix element MŒi; j � is stored in array
element AŒj �Œi �.
Single-array representations are typically more efûcient on modern machines

than multiple-array representations. But multiple-array representations can some-
times be more üexible, for example, allowing for <ragged arrays,= in which the
rows in the row-major version may have different lengths, or symmetrically for the
column-major version, where columns may have different lengths.
Occasionally, other schemes are used to store matrices. In the block representa-

tion, the matrix is divided into blocks, and each block is stored contiguously. For
example, a 4 4 matrix that is divided into 2 2 blocks, such as
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

˘

might be stored in a single array in the order h1; 2; 5; 6; 3; 4; 7; 8; 9; 10; 13; 14; 11;
12; 15; 16i.

10.1.3 Stacks and queues
Stacks and queues are dynamic sets in which the element removed from the set
by the DELETE operation is prespeciûed. In a stack, the element deleted from
the set is the one most recently inserted: the stack implements a last-in, ûrst-out,
or LIFO, policy. Similarly, in a queue, the element deleted is always the one that
has been in the set for the longest time: the queue implements a ûrst-in, ûrst-out,
or FIFO, policy. There are several efûcient ways to implement stacks and queues
on a computer. Here, you will see how to use an array with attributes to store them.

Stacks
The I NSERT operation on a stack is often called PUSH, and the DELETE opera-
tion, which does not take an element argument, is often called POP. These names
are allusions to physical stacks, such as the spring-loaded stacks of plates used
in cafeterias. The order in which plates are popped from the stack is the reverse
of the order in which they were pushed onto the stack, since only the top plate is
accessible.
Figure 10.2 shows how to implement a stack of at most n elements with an

array SŒ1 W n�. The stack has attributes S: top, indexing the most recently inserted
element, and S: size, equaling the size n of the array. The stack consists of elements
SŒ1 W S: top�, where SŒ1� is the element at the bottom of the stack and SŒS: top� is
the element at the top.

10.1 Simple array-based data structures: arrays, matrices, stacks, queues 255

1 2 3 4 5 6 7

S 15 6 2 9
1 2 3 4 5 6 7

S 15 6 2 9 17 3
1 2 3 4 5 6 7

S 15 6 2 9 17 3

(a) (b) (c)

S: top D 4 S: top D 6 S: top D 5

Figure 10.2 An array implementation of a stack S . Stack elements appear only in the tan positions.
(a) Stack S has 4 elements. The top element is 9. (b) Stack S after the calls PUSH.S; 17/ and
PUSH.S; 3/. (c) Stack S after the call POP.S/ has returned the element 3, which is the one most
recently pushed. Although element 3 still appears in the array, it is no longer in the stack. The top is
element 17.

When S: top D 0, the stack contains no elements and is empty. We can test
whether the stack is empty with the query operation STAC K-EMPTY. Upon an
attempt to pop an empty stack, the stack underüows, which is normally an error. If
S: top exceeds S: size, the stack overüows.

The procedures STAC K-EMPTY, PUSH, and POP implement each of the stack
operations with just a few lines of code. Figure 10.2 shows the effects of the
modifying operations PUSH and POP. Each of the three stack operations takes
O.1/ time.

STAC K-EMPTY .S/
1 if S: top = = 0
2 return TRUE
3 else return FALSE

PUSH.S; x/
1 if S: top = = S: size
2 error <overüow=
3 else S: top D S: top C 1
4 SŒS: top� D x

POP.S/
1 if STAC K-EMPTY .S/
2 error <underüow=
3 else S: top D S: top 1
4 return SŒS: top C 1�

256 Chapter 10 Elementary Data Structures

1 2 3 4 5 6 7 8 9 10 11 12

Q (a) 15 6 9 8 4

1 2 3 4 5 6 7 8 9 10 11 12

Q (b) 15 6 9 8 4 3 5 17

1 2 3 4 5 6 7 8 9 10 11 12

Q (c) 15 6 9 8 4 3 5 17

Q: head D 7

Q: head D 7 Q: tail D 12

Q: tail D 3

Q: tail D 3

Q: head D 8

Figure 10.3 A queue implemented using an array QŒ1 W 12�. Queue elements appear only in the tan
positions. (a) The queue has 5 elements, in locations QŒ7 W 11�. (b) The conûguration of the queue
after the calls ENQUEUE.Q; 17/, ENQUEUE.Q; 3/, and ENQUEUE.Q; 5/. (c) The conûguration of
the queue after the call DEQUEUE.Q/ returns the key value 15 formerly at the head of the queue.
The new head has key 6.

Queues
We call the I NSERT operation on a queue ENQUEUE, and we call the DELETE
operation DEQUEUE. Like the stack operation POP, DEQUEUE takes no element
argument. The FIFO property of a queue causes it to operate like a line of cus-
tomers waiting for service. The queue has a head and a tail. When an element is
enqueued, it takes its place at the tail of the queue, just as a newly arriving cus-
tomer takes a place at the end of the line. The element dequeued is always the one
at the head of the queue, like the customer at the head of the line, who has waited
the longest.
Figure 10.3 shows one way to implement a queue of at most n 1 elements

using an array QŒ1 W n�, with the attribute Q: size equaling the size n of the array.
The queue has an attribute Q: head that indexes, or points to, its head. The attribute
Q: tail indexes the next location at which a newly arriving element will be inserted
into the queue. The elements in the queue reside in locations Q: head ;Q: head C 1;
: : : ;Q: tail 1, where we <wrap around= in the sense that location 1 immediately
follows location n in a circular order. When Q: head D Q: tail, the queue is empty.
Initially, we have Q: head D Q: tail D 1. An attempt to dequeue an element from
an empty queue causes the queue to underüow. When Q: head D Q: tail C1 or both

10.1 Simple array-based data structures: arrays, matrices, stacks, queues 257

Q: head D 1 and Q: tail D Q: size, the queue is full, and an attempt to enqueue an
element causes the queue to overüow.

In the procedures ENQUEUE and DEQUEUE, we have omitted the error checking
for underüow and overüow. (Exercise 10.1-5 asks you to supply these checks.)
Figure 10.3 shows the effects of the ENQUEUE and DEQUEUE operations. Each
operation takes O.1/ time.

ENQUEUE.Q; x/
1 QŒQ: tail� D x
2 if Q: tail == Q: size
3 Q: tail D 1
4 else Q: tail D Q: tail C 1

DEQUEUE.Q/
1 x D QŒQ: head �
2 if Q: head == Q: size
3 Q: head D 1
4 else Q: head D Q: head C 1
5 return x

Exercises
10.1-1
Consider an m n matrix in row-major order, where both m and n are powers of 2
and rows and columns are indexed from 0. We can represent a row index i in binary
by the lg m bits hi lg m1 ; i lg m2 ; : : : ; i 0 i and a column index j in binary by the lg n
bits hj lg n1 ; j lg n2 ; : : : ; j 0 i. Suppose that this matrix is a 2 2 block matrix, where
each block has m=2 rows and n=2 columns, and it is to be represented by a single
array with 0-origin indexing. Show how to construct the binary representation of
the .lg m C lg n/-bit index into the single array from the binary representations of
i and j .
10.1-2
Using Figure 10.2 as a model, illustrate the result of each operation in the sequence
PUSH.S; 4/, PUSH.S; 1/, PUSH.S; 3/, POP.S/, PUSH.S; 8/, and POP.S/ on an
initially empty stack S stored in array SŒ1 W 6�

258 Chapter 10 Elementary Data Structures

10.1-3
Explain how to implement two stacks in one array AŒ1 W n� in such a way that neither
stack overüows unless the total number of elements in both stacks together is n.
The PUSH and POP operations should run in O.1/ time.
10.1-4
Using Figure 10.3 as a model, illustrate the result of each operation in the
sequence ENQUEUE.Q; 4/, ENQUEUE.Q; 1/, ENQUEUE.Q; 3/, DEQUEUE.Q/,
ENQUEUE.Q; 8/, and DEQUEUE.Q/ on an initially empty queue Q stored in
array QŒ1 W 6�.
10.1-5
Rewrite ENQUEUE and DEQUEUE to detect underüow and overüow of a queue.
10.1-6
Whereas a stack allows insertion and deletion of elements at only one end, and a
queue allows insertion at one end and deletion at the other end, a deque (double-
ended queue, pronounced like <deck=) allows insertion and deletion at both ends.
Write four O.1/-time procedures to insert elements into and delete elements from
both ends of a deque implemented by an array.
10.1-7
Show how to implement a queue using two stacks. Analyze the running time of the
queue operations.
10.1-8
Show how to implement a stack using two queues. Analyze the running time of the
stack operations.

10.2 Linked lists

A linked list is a data structure in which the objects are arranged in a linear order.
Unlike an array, however, in which the linear order is determined by the array
indices, the order in a linked list is determined by a pointer in each object. Since the
elements of linked lists often contain keys that can be searched for, linked lists are
sometimes called search lists. Linked lists provide a simple, üexible representation
for dynamic sets, supporting (though not necessarily efûciently) all the operations
listed on page 250.
As shown in Figure 10.4, each element of a doubly linked list L is an object

with an attribute key and two pointer attributes: next and prev. The object may

10.2 Linked lists 259

9 16 4 1

prev key next

(a)

9 16 4 1 (b) 25

9 4 1 (c) 25

9 (d) 25

36 16

36 16 1 L: head

L: head

L: head

L: head

Figure 10.4 (a) A doubly linked list L representing the dynamic set f1; 4; 9; 16g. Each element in
the list is an object with attributes for the key and pointers (shown by arrows) to the next and previous
objects. The next attribute of the tail and the prev attribute of the head are NIL, indicated by a diagonal
slash. The attribute L: head points to the head. (b) Following the execution of L IST-PREPEND.L; x/,
where x: key D 25, the linked list has an object with key 25 as the new head. This new object points
to the old head with key 9. (c) The result of calling L IST-I NSERT.x; y/, where x: key D 36 and y
points to the object with key 9. (d) The result of the subsequent call L IST-DELETE.L; x/, where
x points to the object with key 4.

also contain other satellite data. Given an element x in the list, x: next points to its
successor in the linked list, and x: prev points to its predecessor. If x: prev D NIL,
the element x has no predecessor and is therefore the ûrst element, or head, of
the list. If x: next D NIL, the element x has no successor and is therefore the last
element, or tail, of the list. An attribute L: head points to the ûrst element of the
list. If L: head D NIL, the list is empty.

A list may have one of several forms. It may be either singly linked or doubly
linked, it may be sorted or not, and it may be circular or not. If a list is singly
linked, each element has a next pointer but not a prev pointer. If a list is sorted, the
linear order of the list corresponds to the linear order of keys stored in elements
of the list. The minimum element is then the head of the list, and the maximum
element is the tail. If the list is unsorted, the elements can appear in any order. In
a circular list, the prev pointer of the head of the list points to the tail, and the next
pointer of the tail of the list points to the head. You can think of a circular list as a
ring of elements. In the remainder of this section, we assume that the lists we are
working with are unsorted and doubly linked.

260 Chapter 10 Elementary Data Structures

Searching a linked list
The procedure LIST-SEARCH .L; k/ ûnds the ûrst element with key k in list L
by a simple linear search, returning a pointer to this element. If no object with
key k appears in the list, then the procedure returns NIL. For the linked list in
Figure 10.4(a), the call LIST-SEARCH .L; 4/ returns a pointer to the third element,
and the call LIST-SEARCH .L; 7/ returns NIL. To search a list of n objects, the
LIST-SEARCH procedure takes ‚.n/ time in the worst case, since it may have to
search the entire list.

LIST-SEARCH .L; k/
1 x D L: head
2 while x ¤ NIL and x: key ¤ k
3 x D x: next
4 return x

Inserting into a linked list
Given an element x whose key attribute has already been set, the LIST-PREPEND
procedure adds x to the front of the linked list, as shown in Figure 10.4(b). (Re-
call that our attribute notation can cascade, so that L: head: prev denotes the prev
attribute of the object that L: head points to.) The running time for LIST-PREPEND
on a list of n elements is O.1/.

LIST-PREPEND .L; x/
1 x: next D L: head
2 x: prev D NIL
3 if L: head ¤ NIL
4 L: head: prev D x
5 L: head D x

You can insert anywhere within a linked list. As Figure 10.4(c) shows, if you
have a pointer y to an object in the list, the LIST-I NSERT procedure on the facing
page <splices= a new element x into the list, immediately following y , in O.1/
time. Since LIST-I NSERT never references the list object L, it is not supplied as a
parameter.

10.2 Linked lists 261

LIST-I NSERT .x; y/
1 x: next D y: next
2 x: prev D y
3 if y: next ¤ NIL
4 y: next: prev D x
5 y: next D x

Deleting from a linked list
The procedure LIST-DELETE removes an element x from a linked list L. It must
be given a pointer to x , and it then <‘splices= x out of the list by updating pointers.
To delete an element with a given key, ûrst call L IST-SEARCH to retrieve a pointer
to the element. Figure 10.4(d) shows how an element is deleted from a linked list.
LIST-DELETE runs in O.1/ time, but to delete an element with a given key, the call
to LIST-SEARCH makes the worst-case running time be ‚.n/.

LIST-DELETE .L; x/
1 if x: prev ¤ NIL
2 x: prev: next D x: next
3 else L: head D x: next
4 if x: next ¤ NIL
5 x: next: prev D x: prev

Insertion and deletion are faster operations on doubly linked lists than on arrays.
If you want to insert a new ûrst element into an array or delete the ûrst element in
an array, maintaining the relative order of all the existing elements, then each of the
existing elements needs to be moved by one position. In the worst case, therefore,
insertion and deletion take ‚.n/ time in an array, compared with O.1/ time for a
doubly linked list. (Exercise 10.2-1 asks you to show that deleting an element from
a singly linked list takes ‚.n/ time in the worst case.) If, however, you want to ûnd
the kth element in the linear order, it takes just O.1/ time in an array regardless
of k, but in a linked list, you’d have to traverse k elements, taking ‚.k/ time.

Sentinels
The code for LIST-DELETE is simpler if you ignore the boundary conditions at the
head and tail of the list:

262 Chapter 10 Elementary Data Structures

9 16 4 1

9 16 4 1 25

9 16 4 25

(a)

(b)

(c)

(d)

9 16 4 25 (e) 36 L: nil

L: nil

L: nil

L: nil

L: nil

Figure 10.5 A circular, doubly linked list with a sentinel. The sentinel L: nil, in blue, appears
between the head and tail. The attribute L: head is no longer needed, since the head of the list
is L: nil: next. (a) An empty list. (b) The linked list from Figure 10.4(a), with key 9 at the head and
key 1 at the tail. (c) The list after executing LIST-I NSERT 0 .x;L: nil/, where x: key D 25. The new
object becomes the head of the list. (d) The list after deleting the object with key 1. The new tail
is the object with key 4. (e) The list after executing LIST-I NSERT 0 .x; y/, where x: key D 36 and y
points to the object with key 9.

LIST-DELETE 0 .x/
1 x: prev: next D x: next
2 x: next : prev D x: prev

A sentinel is a dummy object that allows us to simplify boundary conditions.
In a linked list L, the sentinel is an object L: nil that represents NIL but has all
the attributes of the other objects in the list. References to NIL are replaced by
references to the sentinel L: nil. As shown in Figure 10.5, this change turns a
regular doubly linked list into a circular, doubly linked list with a sentinel, in
which the sentinel L: nil lies between the head and tail. The attribute L: nil: next
points to the head of the list, and L: nil: prev points to the tail. Similarly, both the
next attribute of the tail and the prev attribute of the head point to L: nil. Since
L: nil: next points to the head, the attribute L: head is eliminated altogether, with
references to it replaced by references to L: nil: next . Figure 10.5(a) shows that an
empty list consists of just the sentinel, and both L: nil: next and L: nil: prev point
to L: nil.
To delete an element from the list, just use the two-line procedure LIST-DELETE 0

from before. Just as LIST-I NSERT never references the list object L, neither does

10.2 Linked lists 263

LIST-DELETE 0 . You should never delete the sentinel L: nil unless you are deleting
the entire list!

The LIST-I NSERT 0 procedure inserts an element x into the list following ob-
ject y . No separate procedure for prepending is necessary: to insert at the head of
the list, let y be L: nil; and to insert at the tail, let y be L: nil: prev. Figure 10.5
shows the effects of LIST-I NSERT 0 and LIST-DELETE 0 on a sample list.

LIST-I NSERT 0 .x; y/
1 x: next D y: next
2 x: prev D y
3 y: next: prev D x
4 y: next D x

Searching a circular, doubly linked list with a sentinel has the same asymptotic
running time as without a sentinel, but it is possible to decrease the constant factor.
The test in line 2 of LIST-SEARCH makes two comparisons: one to check whether
the search has run off the end of the list and, if not, one to check whether the key
resides in the current element x . Suppose that you know that the key is somewhere
in the list. Then you do not need to check whether the search runs off the end of
the list, thereby eliminating one comparison in each iteration of the while loop.

The sentinel provides a place to put the key before starting the search. The search
starts at the head L: nil: next of list L, and it stops if it ûnds the key somewhere in
the list. Now the search is guaranteed to ûnd the key, either in the sentinel or before
reaching the sentinel. If the key is found before reaching the sentinel, then it really
is in the element where the search stops. If, however, the search goes through all the
elements in the list and ûnds the key only in the sentinel, then the key is not really
in the list, and the search returns NIL. The procedure LIST-SEARCH 0 embodies this
idea. (If your sentinel requires its key attribute to be NIL, then you might want to
assign L: nil: key D NIL before line 5.)

LIST-SEARCH 0 .L; k/
1 L: nil: key D k // store the key in the sentinel to guarantee it is in list
2 x D L: nil: next // start at the head of the list
3 while x: key ¤ k
4 x D x: next
5 if x == L: nil // found k in the sentinel
6 return NIL // k was not really in the list
7 else return x // found k in element x

264 Chapter 10 Elementary Data Structures

Sentinels often simplify code and, as in searching a linked list, they might speed
up code by a small constant factor, but they don’t typically improve the asymptotic
running time. Use them judiciously. When there are many small lists, the extra
storage used by their sentinels can represent signiûcant wasted memory. In this
book, we use sentinels only when they signiûcantly simplify the code.

Exercises
10.2-1
Explain why the dynamic-set operation I NSERT on a singly linked list can be im-
plemented in O.1/ time, but the worst-case time for DELETE is ‚.n/.
10.2-2
Implement a stack using a singly linked list. The operations PUSH and POP should
still take O.1/ time. Do you need to add any attributes to the list?
10.2-3
Implement a queue using a singly linked list. The operations ENQUEUE and
DEQUEUE should still take O.1/ time. Do you need to add any attributes to the
list?
10.2-4
The dynamic-set operation UNION takes two disjoint sets S 1 and S 2 as input, and
it returns a set S D S 1 [S 2 consisting of all the elements of S 1 and S 2 . The
sets S 1 and S 2 are usually destroyed by the operation. Show how to support UNION
in O.1/ time using a suitable list data structure.
10.2-5
Give a ‚.n/-time nonrecursive procedure that reverses a singly linked list of n
elements. The procedure should use no more than constant storage beyond that
needed for the list itself.

? 10.2-6
Explain how to implement doubly linked lists using only one pointer value x: np
per item instead of the usual two (next and prev). Assume that all pointer values
can be interpreted as k-bit integers, and deûne x: np D x: next XOR x: prev, the
k-bit <exclusive-or= of x: next and x: prev. The value NIL is represented by 0. Be
sure to describe what information you need to access the head of the list. Show
how to implement the SEARCH, I NSERT, and DELETE operations on such a list.
Also show how to reverse such a list in O.1/ time.

10.3 Representing rooted trees 265

10.3 Representing rooted trees

Linked lists work well for representing linear relationships, but not all relationships
are linear. In this section, we look speciûcally at the problem of representing rooted
trees by linked data structures. We ûrst look at binary trees, and then we present a
method for rooted trees in which nodes can have an arbitrary number of children.

We represent each node of a tree by an object. As with linked lists, we assume
that each node contains a key attribute. The remaining attributes of interest are
pointers to other nodes, and they vary according to the type of tree.

Binary trees
Figure 10.6 shows how to use the attributes p, left , and right to store pointers to
the parent, left child, and right child of each node in a binary tree T . If x: p D NIL,
then x is the root. If node x has no left child, then x: left D NIL, and similarly for
the right child. The root of the entire tree T is pointed to by the attribute T: root . If
T: root D NIL, then the tree is empty.

Rooted trees with unbounded branching
It’s simple to extend the scheme for representing a binary tree to any class of trees
in which the number of children of each node is at most some constant k: replace
the left and right attributes by child 1 ; child 2 ; : : : ; child k . This scheme no longer
works when the number of children of a node is unbounded, however, since we do
not know how many attributes to allocate in advance. Moreover, if k, the number
of children, is bounded by a large constant but most nodes have a small number of
children, we may waste a lot of memory.

Fortunately, there is a clever scheme to represent trees with arbitrary numbers of
children. It has the advantage of using only O.n/ space for any n-node rooted tree.
The left-child, right-sibling representation appears in Figure 10.7. As before, each
node contains a parent pointer p, and T: root points to the root of tree T . Instead
of having a pointer to each of its children, however, each node x has only two
pointers:
1. x: left-child points to the leftmost child of node x , and
2. x: right-sibling points to the sibling of x immediately to its right.
If node x has no children, then x: left-child D NIL, and if node x is the rightmost
child of its parent, then x: right-sibling D NIL.

266 Chapter 10 Elementary Data Structures

T: root

Figure 10.6 The representation of a binary tree T . Each node x has the attributes x: p (top), x: left
(lower left), and x: right (lower right). The key attributes are not shown.

T: root

Figure 10.7 The left-child, right-sibling representation of a tree T . Each node x has attributes x: p
(top), x: left-child (lower left), and x: right-sibling (lower right). The key attributes are not shown.

10.3 Representing rooted trees 267

Other tree representations
We sometimes represent rooted trees in other ways. In Chapter 6, for example,
we represented a heap, which is based on a complete binary tree, by a single array
along with an attribute giving the index of the last node in the heap. The trees that
appear in Chapter 19 are traversed only toward the root, and so only the parent
pointers are present: there are no pointers to children. Many other schemes are
possible. Which scheme is best depends on the application.

Exercises
10.3-1
Draw the binary tree rooted at index 6 that is represented by the following at-
tributes:
index key left right
1 17 8 9
2 14 NIL NIL
3 12 NIL NIL
4 20 10 NIL
5 33 2 NIL
6 15 1 4
7 28 NIL NIL
8 22 NIL NIL
9 13 3 7
10 25 NIL 5

10.3-2
Write an O.n/-time recursive procedure that, given an n-node binary tree, prints
out the key of each node in the tree.
10.3-3
Write an O.n/-time nonrecursive procedure that, given an n-node binary tree,
prints out the key of each node in the tree. Use a stack as an auxiliary data structure.
10.3-4
Write an O.n/-time procedure that prints out all the keys of an arbitrary rooted tree
with n nodes, where the tree is stored using the left-child, right-sibling representa-
tion.

? 10.3-5
Write an O.n/-time nonrecursive procedure that, given an n-node binary tree,
prints out the key of each node. Use no more than constant extra space outside

268 Chapter 10 Elementary Data Structures

of the tree itself and do not modify the tree, even temporarily, during the proce-
dure.

? 10.3-6
The left-child, right-sibling representation of an arbitrary rooted tree uses three
pointers in each node: left-child , right-sibling, and parent . From any node, its
parent can be accessed in constant time and all its children can be accessed in
time linear in the number of children. Show how to use only two pointers and
one boolean value in each node x so that x ’s parent or all of x ’s children can be
accessed in time linear in the number of x ’s children.

Problems

10-1 Comparisons among lists
For each of the four types of lists in the following table, what is the asymptotic
worst-case running time for each dynamic-set operation listed?

unsorted, sorted, unsorted, sorted,
singly singly doubly doubly
linked linked linked linked

SEARCH
I NSERT
DELETE
SUCCESSOR

PREDECESSOR

MINIMUM
MAXIMUM

10-2 Mergeable heaps using linked lists
A mergeable heap supports the following operations: MAKE-HEAP (which creates
an empty mergeable heap), I NSERT, MINIMUM, EXTRACT-MIN, and UNION. 1

1 Because we have deûned a mergeable heap to support M INIMUM and EXTRACT-MIN, we can also
refer to it as a mergeable min-heap. Alternatively, if it supports MAXIMUM and EXTRACT-MAX, it
is a mergeable max-heap.

Problems for Chapter 10 269

Show how to implement mergeable heaps using linked lists in each of the following
cases. Try to make each operation as efûcient as possible. Analyze the running
time of each operation in terms of the size of the dynamic set(s) being operated on.
a. Lists are sorted.

b. Lists are unsorted.

c. Lists are unsorted, and dynamic sets to be merged are disjoint.

10-3 Searching a sorted compact list
We can represent a singly linked list with two arrays, key and next . Given the
index i of an element, its value is stored in keyŒi �, and the index of its successor is
given by next Œi �, where next Œi � D NIL for the last element. We also need the index
head of the ûrst element in the list. An n-element list stored in this way is compact
if it is stored only in positions 1 through n of the key and next arrays.
Let’s assume that all keys are distinct and that the compact list is also sorted,

that is, keyŒi � < keyŒnext Œi �� for all i D 1; 2; : : : ; n such that next Œi � ¤ NIL. Under
these assumptions, you will show that the randomized algorithm COMPACT -LIST-
SEARCH searches the list for key k in O. p

n/ expected time.

COMPACT -LIST-SEARCH .key; next ; head ; n; k/
1 i D head
2 while i ¤ NIL and keyŒi � < k
3 j D RANDOM.1; n/
4 if keyŒi � < keyŒj � and keyŒj � හ k
5 i D j
6 if keyŒi � == k
7 return i
8 i D next Œi �
9 if i == NIL or keyŒi � > k
10 return NIL
11 else return i

If you ignore lines 337 of the procedure, you can see that it’s an ordinary algo-
rithm for searching a sorted linked list, in which index i points to each position of
the list in turn. The search terminates once the index i <falls off= the end of the list
or once keyŒi � k. In the latter case, if keyŒi � D k, the procedure has found a key
with the value k. If, however, keyŒi � > k, then the search will never ûnd a key with
the value k, so that terminating the search was the correct action.

270 Chapter 10 Elementary Data Structures

Lines 337 attempt to skip ahead to a randomly chosen position j . Such a skip
helps if keyŒj � is larger than keyŒi � and no larger than k. In such a case, j marks
a position in the list that i would reach during an ordinary list search. Because
the list is compact, we know that any choice of j between 1 and n indexes some
element in the list.

Instead of analyzing the performance of COMPACT -LIST-SEARCH directly, you
will analyze a related algorithm, COMPACT -LIST-SEARCH 0 , which executes two
separate loops. This algorithm takes an additional parameter t , which speciûes an
upper bound on the number of iterations of the ûrst loop.

COMPACT -LIST-S EARCH 0 .key; next ; head ; n; k; t/
1 i D head
2 for q D 1 to t
3 j D RANDOM.1; n/
4 if keyŒi � < keyŒj � and keyŒj � හ k
5 i D j
6 if keyŒi � == k
7 return i
8 while i ¤ NIL and keyŒi � < k
9 i D next Œi �
10 if i = = NIL or keyŒi � > k
11 return NIL
12 else return i

To compare the execution of the two algorithms, assume that the sequence of
calls of RANDOM.1; n/ yields the same sequence of integers for both algorithms.
a. Argue that for any value of t , COMPACT -LIST-SEARCH .key; next ; head; n; k/

and COMPACT -LIST-SEARCH 0 .key; next ; head; n; k; t/ return the same result
and that the number of iterations of the while loop of lines 238 in COMPACT -
LIST-SEARCH is at most the total number of iterations of both the for and while
loops in COMPACT -LIST-SEARCH 0 .

In the call COMPACT -LIST-SEARCH 0 .key; next ; head; n; k; t/, let X t be the random
variable that describes the distance in the linked list (that is, through the chain of
next pointers) from position i to the desired key k after t iterations of the for loop
of lines 237 have occurred.
b. Argue that COMPACT -LIST-SEARCH 0 .key; next ; head ; n; k; t/ has an expected

running time of O.t C E ŒX t �/.

c. Show that E ŒX t � D
P n

r D1 .1r=n/ t . (Hint: Use equation (C.28) on page 1193.)

Notes for Chapter 10 271

d. Show that P n1
r D0 r t හ n t C1 =.t C1/. (Hint: Use inequality (A.18) on page 1150.)

e. Prove that E ŒX t � හ n=.t C 1/.

f. Show that COMPACT -LIST-SEARCH 0 .key; next ; head ; n; k; t/ has an expected
running time of O.t C n=t/.

g. Conclude that COMPACT -LIST-SEARCH runs in O. p
n/ expected time.

h. Why do we assume that all keys are distinct in COMPACT -LIST-SEARCH? Ar-
gue that random skips do not necessarily help asymptotically when the list con-
tains repeated key values.

Chapter notes

Aho, Hopcroft, and Ullman [6] and Knuth [259] are excellent references for ele-
mentary data structures. Many other texts cover both basic data structures and their
implementation in a particular programming language. Examples of these types of
textbooks include Goodrich and Tamassia [196], Main [311], Shaffer [406], and
Weiss [452, 453, 454]. The book by Gonnet and Baeza-Yates [193] provides ex-
perimental data on the performance of many data-structure operations.

The origin of stacks and queues as data structures in computer science is un-
clear, since corresponding notions already existed in mathematics and paper-based
business practices before the introduction of digital computers. Knuth [259] cites
A. M. Turing for the development of stacks for subroutine linkage in 1947.
Pointer-based data structures also seem to be a folk invention. According to

Knuth, pointers were apparently used in early computers with drum memories. The
A-1 language developed by G. M. Hopper in 1951 represented algebraic formulas
as binary trees. Knuth credits the IPL-II language, developed in 1956 by A. Newell,
J. C. Shaw, and H. A. Simon, for recognizing the importance and promoting the
use of pointers. Their IPL-III language, developed in 1957, included explicit stack
operations.

11 Hash Tables

Many applications require a dynamic set that supports only the dictionary opera-
tions I NSERT, SEARCH, and DELETE. For example, a compiler that translates a
programming language maintains a symbol table, in which the keys of elements
are arbitrary character strings corresponding to identiûers in the language. A hash
table is an effective data structure for implementing dictionaries. Although search-
ing for an element in a hash table can take as long as searching for an element in a
linked list4‚.n/ time in the worst case4in practice, hashing performs extremely
well. Under reasonable assumptions, the average time to search for an element in
a hash table is O.1/. Indeed, the built-in dictionaries of Python are implemented
with hash tables.

A hash table generalizes the simpler notion of an ordinary array. Directly ad-
dressing into an ordinary array takes advantage of the O.1/ access time for any
array element. Section 11.1 discusses direct addressing in more detail. To use di-
rect addressing, you must be able to allocate an array that contains a position for
every possible key.

When the number of keys actually stored is small relative to the total number
of possible keys, hash tables become an effective alternative to directly address-
ing an array, since a hash table typically uses an array of size proportional to the
number of keys actually stored. Instead of using the key as an array index directly,
we compute the array index from the key. Section 11.2 presents the main ideas,
focusing on <chaining= as a way to handle <collisions,= in which more than one
key maps to the same array index. Section 11.3 describes how to compute array
indices from keys using hash functions. We present and analyze several variations
on the basic theme. Section 11.4 looks at <open addressing,= which is another way
to deal with collisions. The bottom line is that hashing is an extremely effective
and practical technique: the basic dictionary operations require only O.1/ time on
the average. Section 11.5 discusses the hierarchical memory systems of modern
computer systems have and illustrates how to design hash tables that work well in
such systems.

11.1 Direct-address tables 273

11.1 Direct-address tables

Direct addressing is a simple technique that works well when the universe U of
keys is reasonably small. Suppose that an application needs a dynamic set in which
each element has a distinct key drawn from the universe U D f0; 1; : : : ;m 1g,
where m is not too large.

To represent the dynamic set, you can use an array, or direct-address table, de-
noted by T Œ0 W m 1�, in which each position, or slot, corresponds to a key in the
universe U . Figure 11.1 illustrates this approach. Slot k points to an element in the
set with key k. If the set contains no element with key k, then T Œk� D NIL.

The dictionary operations DIRECT-ADDRESS-SEARCH, DIRECT-ADDRESS-
I NSERT, and DIRECT-ADDRESS-DELETE on the following page are trivial to im-
plement. Each takes only O.1/ time.
For some applications, the direct-address table itself can hold the elements in

the dynamic set. That is, rather than storing an element’s key and satellite data in
an object external to the direct-address table, with a pointer from a slot in the table
to the object, save space by storing the object directly in the slot. To indicate an
empty slot, use a special key. Then again, why store the key of the object at all?
The index of the object is its key! Of course, then you’d need some way to tell
whether slots are empty.

T

U
(universe of keys)

K
(actual
keys)

2
3

5 8

1

9 4
0

7
6 2

3

5

8

key satellite data
2

0
1

3

4

5

6

7

8

9

Figure 11.1 How to implement a dynamic set by a direct-address table T . Each key in the universe
U D f0; 1; : : : ; 9g corresponds to an index into the table. The set K D f2; 3; 5; 8g of actual keys
determines the slots in the table that contain pointers to elements. The other slots, in blue, contain
NIL.

274 Chapter 11 Hash Tables

DIRECT-ADDRESS-SEARCH .T; k/
1 return T Œk�

DIRECT-ADDRESS-I NSERT .T; x/
1 T Œx: key� D x

DIRECT-ADDRESS-DELETE .T; x/
1 T Œx: key� D NIL

Exercises
11.1-1
A dynamic set S is represented by a direct-address table T of length m. Describe
a procedure that ûnds the maximum element of S . What is the worst-case perfor-
mance of your procedure?
11.1-2
A bit vector is simply an array of bits (each either 0 or 1). A bit vector of length m
takes much less space than an array of m pointers. Describe how to use a bit vector
to represent a dynamic set of distinct elements drawn from the set f0; 1; : : : ;m 1g
and with no satellite data. Dictionary operations should run in O.1/ time.
11.1-3
Suggest how to implement a direct-address table in which the keys of stored el-
ements do not need to be distinct and the elements can have satellite data. All
three dictionary operations (I NSERT, DELETE, and SEARCH) should run in O.1/
time. (Don’t forget that DELETE takes as an argument a pointer to an object to be
deleted, not a key.)

? 11.1-4
Suppose that you want to implement a dictionary by using direct addressing on
a huge array. That is, if the array size is m and the dictionary contains at most
n elements at any one time, then m n. At the start, the array entries may
contain garbage, and initializing the entire array is impractical because of its size.
Describe a scheme for implementing a direct-address dictionary on a huge array.
Each stored object should use O.1/ space; the operations SEARCH, I NSERT, and
DELETE should take O.1/ time each; and initializing the data structure should take
O.1/ time. (Hint: Use an additional array, treated somewhat like a stack whose size
is the number of keys actually stored in the dictionary, to help determine whether
a given entry in the huge array is valid or not.)

11.2 Hash tables 275

11.2 Hash tables

The downside of direct addressing is apparent: if the universe U is large or inûnite,
storing a table T of size jU j may be impractical, or even impossible, given the
memory available on a typical computer. Furthermore, the set K of keys actually
stored may be so small relative to U that most of the space allocated for T would
be wasted.

When the set K of keys stored in a dictionary is much smaller than the uni-
verse U of all possible keys, a hash table requires much less storage than a direct-
address table. Speciûcally, the storage requirement reduces to ‚.jKj/ while main-
taining the beneût that searching for an element in the hash table still requires only
O.1/ time. The catch is that this bound is for the average-case time, 1 whereas for
direct addressing it holds for the worst-case time.

With direct addressing, an element with key k is stored in slot k, but with hash-
ing, we use a hash function h to compute the slot number from the key k, so that
the element goes into slot h.k/. The hash function h maps the universe U of keys
into the slots of a hash table T Œ0 W m 1�:
h W U ! f0; 1; : : : ;m 1g ;

where the size m of the hash table is typically much less than jU j. We say that
an element with key k hashes to slot h.k/, and we also say that h.k/ is the hash
value of key k. Figure 11.2 illustrates the basic idea. The hash function reduces
the range of array indices and hence the size of the array. Instead of a size of jU j,
the array can have size m. An example of a simple, but not particularly good, hash
function is h.k/ D k mod m.

There is one hitch, namely that two keys may hash to the same slot. We call this
situation a collision. Fortunately, there are effective techniques for resolving the
conüict created by collisions.
Of course, the ideal solution is to avoid collisions altogether. We might try to

achieve this goal by choosing a suitable hash function h. One idea is to make h ap-
pear to be <random,= thus avoiding collisions or at least minimizing their number.
The very term <to hash,= evoking images of random mixing and chopping, cap-
tures the spirit of this approach. (Of course, a hash function h must be determin-
istic in that a given input k must always produce the same output h.k/.) Because
jU j > m, however, there must be at least two keys that have the same hash value,

1 The deûnition of <average-case= requires care4are we assuming an input distribution over the
keys, or are we randomizing the choice of hash function itself? We’ll consider both approaches, but
with an emphasis on the use of a randomly chosen hash function.

276 Chapter 11 Hash Tables

T

U
(universe of keys)

K
(actual
keys)

0

m31

k 1

k 2 k 3

k 4 k 5

h(k 1)
h(k 4)

h(k 3)

h(k 2) = h(k 5)

Figure 11.2 Using a hash function h to map keys to hash-table slots. Because keys k 2 and k 5 map
to the same slot, they collide.

and avoiding collisions altogether is impossible. Thus, although a well-designed,
<random=-looking hash function can reduce the number of collisions, we still need
a method for resolving the collisions that do occur.
The remainder of this section ûrst presents a deûnition of <independent uniform

hashing,= which captures the simplest notion of what it means for a hash function
to be <random.= It then presents and analyzes the simplest collision resolution tech-
nique, called chaining. Section 11.4 introduces an alternative method for resolving
collisions, called open addressing.

Independent uniform hashing
An <ideal= hashing function h would have, for each possible input k in the do-
main U , an output h.k/ that is an element randomly and independently chosen
uniformly from the range f0; 1; : : : ;m 1g. Once a value h.k/ is randomly cho-
sen, each subsequent call to h with the same input k yields the same output h.k/.

We call such an ideal hash function an independent uniform hash function.
Such a function is also often called a random oracle [43]. When hash tables are
implemented with an independent uniform hash function, we say we are using
independent uniform hashing.

Independent uniform hashing is an ideal theoretical abstraction, but it is not
something that can reasonably be implemented in practice. Nonetheless, we’ll
analyze the efûciency of hashing under the assumption of independent uniform
hashing and then present ways of achieving useful practical approximations to this
ideal.

11.2 Hash tables 277

T

U
(universe of keys)

K
(actual
keys)

k 1

k 2 k 3

k 4 k 5

k 6

k 7

k 8

k 1

k 2

k 3

k 4

k 5

k 6

k 7

k 8

Figure 11.3 Collision resolution by chaining. Each nonempty hash-table slot T Œj � points to a
linked list of all the keys whose hash value is j . For example, h.k 1 / D h.k 4 / and h.k 5 / D h.k 2 / D
h.k 7 /. The list can be either singly or doubly linked. We show it as doubly linked because deletion
may be faster that way when the deletion procedure knows which list element (not just which key) is
to be deleted.

Collision resolution by chaining
At a high level, you can think of hashing with chaining as a nonrecursive form
of divide-and-conquer: the input set of n elements is divided randomly into m
subsets, each of approximate size n=m. A hash function determines which subset
an element belongs to. Each subset is managed independently as a list.
Figure 11.3 shows the idea behind chaining: each nonempty slot points to a

linked list, and all the elements that hash to the same slot go into that slot’s linked
list. Slot j contains a pointer to the head of the list of all stored elements with hash
value j . If there are no such elements, then slot j contains NIL.

When collisions are resolved by chaining, the dictionary operations are straight-
forward to implement. They appear on the next page and use the linked-list pro-
cedures from Section 10.2. The worst-case running time for insertion is O.1/.
The insertion procedure is fast in part because it assumes that the element x be-
ing inserted is not already present in the table. To enforce this assumption, you
can search (at additional cost) for an element whose key is x: key before inserting.
For searching, the worst-case running time is proportional to the length of the list.
(We’ll analyze this operation more closely below.) Deletion takes O.1/ time if the
lists are doubly linked, as in Figure 11.3. (Since CHAINED-HASH-DELETE takes
as input an element x and not its key k, no search is needed. If the hash table
supports deletion, then its linked lists should be doubly linked in order to delete an
item quickly. If the lists were only singly linked, then by Exercise 10.2-1, deletion

278 Chapter 11 Hash Tables

CHAINED-HASH-I NSERT .T; x/
1 LIST-PREPEND .T Œh.x: key/�; x/

CHAINED-HASH-SEARCH .T; k/
1 return LIST-SEARCH .T Œh.k/�; k/

CHAINED-HASH-DELETE .T; x/
1 LIST-DELETE .T Œh.x: key/�; x/

could take time proportional to the length of the list. With singly linked lists, both
deletion and searching would have the same asymptotic running times.)

Analysis of hashing with chaining
How well does hashing with chaining perform? In particular, how long does it take
to search for an element with a given key?
Given a hash table T with m slots that stores n elements, we deûne the load

factor ˛ for T as n=m, that is, the average number of elements stored in a chain.
Our analysis will be in terms of ˛, which can be less than, equal to, or greater
than 1.
The worst-case behavior of hashing with chaining is terrible: all n keys hash

to the same slot, creating a list of length n. The worst-case time for searching is
thus ‚.n/ plus the time to compute the hash function4no better than using one
linked list for all the elements. We clearly don’t use hash tables for their worst-case
performance.
The average-case performance of hashing depends on how well the hash func-

tion h distributes the set of keys to be stored among the m slots, on the average
(meaning with respect to the distribution of keys to be hashed and with respect to
the choice of hash function, if this choice is randomized). Section 11.3 discusses
these issues, but for now we assume that any given element is equally likely to
hash into any of the m slots. That is, the hash function is uniform. We further
assume that where a given element hashes to is independent of where any other el-
ements hash to. In other words, we assume that we are using independent uniform
hashing.

Because hashes of distinct keys are assumed to be independent, independent uni-
form hashing is universal: the chance that any two distinct keys k 1 and k 2 collide is
at most 1=m. Universality is important in our analysis and also in the speciûcation
of universal families of hash functions, which we’ll see in Section 11.3.2.

For j D 0; 1; : : : ;m 1, denote the length of the list T Œj � by n j , so that

11.2 Hash tables 279

n D n 0 C n 1 C C n m1 ; (11.1)
and the expected value of n j is E Œn j � D ˛ D n=m.

We assume that O.1/ time sufûces to compute the hash value h.k/, so that
the time required to search for an element with key k depends linearly on the
length n h.k/ of the list T Œh.k/�. Setting aside the O.1/ time required to compute
the hash function and to access slot h.k/, we’ll consider the expected number of
elements examined by the search algorithm, that is, the number of elements in the
list T Œh.k/� that the algorithm checks to see whether any have a key equal to k. We
consider two cases. In the ûrst, the search is unsuccessful: no element in the table
has key k. In the second, the search successfully ûnds an element with key k.

Theorem 11.1
In a hash table in which collisions are resolved by chaining, an unsuccessful search
takes ‚.1 C ˛/ time on average, under the assumption of independent uniform
hashing.

Proof Under the assumption of independent uniform hashing, any key k not al-
ready stored in the table is equally likely to hash to any of the m slots. The expected
time to search unsuccessfully for a key k is the expected time to search to the end of
list T Œh.k/�, which has expected length E Œn h.k/ � D ˛. Thus, the expected number
of elements examined in an unsuccessful search is ˛, and the total time required
(including the time for computing h.k/) is ‚.1 C ˛/.

The situation for a successful search is slightly different. An unsuccessful search
is equally likely to go to any slot of the hash table. A successful search, however,
cannot go to an empty slot, since it is for an element that is present in one of the
linked lists. We assume that the element searched for is equally likely to be any
one of the elements in the table, so the longer the list, the more likely that the
search is for one of its elements. Even so, the expected search time still turns out
to be ‚.1 C ˛/.

Theorem 11.2
In a hash table in which collisions are resolved by chaining, a successful search
takes ‚.1 C ˛/ time on average, under the assumption of independent uniform
hashing.

Proof We assume that the element being searched for is equally likely to be any
of the n elements stored in the table. The number of elements examined during
a successful search for an element x is 1 more than the number of elements that
appear before x in x ’s list. Because new elements are placed at the front of the list,

280 Chapter 11 Hash Tables

elements before x in the list were all inserted after x was inserted. Let x i denote
the i th element inserted into the table, for i D 1; 2; : : : ; n, and let k i D x i : key.
Our analysis uses indicator random variables extensively. For each slot q in the

table and for each pair of distinct keys k i and k j , we deûne the indicator random
variable
X ij q D I fthe search is for x i , h.k i / D q, and h.k j / D q g :

That is, X ij q D 1 when keys k i and k j collide at slot q and the search is for
element x i . Because Pr fthe search is for x i g D 1=n, Pr fh.k i / D qg D 1=m,
Pr fh.k j / D qg D 1=m, and these events are all independent, we have that
Pr fX ij q D 1g D 1=nm 2 . Lemma 5.1 on page 130 gives E ŒX ij q � D 1=nm 2 .
Next, we deûne, for each element x j , the indicator random variable

Y j D I fx j appears in a list prior to the element being searched forg

D
m1 X

qD0

j 1 X

i D1

X ij q ;

since at most one of the X ij q equals 1, namely when the element x i being searched
for belongs to the same list as x j (pointed to by slot q), and i < j (so that x i
appears after x j in the list).
Our ûnal random variable is Z, which counts how many elements appear in the

list prior to the element being searched for:

Z D
n X

j D1

Y j :

Because we must count the element being searched for as well as all those pre-
ceding it in its list, we wish to compute E ŒZ C 1�. Using linearity of expectation
(equation (C.24) on page 1192), we have

E ŒZ C 1� D E
"

1 C
n X

j D1

Y j

D 1 C E
"

n X

j D1

m1 X

qD0

j 1 X

i D1

X ij q

D 1 C E
"
m1 X

qD0

n X

j D1

j 1 X

i D1

X ij q

D 1 C
m1 X

qD0

n X

j D1

j 1 X

i D1

E ŒX ij q � (by linearity of expectation)

11.2 Hash tables 281

D 1 C
m1 X

qD0

n X

j D1

j 1 X

i D1

1
nm 2

D 1 C m n.n 1/
2

 1
nm 2

(by equation (A.2) on page 1141)

D 1 C
n 1
2m

D 1 C
n
2m

1
2m

D 1 C
˛
2

˛
2n
:

Thus, the total time required for a successful search (including the time for com-
puting the hash function) is ‚.2 C ˛=2 ˛=2n/ D ‚.1 C ˛/.

What does this analysis mean? If the number of elements in the table is at
most proportional to the number of hash-table slots, we have n D O.m/ and,
consequently, ˛ D n=m D O.m/=m D O.1/. Thus, searching takes constant time
on average. Since insertion takes O.1/ worst-case time and deletion takes O.1/
worst-case time when the lists are doubly linked (assuming that the list element to
be deleted is known, and not just its key), we can support all dictionary operations
in O.1/ time on average.

The analysis in the preceding two theorems depends only on two essential prop-
erties of independent uniform hashing: uniformity (each key is equally likely to
hash to any one of the m slots), and independence (so any two distinct keys collide
with probability 1=m).

Exercises
11.2-1
You use a hash function h to hash n distinct keys into an array T of length m.
Assuming independent uniform hashing, what is the expected number of colli-
sions? More precisely, what is the expected cardinality of ˚ fk 1 ; k 2 g W k 1 ¤ k 2

and h.k 1 / D h.k 2 /
 ?

11.2-2
Consider a hash table with 9 slots and the hash function h.k/ D k mod 9. Demon-
strate what happens upon inserting the keys 5; 28; 19; 15; 20; 33; 12; 17; 10 with
collisions resolved by chaining.

282 Chapter 11 Hash Tables

11.2-3
Professor Marley hypothesizes that he can obtain substantial performance gains by
modifying the chaining scheme to keep each list in sorted order. How does the pro-
fessor’s modiûcation affect the running time for successful searches, unsuccessful
searches, insertions, and deletions?
11.2-4
Suggest how to allocate and deallocate storage for elements within the hash table
itself by creating a <free list=: a linked list of all the unused slots. Assume that
one slot can store a üag and either one element plus a pointer or two pointers. All
dictionary and free-list operations should run in O.1/ expected time. Does the free
list need to be doubly linked, or does a singly linked free list sufûce?
11.2-5
You need to store a set of n keys in a hash table of size m. Show that if the keys
are drawn from a universe U with jU j > .n 1/m, then U has a subset of size n
consisting of keys that all hash to the same slot, so that the worst-case searching
time for hashing with chaining is ‚.n/.
11.2-6
You have stored n keys in a hash table of size m, with collisions resolved by chain-
ing, and you know the length of each chain, including the length L of the longest
chain. Describe a procedure that selects a key uniformly at random from among
the keys in the hash table and returns it in expected time O.L .1 C 1=˛//.

11.3 Hash functions

For hashing to work well, it needs a good hash function. Along with being efû-
ciently computable, what properties does a good hash function have? How do you
design good hash functions?
This section ûrst attempts to answer these questions based on two ad hoc ap-

proaches for creating hash functions: hashing by division and hashing by multipli-
cation. Although these methods work well for some sets of input keys, they are
limited because they try to provide a single ûxed hash function that works well on
any data4an approach called static hashing.
We then see that provably good average-case performance for any data can be

obtained by designing a suitable family of hash functions and choosing a hash func-
tion at random from this family at runtime, independent of the data to be hashed.
The approach we examine is called random hashing. A particular kind of random

11.3 Hash functions 283

hashing, universal hashing, works well. As we saw with quicksort in Chapter 7,
randomization is a powerful algorithmic design tool.

What makes a good hash function?

A good hash function satisûes (approximately) the assumption of independent uni-
form hashing: each key is equally likely to hash to any of the m slots, indepen-
dently of where any other keys have hashed to. What does <equally likely= mean
here? If the hash function is ûxed, any probabilities would have to be based on the
probability distribution of the input keys.

Unfortunately, you typically have no way to check this condition, unless you
happen to know the probability distribution from which the keys are drawn. More-
over, the keys might not be drawn independently.
Occasionally you might know the distribution. For example, if you know that

the keys are random real numbers k independently and uniformly distributed in the
range 0 හ k < 1, then the hash function
h.k/ D bkmc

satisûes the condition of independent uniform hashing.
A good static hashing approach derives the hash value in a way that you expect

to be independent of any patterns that might exist in the data. For example, the
<division method= (discussed in Section 11.3.1) computes the hash value as the
remainder when the key is divided by a speciûed prime number. This method may
give good results, if you (somehow) choose a prime number that is unrelated to any
patterns in the distribution of keys.
Random hashing, described in Section 11.3.2, picks the hash function to be used

at random from a suitable family of hashing functions. This approach removes
any need to know anything about the probability distribution of the input keys, as
the randomization necessary for good average-case behavior then comes from the
(known) random process used to pick the hash function from the family of hash
functions, rather than from the (unknown) process used to create the input keys.
We recommend that you use random hashing.

Keys are integers, vectors, or strings
In practice, a hash function is designed to handle keys that are one of the following
two types:
 A short nonnegative integer that ûts in a w-bit machine word. Typical values

for w would be 32 or 64.

284 Chapter 11 Hash Tables

 A short vector of nonnegative integers, each of bounded size. For example,
each element might be an 8-bit byte, in which case the vector is often called a
(byte) string. The vector might be of variable length.

To begin, we assume that keys are short nonnegative integers. Handling vector
keys is more complicated and discussed in Sections 11.3.5 and 11.5.2.

11.3.1 Static hashing

Static hashing uses a single, ûxed hash function. The only randomization available
is through the (usually unknown) distribution of input keys. This section discusses
two standard approaches for static hashing: the division method and the multiplica-
tion method. Although static hashing is no longer recommended, the multiplication
method also provides a good foundation for <nonstatic= hashing4better known as
random hashing4where the hash function is chosen at random from a suitable
family of hash functions.

The division method

The division method for creating hash functions maps a key k into one of m slots
by taking the remainder of k divided by m. That is, the hash function is
h.k/ D k mod m :
For example, if the hash table has size m D 12 and the key is k D 100, then
h.k/ D 4. Since it requires only a single division operation, hashing by division is
quite fast.

The division method may work well when m is a prime not too close to an exact
power of 2. There is no guarantee that this method provides good average-case
performance, however, and it may complicate applications since it constrains the
size of the hash tables to be prime.

The multiplication method

The general multiplication method for creating hash functions operates in two
steps. First, multiply the key k by a constant A in the range 0 < A < 1 and extract
the fractional part of kA. Then, multiply this value by m and take the üoor of the
result. That is, the hash function is
h.k/ D bm.kA mod 1/c ;

where <kA mod 1= means the fractional part of kA, that is, kAbkAc. The general
multiplication method has the advantage that the value of m is not critical and you
can choose it independently of how you choose the multiplicative constant A.

11.3 Hash functions 285

× a D A2 w

w bits

k

r 0 r 1

h a .k/
extract ` bits

Figure 11.4 The multiply-shift method to compute a hash function. The w-bit representation of
the key k is multiplied by the w-bit value a D A 2 w . The ` highest-order bits of the lower w-bit
half of the product form the desired hash value h a .k/.

The multiply-shift method

In practice, the multiplication method is best in the special case where the num-
ber m of hash-table slots is an exact power of 2, so that m D 2 ` for some integer `,
where ` හ w and w is the number of bits in a machine word. If you choose a ûxed
w-bit positive integer a D A2 w , where 0 < A < 1 as in the multiplication method
so that a is in the range 0 < a < 2 w , you can implement the function on most
computers as follows. We assume that a key k ûts into a single w-bit word.
Referring to Figure 11.4, ûrst multiply k by the w-bit integer a. The result is a

2w-bit value r 1 2 w C r 0 , where r 1 is the high-order w-bit word of the product and
r 0 is the low-order w-bit word of the product. The desired `-bit hash value consists
of the ` most signiûcant bits of r 0 . (Since r 1 is ignored, the hash function can be
implemented on a computer that produces only a w-bit product given two w-bit
inputs, that is, where the multiplication operation computes modulo 2 w .)
In other words, you deûne the hash function h D h a , where

h a .k/ D .ka mod 2 w / o .w `/ (11.2)
for a ûxed nonzero w-bit value a. Since the product ka of two w-bit words occu-
pies 2w bits, taking this product modulo 2 w zeroes out the high-order w bits (r 1),
leaving only the low-order w bits (r 0). The o operator performs a logical right
shift by w ` bits, shifting zeros into the vacated positions on the left, so that the
` most signiûcant bits of r 0 move into the ` rightmost positions. (It’s the same as
dividing by 2 w` and taking the üoor of the result.) The resulting value equals the
` most signiûcant bits of r 0 . The hash function h a can be implemented with three
machine instructions: multiplication, subtraction, and logical right shift.

As an example, suppose that k D 123456, ` D 14, m D 2 14 D 16384, and
w D 32. Suppose further that we choose a D 2654435769 (following a suggestion

286 Chapter 11 Hash Tables

of Knuth [261]). Then ka D 327706022297664 D .76300 2 32 / C 17612864, and
so r 1 D 76300 and r 0 D 17612864. The 14 most signiûcant bits of r 0 yield the
value h a .k/ D 67.
Even though the multiply-shift method is fast, it doesn’t provide any guarantee

of good average-case performance. The universal hashing approach presented in
the next section provides such a guarantee. A simple randomized variant of the
multiply-shift method works well on the average, when the program begins by
picking a as a randomly chosen odd integer.

11.3.2 Random hashing

Suppose that a malicious adversary chooses the keys to be hashed by some ûxed
hash function. Then the adversary can choose n keys that all hash to the same slot,
yielding an average retrieval time of ‚.n/. Any static hash function is vulnerable to
such terrible worst-case behavior. The only effective way to improve the situation
is to choose the hash function randomly in a way that is independent of the keys
that are actually going to be stored. This approach is called random hashing. A
special case of this approach, called universal hashing, can yield provably good
performance on average when collisions are handled by chaining, no matter which
keys the adversary chooses.

To use random hashing, at the beginning of program execution you select the
hash function at random from a suitable family of functions. As in the case of
quicksort, randomization guarantees that no single input always evokes worst-case
behavior. Because you randomly select the hash function, the algorithm can be-
have differently on each execution, even for the same set of keys to be hashed,
guaranteeing good average-case performance.

Let H be a ûnite family of hash functions that map a given universe U of keys
into the range f0; 1; : : : ;m 1g. Such a family is said to be universal if for each
pair of distinct keys k 1 ; k 2 2 U , the number of hash functions h 2 H for which
h.k 1 / D h.k 2 / is at most jH j =m. In other words, with a hash function randomly
chosen from H , the chance of a collision between distinct keys k 1 and k 2 is no
more than the chance 1=m of a collision if h.k 1 / and h.k 2 / were randomly and
independently chosen from the set f0; 1; : : : ;m 1g.

Independent uniform hashing is the same as picking a hash function uniformly at
random from a family of m n hash functions, each member of that family mapping
the n keys to the m hash values in a different way.

Every independent uniform random family of hash function is universal, but the
converse need not be true: consider the case where U D f0; 1; : : : ;m 1g and the
only hash function in the family is the identity function. The probability that two
distinct keys collide is zero, even though each key is hashes to a ûxed value.

11.3 Hash functions 287

The following corollary to Theorem 11.2 on page 279 says that universal hash-
ing provides the desired payoff: it becomes impossible for an adversary to pick a
sequence of operations that forces the worst-case running time.

Corollary 11.3
Using universal hashing and collision resolution by chaining in an initially empty
table with m slots, it takes ‚.s/ expected time to handle any sequence of s I NSERT,
SEARCH, and DELETE operations containing n D O.m/ I NSERT operations.

Proof The I NSERT and DELETE operations take constant time. Since the num-
ber n of insertions is O.m/, we have that ˛ D O.1/. Furthermore, the expected
time for each SEARCH operation is O.1/, which can be seen by examining the
proof of Theorem 11.2. That analysis depends only on collision probabilities,
which are 1=m for any pair k 1 ; k 2 of keys by the choice of an independent uniform
hash function in that theorem. Using a universal family of hash functions here
instead of using independent uniform hashing changes the probability of collision
from 1=m to at most 1=m. By linearity of expectation, therefore, the expected time
for the entire sequence of s operations is O.s/. Since each operation takes �.1/
time, the ‚.s/ bound follows.

11.3.3 Achievable properties of random hashing

There is a rich literature on the properties a family H of hash functions can have,
and how they relate to the efûciency of hashing. We summarize a few of the most
interesting ones here.

Let H be a family of hash functions, each with domain U and range f0; 1; : : : ;
m 1g, and let h be any hash function that is picked uniformly at random from H .
The probabilities mentioned are probabilities over the picks of h.
 The family H is uniform if for any key k in U and any slot q in the range

f0; 1; : : : ;m 1g, the probability that h.k/ D q is 1=m.
 The family H is universal if for any distinct keys k 1 and k 2 in U , the probability

that h.k 1 / D h.k 2 / is at most 1=m.
 The family H of hash functions is -universal if for any distinct keys k 1 and k 2

in U , the probability that h.k 1 / D h.k 2 / is at most � . Therefore, a universal
family of hash functions is also 1=m-universal. 2

2 In the literature, a .c=m/-universal hash function is sometimes called c-universal or c-approxi-
mately universal. We’ll stick with the notation .c=m/-universal.

288 Chapter 11 Hash Tables

 The family H is d -independent if for any distinct keys k 1 , k 2 , . . . , k d in U
and any slots q 1 , q 2 , . . . , q d , not necessarily distinct, in f0; 1; : : : ;m 1g the
probability that h.k i / D q i for i D 1; 2; : : : ; d is 1=m d .

Universal hash-function families are of particular interest, as they are the sim-
plest type supporting provably efûcient hash-table operations for any input data
set. Many other interesting and desirable properties, such as those noted above, are
also possible and allow for efûcient specialized hash-table operations.

11.3.4 Designing a universal family of hash functions
This section present two ways to design a universal (or � -universal) family of hash
functions: one based on number theory and another based on a randomized variant
of the multiply-shift method presented in Section 11.3.1. The ûrst method is a bit
easier to prove universal, but the second method is newer and faster in practice.

A universal family of hash functions based on number theory

We can design a universal family of hash functions using a little number theory.
You may wish to refer to Chapter 31 if you are unfamiliar with basic concepts in
number theory.

Begin by choosing a prime number p large enough so that every possible key k
lies in the range 0 to p 1, inclusive. We assume here that p has a <reasonable=
length. (See Section 11.3.5 for a discussion of methods for handling long input
keys, such as variable-length strings.) Let Z p denote the set f0; 1; : : : ; p 1g, and
let Z

p denote the set f1; 2; : : : ; p 1g. Since p is prime, we can solve equations
modulo p with the methods given in Chapter 31. Because the size of the universe
of keys is greater than the number of slots in the hash table (otherwise, just use
direct addressing), we have p > m.
Given any a 2 Z

p and any b 2 Z p , deûne the hash function h ab as a linear
transformation followed by reductions modulo p and then modulo m:
h ab .k/ D ..ak C b/ mod p/ mod m : (11.3)
For example, with p D 17 and m D 6, we have
h 3;4 .8/ D ..3 8 C 4/ mod 17/ mod 6

D .28 mod 17/ mod 6
D 11 mod 6
D 5 :

Given p and m, the family of all such hash functions is
H pm D

˚
h ab W a 2 Z

p and b 2 Z p

: (11.4)

11.3 Hash functions 289

Each hash function h ab maps Z p to Z m . This family of hash functions has the nice
property that the size m of the output range (which is the size of the hash table) is
arbitrary4it need not be prime. Since you can choose from among p 1 values
for a and p values for b, the family H pm contains p.p 1/ hash functions.

Theorem 11.4
The family H pm of hash functions deûned by equations (11.3) and (11.4) is uni-
versal.

Proof Consider two distinct keys k 1 and k 2 from Z p , so that k 1 ¤ k 2 . For a given
hash function h ab , let
r 1 D .ak 1 C b/ mod p ;
r 2 D .ak 2 C b/ mod p :
We ûrst note that r 1 ¤ r 2 . Why? Since we have r 1 r 2 D a.k 1 k 2 / .mod p/,
it follows that r 1 ¤ r 2 because p is prime and both a and .k 1 k 2 / are nonzero
modulo p. By Theorem 31.6 on page 908, their product must also be nonzero
modulo p. Therefore, when computing any h ab 2 H pm , distinct inputs k 1 and k 2
map to distinct values r 1 and r 2 modulo p, and there are no collisions yet at the
<mod p level.= Moreover, each of the possible p.p 1/ choices for the pair .a; b/
with a ¤ 0 yields a different resulting pair .r 1 ; r 2 / with r 1 ¤ r 2 , since we can solve
for a and b given r 1 and r 2 :
a D

ã
.r 1 r 2 /..k 1 k 2 / 1 mod p/ ä mod p ;

b D .r 1 ak 1 / mod p ;
where ..k 1 k 2 / 1 mod p/ denotes the unique multiplicative inverse, modulo p,
of k 1 k 2 . For each of the p possible values of r 1 , there are only p 1 possible
values of r 2 that do not equal r 1 , making only p.p 1/ possible pairs .r 1 ; r 2 / with
r 1 ¤ r 2 . Therefore, there is a one-to-one correspondence between pairs .a; b/ with
a ¤ 0 and pairs .r 1 ; r 2 / with r 1 ¤ r 2 . Thus, for any given pair of distinct inputs
k 1 and k 2 , if we pick .a; b/ uniformly at random from Z

p Z p , the resulting pair
.r 1 ; r 2 / is equally likely to be any pair of distinct values modulo p.

Therefore, the probability that distinct keys k 1 and k 2 collide is equal to the
probability that r 1 D r 2 .mod m/ when r 1 and r 2 are randomly chosen as distinct
values modulo p. For a given value of r 1 , of the p 1 possible remaining values
for r 2 , the number of values r 2 such that r 2 ¤ r 1 and r 2 D r 1 .mod m/ is at most l p
m

m
 1 හ

p C m 1
m

 1 (by inequality (3.7) on page 64)

D
p 1
m

:

290 Chapter 11 Hash Tables

The probability that r 2 collides with r 1 when reduced modulo m is at most
..p 1/=m/=.p 1/ D 1=m, since r 2 is equally likely to be any of the p 1
values in Z p that are different from r 1 , but at most .p 1/=m of those values are
equivalent to r 1 modulo m.

Therefore, for any pair of distinct values k 1 ; k 2 2 Z p ,
Pr fh ab .k 1 / D h ab .k 2 /g හ 1=m ;

so that H pm is indeed universal.

A 2=m-universal family of hash functions based on the multiply-shift method

We recommend that in practice you use the following hash-function family based
on the multiply-shift method. It is exceptionally efûcient and (although we omit
the proof) provably 2=m-universal. Deûne H to be the family of multiply-shift
hash functions with odd constants a:
H D fh a W a is odd, 1 හ a < m, and h a is deûned by equation (11.2)g : (11.5)

Theorem 11.5
The family of hash functions H given by equation (11.5) is 2=m-universal.

That is, the probability that any two distinct keys collide is at most 2=m. In
many practical situations, the speed of computing the hash function more than
compensates for the higher upper bound on the probability that two distinct keys
collide when compared with a universal hash function.

11.3.5 Hashing long inputs such as vectors or strings
Sometimes hash function inputs are so long that they cannot be easily encoded
modulo a reasonably sized prime number p or encoded within a single word of,
say, 64 bits. As an example, consider the class of vectors, such as vectors of 8-bit
bytes (which is how strings in many programming languages are stored). A vector
might have an arbitrary nonnegative length, in which case the length of the input
to the hash function may vary from input to input.

Number-theoretic approaches
One way to design good hash functions for variable-length inputs is to extend the
ideas used in Section 11.3.4 to design universal hash functions. Exercise 11.3-6
explores one such approach.

11.3 Hash functions 291

Cryptographic hashing

Another way to design a good hash function for variable-length inputs is to use a
hash function designed for cryptographic applications. Cryptographic hash func-
tions are complex pseudorandom functions, designed for applications requiring
properties beyond those needed here, but are robust, widely implemented, and us-
able as hash functions for hash tables.

A cryptographic hash function takes as input an arbitrary byte string and returns
a ûxed-length output. For example, the NIST standard deterministic cryptographic
hash function SHA-256 [346] produces a 256-bit (32-byte) output for any input.

Some chip manufacturers include instructions in their CPU architectures to pro-
vide fast implementations of some cryptographic functions. Of particular inter-
est are instructions that efûciently implement rounds of the Advanced Encryption
Standard (AES), the <AES-NI= instructions. These instructions execute in a few
tens of nanoseconds, which is generally fast enough for use with hash tables. A
message authentication code such as CBC-MAC based on AES and the use of the
AES-NI instructions could be a useful and efûcient hash function. We don’t pursue
the potential use of specialized instruction sets further here.

Cryptographic hash functions are useful because they provide a way of imple-
menting an approximate version of a random oracle. As noted earlier, a random
oracle is equivalent to an independent uniform hash function family. From a the-
oretical point of view, a random oracle is an unachievable ideal: a deterministic
function that provides a randomly selected output for each input. Because it is de-
terministic, it provides the same output if queried again for the same input. From
a practical point of view, constructions of hash function families based on crypto-
graphic hash functions are sensible substitutes for random oracles.

There are many ways to use a cryptographic hash function as a hash function.
For example, we could deûne
h.k/ D SHA-256 .k/ mod m :
To deûne a family of such hash functions one may prepend a <salt= string a to the
input before hashing it, as in
h a .k/ D SHA-256 .a k k/ mod m ;
where a k k denotes the string formed by concatenating the strings a and k. The lit-
erature on message authentication codes (MACs) provides additional approaches.
Cryptographic approaches to hash-function design are becoming more practi-

cal as computers arrange their memories in hierarchies of differing capacities and
speeds. Section 11.5 discusses one hash-function design based on the RC6 encryp-
tion method.

292 Chapter 11 Hash Tables

Exercises
11.3-1
You wish to search a linked list of length n, where each element contains a key
k along with a hash value h.k/. Each key is a long character string. How might
you take advantage of the hash values when searching the list for an element with
a given key?
11.3-2
You hash a string of r characters into m slots by treating it as a radix-128 number
and then using the division method. You can represent the number m as a 32-bit
computer word, but the string of r characters, treated as a radix-128 number, takes
many words. How can you apply the division method to compute the hash value of
the character string without using more than a constant number of words of storage
outside the string itself?
11.3-3
Consider a version of the division method in which h.k/ D k mod m, where
m D 2 p 1 and k is a character string interpreted in radix 2 p . Show that if string x
can be converted to string y by permuting its characters, then x and y hash to the
same value. Give an example of an application in which this property would be
undesirable in a hash function.
11.3-4
Consider a hash table of size m D 1000 and a corresponding hash function h.k/ D
bm.kA mod 1/c for A D .

p
5 1/=2. Compute the locations to which the keys

61, 62, 63, 64, and 65 are mapped.
? 11.3-5

Show that any � -universal family H of hash functions from a ûnite set U to a ûnite
set Q has � 1= jQj 1= jU j.

? 11.3-6
Let U be the set of d -tuples of values drawn from Z p , and let Q D Z p , where p
is prime. Deûne the hash function h b W U ! Q for b 2 Z p on an input d -tuple
ha 0 ; a 1 ; : : : ; a d 1 i from U as

h b .ha 0 ; a 1 ; : : : ; a d 1 i/ D

d 1 X

j D0

a j b j

!

mod p ;

and let H D fh b W b 2 Z p g. Argue that H is � -universal for � D .d 1/=p. (Hint:
See Exercise 31.4-4.)

11.4 Open addressing 293

11.4 Open addressing

This section describes open addressing, a method for collision resolution that, un-
like chaining, does not make use of storage outside of the hash table itself. In open
addressing, all elements occupy the hash table itself. That is, each table entry con-
tains either an element of the dynamic set or NIL. No lists or elements are stored
outside the table, unlike in chaining. Thus, in open addressing, the hash table can
<ûll up= so that no further insertions can be made. One consequence is that the
load factor ˛ can never exceed 1.

Collisions are handled as follows: when a new element is to be inserted into the
table, it is placed in its <ûrst-choice= location if possible. If that location is already
occupied, the new element is placed in its <second-choice= location. The process
continues until an empty slot is found in which to place the new element. Different
elements have different preference orders for the locations.

To search for an element, systematically examine the preferred table slots for
that element, in order of decreasing preference, until either you ûnd the desired
element or you ûnd an empty slot and thus verify that the element is not in the
table.
Of course, you could use chaining and store the linked lists inside the hash table,

in the otherwise unused hash-table slots (see Exercise 11.2-4), but the advantage of
open addressing is that it avoids pointers altogether. Instead of following pointers,
you compute the sequence of slots to be examined. The memory freed by not
storing pointers provides the hash table with a larger number of slots in the same
amount of memory, potentially yielding fewer collisions and faster retrieval.

To perform insertion using open addressing, successively examine, or probe, the
hash table until you ûnd an empty slot in which to put the key. Instead of being
ûxed in the order 0; 1; : : : ;m 1 (which implies a ‚.n/ search time), the sequence
of positions probed depends upon the key being inserted. To determine which slots
to probe, the hash function includes the probe number (starting from 0) as a second
input. Thus, the hash function becomes
h W U f0; 1; : : : ;m 1g ! f0; 1; : : : ;m 1g :

Open addressing requires that for every key k, the probe sequence hh.k;0/;h.k; 1/;
: : : ; h.k; m 1/i be a permutation of h0; 1; : : : ; m 1i, so that every hash-table
position is eventually considered as a slot for a new key as the table ûlls up. The
HASH-I NSERT procedure on the following page assumes that the elements in the
hash table T are keys with no satellite information: the key k is identical to the
element containing key k. Each slot contains either a key or NIL (if the slot is
empty). The HASH-I NSERT procedure takes as input a hash table T and a key k

294 Chapter 11 Hash Tables

that is assumed to be not already present in the hash table. It either returns the slot
number where it stores key k or üags an error because the hash table is already full.

HASH-I NSERT .T; k/
1 i D 0
2 repeat
3 q D h.k; i/
4 if T Œq� == NIL
5 T Œq� D k
6 return q
7 else i D i C 1
8 until i = = m
9 error <hash table overüow=

HASH-SEARCH.T; k/
1 i D 0
2 repeat
3 q D h.k; i/
4 if T Œq� == k
5 return q
6 i D i C 1
7 until T Œq� = = NIL or i == m
8 return NIL

The algorithm for searching for key k probes the same sequence of slots that the
insertion algorithm examined when key k was inserted. Therefore, the search can
terminate (unsuccessfully) when it ûnds an empty slot, since k would have been
inserted there and not later in its probe sequence. The procedure HASH-SEARCH
takes as input a hash table T and a key k, returning q if it ûnds that slot q contains
key k, or NIL if key k is not present in table T .
Deletion from an open-address hash table is tricky. When you delete a key from

slot q, it would be a mistake to mark that slot as empty by simply storing NIL in
it. If you did, you might be unable to retrieve any key k for which slot q was
probed and found occupied when k was inserted. One way to solve this problem
is by marking the slot, storing in it the special value DELETED instead of NIL. The
HASH-I NSERT procedure then has to treat such a slot as empty so that it can insert
a new key there. The HASH-SEARCH procedure passes over DELETED values
while searching, since slots containing DELETED were ûlled when the key being
searched for was inserted. Using the special value DELETED, however, means that
search times no longer depend on the load factor ˛, and for this reason chaining is

11.4 Open addressing 295

frequently selected as a collision resolution technique when keys must be deleted.
There is a simple special case of open addressing, linear probing, that avoids the
need to mark slots with DELETED. Section 11.5.1 shows how to delete from a hash
table when using linear probing.

In our analysis, we assume independent uniform permutation hashing (also
confusingly known as uniform hashing in the literature): the probe sequence of
each key is equally likely to be any of the mŠ permutations of h0; 1; : : : ; m 1i.
Independent uniform permutation hashing generalizes the notion of independent
uniform hashing deûned earlier to a hash function that produces not just a single
slot number, but a whole probe sequence. True independent uniform permutation
hashing is difûcult to implement, however, and in practice suitable approximations
(such as double hashing, deûned below) are used.
We’ll examine both double hashing and its special case, linear probing. These

techniques guarantee that hh.k; 0/; h.k; 1/; : : : ; h.k; m 1/i is a permutation
of h0; 1; : : : ; m 1i for each key k. (Recall that the second parameter to the hash
function h is the probe number.) Neither double hashing nor linear probing meets
the assumption of independent uniform permutation hashing, however. Double
hashing cannot generate more than m 2 different probe sequences (instead of the
mŠ that independent uniform permutation hashing requires). Nonetheless, double
hashing has a large number of possible probe sequences and, as you might expect,
seems to give good results. Linear probing is even more restricted, capable of
generating only m different probe sequences.

Double hashing

Double hashing offers one of the best methods available for open addressing be-
cause the permutations produced have many of the characteristics of randomly
chosen permutations. Double hashing uses a hash function of the form
h.k; i/ D .h 1 .k/ C ih 2 .k// mod m ;
where both h 1 and h 2 are auxiliary hash functions. The initial probe goes to posi-
tion T Œh 1 .k/�, and successive probe positions are offset from previous positions by
the amount h 2 .k/, modulo m. Thus, the probe sequence here depends in two ways
upon the key k, since the initial probe position h 1 .k/, the step size h 2 .k/, or both,
may vary. Figure 11.5 gives an example of insertion by double hashing.

In order for the entire hash table to be searched, the value h 2 .k/ must be rel-
atively prime to the hash-table size m. (See Exercise 11.4-5.) A convenient way
to ensure this condition is to let m be an exact power of 2 and to design h 2 so
that it always produces an odd number. Another way is to let m be prime and to
design h 2 so that it always returns a positive integer less than m. For example, you

296 Chapter 11 Hash Tables

0
1
2
3
4
5
6
7
8
9
10
11
12

79

69
98

72

14

50

Figure 11.5 Insertion by double hashing. The hash table has size 13 with h 1 .k/ D k mod 13 and
h 2 .k/ D 1 C .k mod 11/. Since 14 D 1 .mod 13/ and 14 D 3 .mod 11/, the key 14 goes into
empty slot 9, after slots 1 and 5 are examined and found to be occupied.

could choose m prime and let
h 1 .k/ D k mod m ;
h 2 .k/ D 1 C .k mod m 0 / ;

where m 0 is chosen to be slightly less than m (say, m 1). For example, if
k D 123456, m D 701, and m 0 D 700, then h 1 .k/ D 80 and h 2 .k/ D 257, so
that the ûrst probe goes to position 80, and successive probes examine every 257th
slot (modulo m) until the key has been found or every slot has been examined.

Although values of m other than primes or exact powers of 2 can in principle
be used with double hashing, in practice it becomes more difûcult to efûciently
generate h 2 .k/ (other than choosing h 2 .k/ D 1, which gives linear probing) in a
way that ensures that it is relatively prime to m, in part because the relative density
�.m/=m of such numbers for general m may be small (see equation (31.25) on
page 921).

When m is prime or an exact power of 2, double hashing produces ‚.m 2 / probe
sequences, since each possible .h 1 .k/; h 2 .k// pair yields a distinct probe sequence.
As a result, for such values of m, double hashing appears to perform close to the
<ideal= scheme of independent uniform permutation hashing.

11.4 Open addressing 297

Linear probing

Linear probing, a special case of double hashing, is the simplest open-addressing
approach to resolving collisions. As with double hashing, an auxiliary hash func-
tion h 1 determines the ûrst probe position h 1 .k/ for inserting an element. If slot
T Œh 1 .k/� is already occupied, probe the next position T Œh 1 .k/ C 1�. Keep going as
necessary, on up to slot T Œm 1�, and then wrap around to slots T Œ0�, T Œ1�, and so
on, but never going past slot T Œh 1 .k/ 1�. To view linear probing as a special case
of double hashing, just set the double-hashing step function h 2 to be ûxed at 1:
h 2 .k/ D 1 for all k. That is, the hash function is
h.k; i/ D .h 1 .k/ C i/ mod m (11.6)
for i D 0; 1; : : : ;m 1. The value of h 1 .k/ determines the entire probe sequence,
and so assuming that h 1 .k/ can take on any value in f0; 1; : : : ;m 1g, linear prob-
ing allows only m distinct probe sequences.
We’ll revisit linear probing in Section 11.5.1.

Analysis of open-address hashing

As in our analysis of chaining in Section 11.2, we analyze open addressing in terms
of the load factor ˛ D n=m of the hash table. With open addressing, at most one
element occupies each slot, and thus n හ m, which implies ˛ හ 1. The analysis
below requires ˛ to be strictly less than 1, and so we assume that at least one slot
is empty. Because deleting from an open-address hash table does not really free up
a slot, we assume as well that no deletions occur.

For the hash function, we assume independent uniform permutation hashing. In
this idealized scheme, the probe sequence hh.k; 0/; h.k; 1/; : : : ; h.k;m 1/i used
to insert or search for each key k is equally likely to be any permutation of h0; 1;
: : : ;m 1i. Of course, any given key has a unique ûxed probe sequence associated
with it. What we mean here is that, considering the probability distribution on the
space of keys and the operation of the hash function on the keys, each possible
probe sequence is equally likely.

We now analyze the expected number of probes for hashing with open address-
ing under the assumption of independent uniform permutation hashing, beginning
with the expected number of probes made in an unsuccessful search (assuming, as
stated above, that ˛ < 1).

The bound proven, of 1=.1 ˛/ D 1 C ˛ C ˛ 2 C ˛ 3 C , has an intuitive in-
terpretation. The ûrst probe always occurs. With probability approximately ˛, the
ûrst probe ûnds an occupied slot, so that a second probe happens. With probability
approximately ˛ 2 , the ûrst two slots are occupied so that a third probe ensues, and
so on.

298 Chapter 11 Hash Tables

Theorem 11.6
Given an open-address hash table with load factor ˛ D n=m < 1 , the expected
number of probes in an unsuccessful search is at most 1=.1 ˛/, assuming inde-
pendent uniform permutation hashing and no deletions.

Proof In an unsuccessful search, every probe but the last accesses an occupied
slot that does not contain the desired key, and the last slot probed is empty. Let the
random variable X denote the number of probes made in an unsuccessful search,
and deûne the event A i , for i D 1; 2; : : :, as the event that an i th probe occurs
and it is to an occupied slot. Then the event fX i g is the intersection of events
A 1 \A 2 \ \A i 1 . We bound Pr fX i g by bounding Pr fA 1 \ A 2 \ \ A i 1 g.
By Exercise C.2-5 on page 1190,
Pr fA 1 \ A 2 \ \ A i 1 g D Pr fA 1 g Pr fA 2 j A 1 g Pr fA 3 j A 1 \ A 2 g

Pr fA i 1 j A 1 \ A 2 \ \ A i 2 g :

Since there are n elements and m slots, Pr fA 1 g D n=m. For j > 1, the probability
that there is a j th probe and it is to an occupied slot, given that the ûrst j 1
probes were to occupied slots, is .n j C 1/=.m j C 1/. This probability follows
because the j th probe would be ûnding one of the remaining .n .j 1// elements
in one of the .m .j 1// unexamined slots, and by the assumption of independent
uniform permutation hashing, the probability is the ratio of these quantities. Since
n < m implies that .n j /=.m j / හ n=m for all j in the range 0 හ j < m, it
follows that for all i in the range 1 හ i හ m, we have

Pr fX i g D
n
m

 n 1
m 1

 n 2
m 2

 n i C 2
m i C 2

හ
 n
m

Í i 1

D ˛ i 1 :

The product in the ûrst line has i 1 factors. When i D 1, the product is 1, the
identity for multiplication, and we get Pr fX 1g D 1, which makes sense, since
there must always be at least 1 probe. If each of the ûrst n probes is to an occupied
slot, then all occupied slots have been probed. Then, the .n C 1/st probe must
be to an empty slot, which gives Pr fX i g D 0 for i > n C 1. Now, we use
equation (C.28) on page 1193 to bound the expected number of probes:

E ŒX� D
1 X

i D1

Pr fX i g

D
nC1 X

i D1

Pr fX i g C
X

i>nC1

Pr fX i g

11.4 Open addressing 299

හ
1 X

i D1

˛ i 1 C 0

D
1 X

i D0

˛ i

D
1

1 ˛
(by equation (A.7) on page 1142 because 0 හ ˛ < 1) .

If ̨ is a constant, Theorem 11.6 predicts that an unsuccessful search runs in O.1/
time. For example, if the hash table is half full, the average number of probes in an
unsuccessful search is at most 1=.1 :5/ D 2. If it is 90% full, the average number
of probes is at most 1=.1 :9/ D 10.
Theorem 11.6 yields almost immediately how well the HASH-I NSERT procedure

performs.

Corollary 11.7
Inserting an element into an open-address hash table with load factor ˛, where
˛ < 1, requires at most 1=.1 ˛/ probes on average, assuming independent uni-
form permutation hashing and no deletions.

Proof An element is inserted only if there is room in the table, and thus ˛ < 1.
Inserting a key requires an unsuccessful search followed by placing the key into the
ûrst empty slot found. Thus, the expected number of probes is at most 1=.1 ̨ /.

It takes a little more work to compute the expected number of probes for a suc-
cessful search.

Theorem 11.8
Given an open-address hash table with load factor ˛ < 1, the expected number of
probes in a successful search is at most
1
˛

ln 1
1 ˛

;

assuming independent uniform permutation hashing with no deletions and assum-
ing that each key in the table is equally likely to be searched for.

Proof A search for a key k reproduces the same probe sequence as when the
element with key k was inserted. If k was the .i C 1/st key inserted into the
hash table, then the load factor at the time it was inserted was i=m, and so by
Corollary 11.7, the expected number of probes made in a search for k is at most
1=.1 i=m/ D m=.m i/. Averaging over all n keys in the hash table gives us

300 Chapter 11 Hash Tables

the expected number of probes in a successful search:

1
n

n1 X

i D0

m
m i

D
m
n

n1 X

i D0

1
m i

D
1
˛

m X

kDmnC1

1
k

හ
1
˛

Z m

mn

1
x
dx (by inequality (A.19) on page 1150)

D
1
˛
.ln m ln.m n//

D
1
˛

ln m
m n

D
1
˛

ln 1
1 ˛

:

If the hash table is half full, the expected number of probes in a successful search
is less than 1:387. If the hash table is 90% full, the expected number of probes is
less than 2:559. If ˛ D 1, then in an unsuccessful search, all m slots must be
probed. Exercise 11.4-4 asks you to analyze a successful search when ˛ D 1.

Exercises
11.4-1
Consider inserting the keys 10; 22; 31; 4; 15; 28; 17; 88; 59 into a hash table of
length m D 11 using open addressing. Illustrate the result of inserting these keys
using linear probing with h.k; i/ D .k C i/ mod m and using double hashing with
h 1 .k/ D k and h 2 .k/ D 1 C .k mod .m 1//.
11.4-2
Write pseudocode for HASH-DELETE that ûlls the deleted key’s slot with the spe-
cial value DELETED, and modify HASH-SEARCH and HASH-I NSERT as needed to
handle DELETED.
11.4-3
Consider an open-address hash table with independent uniform permutation hash-
ing and no deletions. Give upper bounds on the expected number of probes in an
unsuccessful search and on the expected number of probes in a successful search
when the load factor is 3=4 and when it is 7=8.

11.5 Practical considerations 301

11.4-4
Show that the expected number of probes required for a successful search when
˛ D 1 (that is, when n D m), is H m , the mth harmonic number.

? 11.4-5
Show that, with double hashing, if m and h 2 .k/ have greatest common divisor
d 1 for some key k, then an unsuccessful search for key k examines .1=d/th
of the hash table before returning to slot h 1 .k/. Thus, when d D 1, so that m
and h 2 .k/ are relatively prime, the search may examine the entire hash table. (Hint:
See Chapter 31.)

? 11.4-6
Consider an open-address hash table with a load factor ˛. Approximate the nonzero
value ˛ for which the expected number of probes in an unsuccessful search equals
twice the expected number of probes in a successful search. Use the upper bounds
given by Theorems 11.6 and 11.8 for these expected numbers of probes.

11.5 Practical considerations

Efûcient hash table algorithms are not only of theoretical interest, but also of im-
mense practical importance. Constant factors can matter. For this reason, this
section discusses two aspects of modern CPUs that are not included in the standard
RAM model presented in Section 2.2:
Memory hierarchies: The memory of modern CPUs has a number of levels,

from the fast registers, through one or more levels of cache memory, to the
main-memory level. Each successive level stores more data than the previous
level, but access is slower. As a consequence, a complex computation (such as
a complicated hash function) that works entirely within the fast registers can
take less time than a single read operation from main memory. Furthermore,
cache memory is organized in cache blocks of (say) 64 bytes each, which are
always fetched together from main memory. There is a substantial beneût for
ensuring that memory usage is local: reusing the same cache block is much
more efûcient than fetching a different cache block from main memory.
The standard RAM model measures efûciency of a hash-table operation by
counting the number of hash-table slots probed. In practice, this metric is only
a crude approximation to the truth, since once a cache block is in the cache,
successive probes to that cache block are much faster than probes that must
access main memory.

302 Chapter 11 Hash Tables

Advanced instruction sets: Modern CPUs may have sophisticated instruction
sets that implement advanced primitives useful for encryption or other forms
of cryptography. These instructions may be useful in the design of exception-
ally efûcient hash functions.

Section 11.5.1 discusses linear probing, which becomes the collision-resolution
method of choice in the presence of a memory hierarchy. Section 11.5.2 suggests
how to construct <advanced= hash functions based on cryptographic primitives,
suitable for use on computers with hierarchical memory models.

11.5.1 Linear probing

Linear probing is often disparaged because of its poor performance in the standard
RAM model. But linear probing excels for hierarchical memory models, because
successive probes are usually to the same cache block of memory.

Deletion with linear probing

Another reason why linear probing is often not used in practice is that deletion
seems complicated or impossible without using the special DELETED value. Yet
we’ll now see that deletion from a hash table based on linear probing is not all
that difûcult, even without the DELETED marker. The deletion procedure works
for linear probing, but not for open-address probing in general, because with lin-
ear probing keys all follow the same simple cyclic probing sequence (albeit with
different starting points).

The deletion procedure relies on an <inverse= function to the linear-probing hash
function h.k; i/ D .h 1 .k/ C i/ mod m, which maps a key k and a probe number i
to a slot number in the hash table. The inverse function g maps a key k and a slot
number q, where 0 හ q < m, to the probe number that reaches slot q:
g.k; q/ D .q h 1 .k// mod m :
If h.k; i/ D q, then g.k; q/ D i , and so h.k; g.k; q// D q.

The procedure LINEAR-PROBING-HASH-DELETE on the facing page deletes
the key stored in position q from hash table T . Figure 11.6 shows how it works.
The procedure ûrst deletes the key in position q by setting T Œq� to NIL in line 2. It
then searches for a slot q 0 (if any) that contains a key that should be moved to the
slot q just vacated by key k. Line 9 asks the critical question: does the key k 0 in
slot q 0 need to be moved to the vacated slot q in order to preserve the accessibility
of k 0 ? If g.k 0 ; q/ < g.k 0 ; q 0 /, then during the insertion of k 0 into the table, slot q
was examined but found to be already occupied. But now slot q, where a search
will look for k 0 , is empty. In this case, key k 0 moves to slot q in line 10, and the

11.5 Practical considerations 303

0
1
2
3
4
5
6
7
8
9

82

74
93

18
38

43

(a)

0
1
2
3
4
5
6
7
8
9

82

74
93

(b)

92
92

18
38

Figure 11.6 Deletion in a hash table that uses linear probing. The hash table has size 10 with
h 1 .k/ D k mod 10. (a) The hash table after inserting keys in the order 74, 43, 93, 18, 82, 38, 92.
(b) The hash table after deleting the key 43 from slot 3. Key 93 moves up to slot 3 to keep it
accessible, and then key 92 moves up to slot 5 just vacated by key 93. No other keys need to be
moved.

search continues, to see whether any later key also needs to be moved to the slot q 0
that was just freed up when k 0 moved.

LINEAR-PROBING-HASH-DELETE .T; q/
1 while TRUE
2 T Œq� D NIL // make slot q empty
3 q 0 D q // starting point for search
4 repeat
5 q 0 D .q 0 C 1/ mod m // next slot number with linear probing
6 k 0 D T Œq 0 � // next key to try to move
7 if k 0 = = NIL
8 return // return when an empty slot is found
9 until g.k 0 ; q/ < g.k 0 ; q 0 / // was empty slot q probed before q 0 ?
10 T Œq� D k 0 // move k 0 into slot q
11 q D q 0 // free up slot q 0

Analysis of linear probing

Linear probing is popular to implement, but it exhibits a phenomenon known as
primary clustering. Long runs of occupied slots build up, increasing the average

304 Chapter 11 Hash Tables

search time. Clusters arise because an empty slot preceded by i full slots gets ûlled
next with probability .i C 1/=m. Long runs of occupied slots tend to get longer,
and the average search time increases.

In the standard RAM model, primary clustering is a problem, and general dou-
ble hashing usually performs better than linear probing. By contrast, in a hierar-
chical memory model, primary clustering is a beneûcial property, as elements are
often stored together in the same cache block. Searching proceeds through one
cache block before advancing to search the next cache block. With linear prob-
ing, the running time for a key k of HASH-I NSERT, HASH-SEARCH, or LINEAR-
PROBING-HASH-DELETE is at most proportional to the distance from h 1 .k/ to the
next empty slot.
The following theorem is due to Pagh et al. [351]. A more recent proof is given

by Thorup [438]. We omit the proof here. The need for 5-independence is by no
means obvious; see the cited proofs.

Theorem 11.9
If h 1 is 5-independent and ˛ හ 2=3, then it takes expected constant time to search
for, insert, or delete a key in a hash table using linear probing.
(Indeed, the expected operation time is O.1=� 2 / for ˛ D 1 � .)

? 11.5.2 Hash functions for hierarchical memory models
This section illustrates an approach for designing efûcient hash tables in a modern
computer system having a memory hierarchy.

Because of the memory hierarchy, linear probing is a good choice for resolving
collisions, as probe sequences are sequential and tend to stay within cache blocks.
But linear probing is most efûcient when the hash function is complex (for exam-
ple, 5-independent as in Theorem 11.9). Fortunately, having a memory hierarchy
means that complex hash functions can be implemented efûciently.
As noted in Section 11.3.5, one approach is to use a cryptographic hash func-

tion such as SHA-256. Such functions are complex and sufûciently random for
hash table applications. On machines with specialized instructions, cryptographic
functions can be quite efûcient.

Instead, we present here a simple hash function based only on addition, multi-
plication, and swapping the halves of a word. This function can be implemented
entirely within the fast registers, and on a machine with a memory hierarchy, its
latency is small compared with the time taken to access a random slot of the hash
table. It is related to the RC6 encryption algorithm and can f or practical purposes
be considered a <random oracle.=

11.5 Practical considerations 305

The wee hash function

Let w denote the word size of the machine (e.g., w D 64), assumed to be even,
and let a and b be w-bit unsigned (nonnegative) integers such that a is odd. Let
swap.x/ denote the w-bit result of swapping the two w=2-bit halves of w-bit in-
put x . That is,
swap.x/ D .x o .w=2// C .x n .w=2//

where <o= is <logical right shift= (as in equation (11.2)) and <n is <left shift.=
Deûne
f a .k/ D swap..2k 2 C ak/ mod 2 w / :

Thus, to compute f a .k/, evaluate the quadratic function 2k 2 C ak modulo 2 w and
then swap the left and right halves of the result.

Let r denote a desired number of <rounds= for the computation of the hash func-
tion. We’ll use r D 4, but the hash function is well deûned for any nonnegative r .
Denote by f .r/ a .k/ the result of iterating f a a total of r times (that is, r rounds)
starting with input value k. For any odd a and any r 0, the function f .r/ a , al-
though complicated, is one-to-one (see Exercise 11.5-1). A cryptographer would
view f .r/ a as a simple block cipher operating on w-bit input blocks, with r rounds
and key a.
We ûrst deûne the wee hash function h for short inputs, where by <short= we

means <whose length t is at most w-bits,= so that the input ûts within one computer
word. We would like inputs of different lengths to be hashed differently. The wee
hash function h a;b;t;r .k/ for parameters a, b, and r on t -bit input k is deûned as
h a;b;t;r .k/ D

ã
f .r/ aC2t .k C b/

ä mod m : (11.7)
That is, the hash value for t -bit input k is obtained by applying f .r/ aC2t to k C b, then
taking the ûnal result modulo m. Adding the value b provides hash-dependent
randomization of the input, in a way that ensures that for variable-length inputs the
0-length input does not have a ûxed hash value. Adding the value 2t to a ensures
that the hash function acts differently for inputs of different lengths. (We use 2t
rather than t to ensure that the key a C 2t is odd if a is odd.) We call this hash
function <wee= because it uses a tiny amount of memory4more precisely, it can
be implemented efûciently using only the computer’s fast registers. (This hash
function does not have a name in the literature; it is a variant we developed for this
textbook.)

Speed of the wee hash function

It is surprising how much efûciency can be bought with locality. Experiments (un-
published, by the authors) suggest that evaluating the wee hash function takes less

306 Chapter 11 Hash Tables

time than probing a single randomly chosen slot in a hash table. These experi-
ments were run on a laptop (2019 MacBook Pro) with w D 64 and a D 123. For
large hash tables, evaluating the wee hash function was 2 to 10 times faster than
performing a single probe of the hash table.

The wee hash function for variable-length inputs
Sometimes inputs are long4more than one w-bit word in length4or have variable
length, as discussed in Section 11.3.5. We can extend the wee hash function, de-
ûned above for inputs that are at most single w-bit word in length, to handle long
or variable-length inputs. Here is one method for doing so.

Suppose that an input k has length t (measured in bits). Break k into a sequence
hk 1 ; k 2 ; : : : ; k u i of w-bit words, where u D dt=we, k 1 contains the least-signiûcant
w bits of k, and k u contains the most signiûcant bits. If t is not a multiple of w,
then k u contains fewer than w bits, in which case, pad out the unused high-order
bits of k u with 0-bits. Deûne the function chop to return a sequence of the w-bit
words in k:
chop.k/ D hk 1 ; k 2 ; : : : ; k u i :
The most important property of the chop operation is that it is one-to-one, given t :
for any two t -bit keys k and k 0 , if k ¤ k 0 then chop.k/ ¤ chop.k 0 /, and k can be
derived from chop.k/ and t . The chop operation also has the useful property that a
single-word input key yields a single-word output sequence: chop.k/ D hki.

With the chop function in hand, we specify the wee hash function h a;b;t;r .k/ for
an input k of length t bits as follows:
h a;b;t;r .k/ D WEE.k; a; b; t; r;m/ ;
where the procedure WEE deûned on the facing page iterates through the elements
of the w-bit words returned by chop.k/, applying f r

a to the sum of the current
word k i and the previously computed hash value so far, ûnally returning the result
obtained modulo m. This deûnition for variable-length and long (multiple-word)
inputs is a consistent extension of the deûnition in equation (11.7) for short (single-
word) inputs. For practical use, we recommend that a be a randomly chosen odd
w-bit word, b be a randomly chosen w-bit word, and that r D 4.

Note that the wee hash function is really a hash function family, with individ-
ual hash functions determined by parameters a; b; t; r; and m. The (approximate)
5-independence of the wee hash function family for variable-length inputs can be
argued based on the assumption that the 1-word wee hash function is a random or-
acle and on the security of the cipher-block-chaining message authentication code
(CBC-MAC), as studied by Bellare et al. [42]. The case here is actually simpler
than that studied in the literature, since if two messages have different lengths t
and t 0 , then their <keys= are different: a C 2t ¤ a C 2t 0 . We omit the details.

11.5 Practical considerations 307

WEE.k; a; b; t; r;m/
1 u D dt=we
2 hk 1 ; k 2 ; : : : ; k u i D chop.k/
3 q D b
4 for i D 1 to u
5 q D f .r/ aC2t .k i C q/
6 return q mod m

This deûnition of a cryptographically inspired hash-function family is meant
to be realistic, yet only illustrative, and many variations and improvements are
possible. See the chapter notes for suggestions.

In summary, we see that when the memory system is hierarchical, it becomes
advantageous to use linear probing (a special case of double hashing), since suc-
cessive probes tend to stay in the same cache block. Furthermore, hash functions
that can be implemented using only the computer’s fast registers are exceptionally
efûcient, so they can be quite complex and even cryptographically inspired, pro-
viding the high degree of independence needed for linear probing to work most
efûciently.

Exercises
? 11.5-1

Complete the argument that for any odd positive integer a and any integer r 0,
the function f .r/ a is one-to-one. Use a proof by contradiction and make use of the
fact that the function f a works modulo 2 w .

? 11.5-2
Argue that a random oracle is 5-independent.

? 11.5-3
Consider what happens to the value f .r/ a .k/ as we üip a single bit k i of the input
value k, for various values of r . Let k D

P w1
i D0 k i 2 i and g a .k/ D

P w1
j D0 b j 2 j

deûne the bit values k i in the input (with k 0 the least-signiûcant bit) and the bit
values b j in g a .k/ D .2k 2 C ak/ mod 2 w (where g a .k/ is the value that, when
its halves are swapped, becomes f a .k/). Suppose that üipping a single bit k i of
the input k may cause any bit b j of g a .k/ to üip, for j i . What is the least
value of r for which üipping the value of any single bit k i may cause any bit of the
output f .r/ a .k/ to üip? Explain.

308 Chapter 11 Hash Tables

Problems

11-1 Longest-probe bound for hashing
Suppose you are using an open-addressed hash table of size m to store n හ m=2
items.
a. Assuming independent uniform permutation hashing, show that for i D
1; 2; : : : ; n, the probability is at most 2 p that the i th insertion requires strictly
more than p probes.

b. Show that for i D 1; 2; : : : ; n, the probability is O.1=n 2 / that the i th insertion
requires more than 2 lg n probes.

Let the random variable X i denote the number of probes required by the i th inser-
tion. You have shown in part (b) that Pr fX i > 2 lg ng D O.1=n 2 /. Let the random
variable X D max fX i W 1 හ i හ ng denote the maximum number of probes re-
quired by any of the n insertions.
c. Show that Pr fX > 2 lg ng D O.1=n/.

d. Show that the expected length E ŒX� of the longest probe sequence is O.lg n/.

11-2 Searching a static set
You are asked to implement a searchable set of n elements in which the keys are
numbers. The set is static (no I NSERT or DELETE operations), and the only opera-
tion required is SEARCH. You are given an arbitrary amount of time to preprocess
the n elements so that SEARCH operations run quickly.
a. Show how to implement SEARCH in O.lg n/ worst-case time using no extra

storage beyond what is needed to store the elements of the set themselves.

b. Consider implementing the set by open-address hashing on m slots, and assume
independent uniform permutation hashing. What is the minimum amount of ex-
tra storage m n required to make the average performance of an unsuccessful
SEARCH operation be at least as good as the bound in part (a)? Your answer
should be an asymptotic bound on m n in terms of n.

11-3 Slot-size bound for chaining
Given a hash table with n slots, with collisions resolved by chaining, suppose that
n keys are inserted into the table. Each key is equally likely to be hashed to each
slot. Let M be the maximum number of keys in any slot after all the keys have

Problems for Chapter 11 309

been inserted. Your mission is to prove an O.lg n= lg lg n/ upper bound on E ŒM �,
the expected value of M .
a. Argue that the probability Q k that exactly k keys hash to a particular slot is

given by

Q k D
Î
1
n

Ï k Î
1

1
n

Ï nk

n
k

!

:

b. Let P k be the probability that M D k, that is, the probability that the slot
containing the most keys contains k keys. Show that P k හ nQ k .

c. Show that Q k < e k =k k . Hint: Use Stirling’s approximation, equation (3.25)
on page 67.

d. Show that there exists a constant c > 1 such that Q k 0 < 1=n 3 for k 0 D
c lg n= lg lg n. Conclude that P k < 1=n 2 for k k 0 D c lg n= lg lg n.

e. Argue that

E ŒM � හ Pr
ï
M >

c lg n
lg lg n

ð
 n C Pr

ï
M හ

c lg n
lg lg n

ð
 c lg n

lg lg n
:

Conclude that E ŒM � D O.lg n= lg lg n/.

11-4 Hashing and authentication
Let H be a family of hash functions in which each hash function h 2 H maps the
universe U of keys to f0; 1; : : : ;m 1g.
a. Show that if the family H of hash functions is 2-independent, then it is univer-

sal.

b. Suppose that the universe U is the set of n-tuples of values drawn from
Z p D f0; 1; : : : ; p 1g, where p is prime. Consider an element x D
hx 0 ; x 1 ; : : : ; x n1 i 2 U . For any n-tuple a D ha 0 ; a 1 ; : : : ; a n1 i 2 U , de-
ûne the hash function h a by

h a .x/ D

n1 X

j D0

a j x j

!

mod p :

Let H D fh a W a 2 U g. Show that H is universal, but not 2-independent.
(Hint: Find a key for which all hash functions in H produce the same value.)

310 Chapter 11 Hash Tables

c. Suppose that we modify H slightly from part (b): for any a 2 U and for any
b 2 Z p , deûne

h 0 ab .x/ D

n1 X

j D0

a j x j C b

!

mod p

and H 0 D fh 0
ab W a 2 U and b 2 Z p g. Argue that H 0 is 2-independent. (Hint:

Consider ûxed n-tuples x 2 U and y 2 U , with x i ¤ y i for some i . What
happens to h 0

ab .x/ and h 0
ab .y/ as a i and b range over Z p ?)

d. Alice and Bob secretly agree on a hash function h from a 2-independent fam-
ily H of hash functions. Each h 2 H maps from a universe of keys U to Z p ,
where p is prime. Later, Alice sends a message m to Bob over the internet,
where m 2 U . She authenticates this message to Bob by also sending an au-
thentication tag t D h.m/, and Bob checks that the pair .m; t/ he receives
indeed satisûes t D h.m/. Suppose that an adversary intercepts .m; t/ en route
and tries to fool Bob by replacing the pair .m; t/ with a different pair .m 0 ; t 0 /.
Argue that the probability that the adversary succeeds in fooling Bob into ac-
cepting .m 0 ; t 0 / is at most 1=p, no matter how much computing power the ad-
versary has, even if the adversary knows the family H of hash functions used.

Chapter notes

The books by Knuth [261] and Gonnet and Baeza-Yates [193] are excellent ref-
erences for the analysis of hashing algorithms. Knuth credits H. P. Luhn (1953)
for inventing hash tables, along with the chaining method for resolving collisions.
At about the same time, G. M. Amdahl originated the idea of open addressing.
The notion of a random oracle was introduced by Bellare et al. [43]. Carter and
Wegman [80] introduced the notion of universal families of hash functions in 1979.
Dietzfelbinger et al. [113] invented the multiply-shift hash function and gave a

proof of Theorem 11.5. Thorup [437] provides extensions and additional analysis.
Thorup [438] gives a simple proof that linear probing with 5-independent hashing
takes constant expected time per operation. Thorup also describes the method for
deletion in a hash table using linear probing.
Fredman, Koml´ os, and Szemer´ edi [154] developed a perfect hashing scheme

for static sets4<perfect= because all collisions are avoided. An extension of their
method to dynamic sets, handling insertions and deletions in amortized expected
time O.1/, has been given by Dietzfelbinger et al. [114].
The wee hash function is based on the RC6 encryption algorithm [379]. Leiser-

son et al. [292] propose an <RC6MIX= function that is essentially the same as the

Notes for Chapter 11 311

wee hash function. They give experimental evidence that it has good randomness,
and they also give a <DOTMIX= function for dealing with variable-length inputs.
Bellare et al. [42] provide an analysis of the security of the cipher-block-chaining
message authentication code. This analysis implies that the wee hash function has
the desired pseudorandomness properties.

12 Binary Search Trees

The search tree data structure supports each of the dynamic-set operations listed
on page 250: SEARCH, MINIMUM, MAXIMUM, PREDECESSOR, SUCCESSOR,
I NSERT, and DELETE. Thus, you can use a search tree both as a dictionary and as
a priority queue.

Basic operations on a binary search tree take time proportional to the height of
the tree. For a complete binary tree with n nodes, such operations run in ‚.lg n/
worst-case time. If the tree is a linear chain of n nodes, however, the same oper-
ations take ‚.n/ worst-case time. In Chapter 13, we’ll see a variation of binary
search trees, red-black trees, whose operations guarantee a height of O.lg n/. We
won’t prove it here, but if you build a binary search tree on a random set of n keys,
its expected height is O.lg n/ even if you don’t try to limit its height.

After presenting the basic properties of binary search trees, the following sec-
tions show how to walk a binary search tree to print its values in sorted order, how
to search for a value in a binary search tree, how to ûnd the minimum or maximum
element, how to ûnd the predecessor or successor of an element, and how to insert
into or delete from a binary search tree. The basic mathematical properties of trees
appear in Appendix B.

12.1 What is a binary search tree?

A binary search tree is organized, as the name suggests, in a binary tree, as shown
in Figure 12.1. You can represent such a tree with a linked data structure, as in
Section 10.3. In addition to a key and satellite data, each node object contains
attributes left , right , and p that point to the nodes corresponding to its left child,
its right child, and its parent, respectively. If a child or the parent is missing, the
appropriate attribute contains the value NIL. The tree itself has an attribute root

12.1 What is a binary search tree? 313

5

2 5

5

8

7

6

(a)

6 8

7

5

2

(b)

6

5 7

2 5 8

2

5

7

6 8

5

T: root T: root

Figure 12.1 Binary search trees. For any node x, the keys in the left subtree of x are at most x: key,
and the keys in the right subtree of x are at least x: key. Different binary search trees can represent
the same set of values. The worst-case running time for most search-tree operations is proportional
to the height of the tree. (a) A binary search tree on 6 nodes with height 2. The top ûgure shows how
to view the tree conceptually, and the bottom ûgure shows the left, right, and p attributes in each
node, in the style of Figure 10.6 on page 266. (b) A less efûcient binary search tree, with height 4,
that contains the same keys.

that points to the root node, or NIL if the tree is empty. The root node T: root is the
only node in a tree T whose parent is NIL.

The keys in a binary search tree are always stored in such a way as to satisfy the
binary-search-tree property:

314 Chapter 12 Binary Search Trees

Let x be a node in a binary search tree. If y is a node in the left subtree
of x , then y: key හ x: key. If y is a node in the right subtree of x , then
y: key x: key.
Thus, in Figure 12.1(a), the key of the root is 6, the keys 2, 5, and 5 in its left

subtree are no larger than 6, and the keys 7 and 8 in its right subtree are no smaller
than 6. The same property holds for every node in the tree. For example, looking
at the root’s left child as the root of a subtree, this subtree root has the key 5, the
key 2 in its left subtree is no larger than 5, and the key 5 in its right subtree is no
smaller than 5.
Because of the binary-search-tree property, you can print out all the keys in a

binary search tree in sorted order by a simple recursive algorithm, called an inorder
tree walk, given by the procedure I NORDER-TREE-WALK. This algorithm is so
named because it prints the key of the root of a subtree between printing the values
in its left subtree and printing those in its right subtree. (Similarly, a preorder tree
walk prints the root before the values in either subtree, and a postorder tree walk
prints the root after the values in its subtrees.) To print all the elements in a binary
search tree T , call I NORDER-TREE-WALK .T: root /. For example, the inorder tree
walk prints the keys in each of the two binary search trees from Figure 12.1 in the
order 2; 5; 5; 6; 7; 8. The correctness of the algorithm follows by induction directly
from the binary-search-tree property.

I NORDER-TREE-WALK .x/
1 if x ¤ NIL
2 I NORDER-TREE-WALK .x: left/
3 print x: key
4 I NORDER-TREE-WALK .x: right /

It takes ‚.n/ time to walk an n-node binary search tree, since after the initial
call, the procedure calls itself recursively exactly twice for each node in the tree4
once for its left child and once for its right child. The following theorem gives a
formal proof that it takes linear time to perform an inorder tree walk.

Theorem 12.1
If x is the root of an n-node subtree, then the call I NORDER-TREE-WALK .x/
takes ‚.n/ time.

Proof Let T .n/ denote the time taken by I NORDER-TREE-WALK when it is
called on the root of an n-node subtree. Since I NORDER-TREE-WALK visits all n
nodes of the subtree, we have T .n/ D �.n/. It remains to show that T .n/ D O.n/.

12.1 What is a binary search tree? 315

Since I NORDER-TREE-WALK takes a small, constant amount of time on an
empty subtree (for the test x ¤ NIL), we have T .0/ D c for some constant c > 0.

For n > 0, suppose that I NORDER-TREE-WALK is called on a node x whose
left subtree has k nodes and whose right subtree has n k 1 nodes. The time to
perform I NORDER-TREE-WALK .x/ is bounded by T .n/ හ T .k/CT .nk 1/Cd
for some constant d > 0 that reüects an upper bound on the time to execute the
body of I NORDER-TREE-WALK .x/, exclusive of the time spent in recursive calls.

We use the substitution method to show that T .n/ D O.n/ by proving that
T .n/ හ .c C d/n C c . For n D 0, we have .c C d/ 0 C c D c D T .0/. For n > 0,
we have
T .n/ හ T .k/ C T .n k 1/ C d

හ ..c C d/k C c/ C ..c C d/.n k 1/ C c/ C d
D .c C d/n C c .c C d/ C c C d
D .c C d/n C c ;

which completes the proof.

Exercises
12.1-1
For the set f1; 4; 5; 10; 16; 17; 21g of keys, draw binary search trees of heights 2, 3,
4, 5, and 6.
12.1-2
What is the difference between the binary-search-tree property and the min-heap
property on page 163? Can the min-heap property be used to print out the keys of
an n-node tree in sorted order in O.n/ time? Show how, or explain why not.
12.1-3
Give a nonrecursive algorithm that performs an inorder tree walk. (Hint: An easy
solution uses a stack as an auxiliary data structure. A more complicated, but ele-
gant, solution uses no stack but assumes that you can test two pointers for equality.)
12.1-4
Give recursive algorithms that perform preorder and postorder tree walks in ‚.n/
time on a tree of n nodes.
12.1-5
Argue that since sorting n elements takes �.n lg n/ time in the worst case in
the comparison model, any comparison-based algorithm for constructing a binary
search tree from an arbitrary list of n elements takes �.n lg n/ time in the worst
case.

316 Chapter 12 Binary Search Trees

12.2 Querying a binary search tree

Binary search trees can support the queries M INIMUM, MAXIMUM, SUCCESSOR,
and PREDECESSOR, as well as SEARCH. This section examines these operations
and shows how to support each one in O.h/ time on any binary search tree of
height h.

Searching

To search for a node with a given key in a binary search tree, call the TREE-
SEARCH procedure. Given a pointer x to the root of a subtree and a key k,
TREE-SEARCH .x; k/ returns a pointer to a node with key k if one exists in the
subtree; otherwise, it returns NIL. To search for key k in the entire binary search
tree T , call TREE-SEARCH .T: root ; k/.

TREE-SEARCH .x; k/
1 if x = = NIL or k == x: key
2 return x
3 if k < x: key
4 return TREE-SEARCH.x: left; k/
5 else return TREE-SEARCH.x: right ; k/

I TERATIVE-TREE-SEARCH .x; k/
1 while x ¤ NIL and k ¤ x: key
2 if k < x: key
3 x D x: left
4 else x D x: right
5 return x

The TREE-SEARCH procedure begins its search at the root and traces a simple
path downward in the tree, as shown in Figure 12.2(a). For each node x it encoun-
ters, it compares the key k with x: key. If the two keys are equal, the search termi-
nates. If k is smaller than x: key, the search continues in the left subtree of x , since
the binary-search-tree property implies that k cannot reside in the right subtree.
Symmetrically, if k is larger than x: key, the search continues in the right subtree.
The nodes encountered during the recursion form a simple path downward from
the root of the tree, and thus the running time of TREE-SEARCH is O.h/, where h
is the height of the tree.

12.2 Querying a binary search tree 317

2 4

3

13

7

6

17 20

18

15

9

(a)

2 4

3

13

7

6

17 20

18

15

9

(b)

2 4

3

13

7

6

17 20

18

15

9

(c)

2 4

3

13

7

6

17 20

18

15

9

(d)

Figure 12.2 Queries on a binary search tree. Nodes and paths followed in each query are colored
blue. (a) A search for the key 13 in the tree follows the path 15 ! 6 ! 7 ! 13 from the root.
(b) The minimum key in the tree is 2, which is found by following left pointers from the root. The
maximum key 20 is found by following right pointers from the root. (c) The successor of the node
with key 15 is the node with key 17, since it is the minimum key in the right subtree of 15. (d) The
node with key 13 has no right subtree, and thus its successor is its lowest ancestor whose left child is
also an ancestor. In this case, the node with key 15 is its successor.

Since the TREE-SEARCH procedure recurses on either the left subtree or the
right subtree, but not both, we can rewrite the algorithm to <unroll= the recursion
into a while loop. On most computers, the I TERATIVE-TREE-SEARCH procedure
on the facing page is more efûcient.

Minimum and maximum

To ûnd an element in a binary search tree whose key is a minimum, just follow left
child pointers from the root until you encounter a NIL, as shown in Figure 12.2(b).

318 Chapter 12 Binary Search Trees

The TREE-MINIMUM procedure returns a pointer to the minimum element in the
subtree rooted at a given node x , which we assume to be non-NIL.

TREE-MINIMUM.x/
1 while x: left ¤ NIL
2 x D x: left
3 return x

TREE-MAXIMUM.x/
1 while x: right ¤ NIL
2 x D x: right
3 return x

The binary-search-tree property guarantees that TREE-MINIMUM is correct. If
node x has no left subtree, then since every key in the right subtree of x is at least as
large as x: key, the minimum key in the subtree rooted at x is x: key. If node x has
a left subtree, then since no key in the right subtree is smaller than x: key and every
key in the left subtree is not larger than x: key, the minimum key in the subtree
rooted at x resides in the subtree rooted at x: left.

The pseudocode for TREE-MAXIMUM is symmetric. Both TREE-MINIMUM
and TREE-MAXIMUM run in O.h/ time on a tree of height h since, as in TREE-
SEARCH, the sequence of nodes encountered forms a simple path downward from
the root.

Successor and predecessor
Given a node in a binary search tree, how can you ûnd its successor in the sorted
order determined by an inorder tree walk? If all keys are distinct, the successor of a
node x is the node with the smallest key greater than x: key. Regardless of whether
the keys are distinct, we deûne the successor of a node as the next node visited in an
inorder tree walk. The structure of a binary search tree allows you to determine the
successor of a node without comparing keys. The TREE-SUCCESSOR procedure
on the facing page returns the successor of a node x in a binary search tree if it
exists, or NIL if x is the last node that would be visited during an inorder walk.

The code for TREE-SUCCESSOR has two cases. If the right subtree of node x
is nonempty, then the successor of x is just the leftmost node in x ’s right subtree,
which line 2 ûnds by calling TREE-MINIMUM.x: right /. For example, the succes-
sor of the node with key 15 in Figure 12.2(c) is the node with key 17.
On the other hand, as Exercise 12.2-6 asks you to show, if the right subtree of

node x is empty and x has a successor y , then y is the lowest ancestor of x whose

12.2 Querying a binary search tree 319

TREE-SUCCESSOR.x/
1 if x: right ¤ NIL
2 return TREE-MINIMUM.x: right / // leftmost node in right subtree
3 else // ûnd the lowest ancestor of x whose left child is an ancestor of x
4 y D x: p
5 while y ¤ NIL and x = = y: right
6 x D y
7 y D y: p
8 return y

left child is also an ancestor of x . In Figure 12.2(d), the successor of the node
with key 13 is the node with key 15. To ûnd y , go up the tree from x until you
encounter either the root or a node that is the left child of its parent. Lines 438 of
TREE-SUCCESSOR handle this case.

The running time of TREE-SUCCESSOR on a tree of height h is O.h/, since it
either follows a simple path up the tree or follows a simple path down the tree. The
procedure TREE-PREDECESSOR, which is symmetric to TREE-SUCCESSOR, also
runs in O.h/ time.

In summary, we have proved the following theorem.

Theorem 12.2
The dynamic-set operations SEARCH, MINIMUM, MAXIMUM, SUCCESSOR, and
PREDECESSOR can be implemented so that each one runs in O.h/ time on a binary
search tree of height h.

Exercises
12.2-1
You are searching for the number 363 in a binary search tree containing numbers
between 1 and 1000. Which of the following sequences cannot be the sequence of
nodes examined?
a. 2, 252, 401, 398, 330, 344, 397, 363.
b. 924, 220, 911, 244, 898, 258, 362, 363.
c. 925, 202, 911, 240, 912, 245, 363.
d. 2, 399, 387, 219, 266, 382, 381, 278, 363.
e. 935, 278, 347, 621, 299, 392, 358, 363.

320 Chapter 12 Binary Search Trees

12.2-2
Write recursive versions of TREE-MINIMUM and TREE-MAXIMUM.
12.2-3
Write the TREE-PREDECESSOR procedure.
12.2-4
Professor Kilmer claims to have discovered a remarkable property of binary search
trees. Suppose that the search for key k in a binary search tree ends up at a leaf.
Consider three sets: A, the keys to the left of the search path; B , the keys on
the search path; and C , the keys to the right of the search path. Professor Kilmer
claims that any three keys a 2 A, b 2 B , and c 2 C must satisfy a හ b හ c . Give
a smallest possible counterexample to the professor’s claim.
12.2-5
Show that if a node in a binary search tree has two children, then its successor has
no left child and its predecessor has no right child.
12.2-6
Consider a binary search tree T whose keys are distinct. Show that if the right
subtree of a node x in T is empty and x has a successor y , then y is the lowest
ancestor of x whose left child is also an ancestor of x . (Recall that every node is
its own ancestor.)
12.2-7
An alternative method of performing an inorder tree walk of an n-node binary
search tree ûnds the minimum element in the tree by calling TREE-MINIMUM and
then making n 1 calls to TREE-SUCCESSOR. Prove that this algorithm runs
in ‚.n/ time.
12.2-8
Prove that no matter what node you start at in a height-h binary search tree, k
successive calls to TREE-SUCCESSOR take O.k C h/ time.
12.2-9
Let T be a binary search tree whose keys are distinct, let x be a leaf node, and let y
be its parent. Show that y: key is either the smallest key in T larger than x: key or
the largest key in T smaller than x: key.

12.3 Insertion and deletion 321

12.3 Insertion and deletion

The operations of insertion and deletion cause the dynamic set represented by a
binary search tree to change. The data structure must be modiûed to reüect this
change, but in such a way that the binary-search-tree property continues to hold.
We’ll see that modifying the tree to insert a new element is relatively straightfor-
ward, but deleting a node from a binary search tree is more complicated.

Insertion

The TREE-I NSERT procedure inserts a new node into a binary search tree. The
procedure takes a binary search tree T and a node ´ for which ´: key has already
been ûlled in, ´: left D NIL, and ´: right D NIL. It modiûes T and some of the
attributes of ´ so as to insert ´ into an appropriate position in the tree.

TREE-I NSERT .T; ´/
1 x D T: root // node being compared with ´
2 y D NIL // y will be parent of ´
3 while x ¤ NIL // descend until reaching a leaf
4 y D x
5 if ´: key < x: key
6 x D x: left
7 else x D x: right
8 ´: p D y // found the location4insert ´ with parent y
9 if y == NIL
10 T: root D ´ // tree T was empty
11 elseif ´: key < y: key
12 y: left D ´
13 else y: right D ´

Figure 12.3 shows how TREE-I NSERT works. Just like the procedures TREE-
SEARCH and I TERATIVE-T REE-SEARCH, TREE-I NSERT begins at the root of the
tree and the pointer x traces a simple path downward looking for a NIL to replace
with the input node ´. The procedure maintains the trailing pointer y as the parent
of x . After initialization, the while loop in lines 337 causes these two pointers
to move down the tree, going left or right depending on the comparison of ´: key
with x: key, until x becomes NIL. This NIL occupies the position where node ´ will
go. More precisely, this NIL is a left or right attribute of the node that will become
´’s parent, or it is T: root if tree T is currently empty. The procedure needs the

322 Chapter 12 Binary Search Trees

2 9

5

13 17

15 19

18

12

Figure 12.3 Inserting a node with key 13 into a binary search tree. The simple path from the root
down to the position where the node is inserted is shown in blue. The new node and the link to its
parent are highlighted in orange.

trailing pointer y , because by the time it ûnds the NIL where ´ belongs, the search
has proceeded one step beyond the node that needs to be changed. Lines 8313 set
the pointers that cause ´ to be inserted.

Like the other primitive operations on search trees, the procedure TREE-I NSERT
runs in O.h/ time on a tree of height h.

Deletion

The overall strategy for deleting a node ´ from a binary search tree T has three
basic cases and, as we’ll see, one of the cases is a bit tricky.
 If ´ has no children, then simply remove it by modifying its parent to replace ´

with NIL as its child.
 If ´ has just one child, then elevate that child to take ´’s position in the tree by

modifying ´’s parent to replace ´ by ´’s child.
 If ´ has two children, ûnd ´’s successor y 4which must belong to ´’s right

subtree4and move y to take ´’s position in the tree. The rest of ´’s original
right subtree becomes y ’s new right subtree, and ´’s left subtree becomes y ’s
new left subtree. Because y is ´’s successor, it cannot have a left child, and y ’s
original right child moves into y ’s original position, with the rest of y ’s original
right subtree following automatically. This case is the tricky one because, as
we’ll see, it matters whether y is ´’s right child.

The procedure for deleting a given node ´ from a binary search tree T takes as
arguments pointers to T and ´. It organizes its cases a bit differently from the three
cases outlined previously by considering the four cases shown in Figure 12.4.
 If ´ has no left child, then as in part (a) of the ûgure, replace ´ by its right child,

which may or may not be NIL. When ´’s right child is NIL, this case deals with

12.3 Insertion and deletion 323

q q

z (a) r

q q

z

l

(b)

q

z

l

(c)

q

y

l y

q

z

l

(d)

r

q

z

l r

y

q

l r

y

r

l

x

x

x y

x

x

NIL

NIL

NIL

NIL

NIL

Figure 12.4 Deleting a node ´, in blue, from a binary search tree. Node ´ may be the root, a left
child of node q, or a right child of q. The node that will replace node ´ in its position in the tree
is colored orange. (a) Node ´ has no left child. Replace ´ by its right child r , which may or may
not be NIL. (b) Node ´ has a left child l but no right child. Replace ´ by l . (c) Node ´ has two
children. Its left child is node l , its right child is its successor y (which has no left child), and y’s
right child is node x. Replace ´ by y, updating y’s left child to become l , but leaving x as y’s right
child. (d) Node ´ has two children (left child l and right child r), and its successor y ¤ r lies within
the subtree rooted at r . First replace y by its own right child x, and set y to be r ’s parent. Then set y
to be q’s child and the parent of l .

324 Chapter 12 Binary Search Trees

the situation in which ´ has no children. When ´’s right child is non-NIL, this
case handles the situation in which ´ has just one child, which is its right child.

 Otherwise, if ´ has just one child, then that child is a left child. As in part (b)
of the ûgure, replace ´ by its left child.

 Otherwise, ´ has both a left and a right child. Find ´’s successor y , which lies
in ´’s right subtree and has no left child (see Exercise 12.2-5). Splice node y
out of its current location and replace ´ by y in the tree. How to do so depends
on whether y is ´’s right child:
B If y is ´’s right child, then as in part (c) of the ûgure, replace ´ by y , leaving
y ’s right child alone.

B Otherwise, y lies within ´’s right subtree but is not ´’s right child. In this
case, as in part (d) of the ûgure, ûrst replace y by its own right child, and
then replace ´ by y .

As part of the process of deleting a node, subtrees need to move around within
the binary search tree. The subroutine TRANSPLANT replaces one subtree as a
child of its parent with another subtree. When TRANSPLANT replaces the sub-
tree rooted at node u with the subtree rooted at node v, node u’s parent be-
comes node v’s parent, and u’s parent ends up having v as its appropriate child.
TRANSPLANT allows v to be NIL instead of a pointer to a node.

TRANSPLANT .T; u; v/
1 if u: p = = NIL
2 T: root D v
3 elseif u = = u: p: left
4 u: p: left D v
5 else u: p: right D v
6 if v ¤ NIL
7 v: p D u: p

Here is how TRANSPLANT works. Lines 132 handle the case in which u is the
root of T . Otherwise, u is either a left child or a right child of its parent. Lines 334
take care of updating u: p: left if u is a left child, and line 5 updates u: p: right if u
is a right child. Because v may be NIL, lines 637 update v: p only if v is non-NIL.
The procedure TRANSPLANT does not attempt to update v: left and v: right . Doing
so, or not doing so, is the responsibility of TRANSPLANT’s caller.

The procedure TREE-DELETE on the facing page uses TRANSPLANT to delete
node ´ from binary search tree T . It executes the four cases as follows. Lines 132
handle the case in which node ´ has no left child (Figure 12.4(a)), and lines 334

12.3 Insertion and deletion 325

handle the case in which ´ has a left child but no right child (Figure 12.4(b)). Lines
5312 deal with the remaining two cases, in which ´ has two children. Line 5 ûnds
node y , which is the successor of ´. Because ´ has a nonempty right subtree, its
successor must be the node in that subtree with the smallest key; hence the call to
TREE-MINIMUM.´: right /. As we noted before, y has no left child. The procedure
needs to splice y out of its current location and replace ´ by y in the tree. If y is
´’s right child (Figure 12.4(c)), then lines 10312 replace ´ as a child of its parent
by y and replace y ’s left child by ´’s left child. Node y retains its right child
(x in Figure 12.4(c)), and so no change to y: right needs to occur. If y is not ´’s
right child (Figure 12.4(d)), then two nodes have to move. Lines 739 replace y as a
child of its parent by y ’s right child (x in Figure 12.4(c)) and make ´’s right child
(r in the ûgure) become y ’s right child instead. Finally, lines 10312 replace ´ as a
child of its parent by y and replace y ’s left child by ´’s left child.

TREE-DELETE .T; ´/
1 if ´: left == NIL
2 TRANSPLANT .T; ´; ´: right / // replace ´ by its right child
3 elseif ´: right == NIL
4 TRANSPLANT .T; ´; ´: left / // replace ´ by its left child
5 else y D TREE-MINIMUM.´: right / // y is ´’s successor
6 if y ¤ ´: right // is y farther down the tree?
7 TRANSPLANT .T; y; y: right / // replace y by its right child
8 y: right D ´: right // ´’s right child becomes
9 y: right : p D y // y ’s right child
10 TRANSPLANT .T; ´; y/ // replace ´ by its successor y
11 y: left D ´: left // and give ´’s left child to y,
12 y: left: p D y // which had no left child

Each line of TREE-DELETE, including the calls to TRANSPLANT, takes constant
time, except for the call to TREE-MINIMUM in line 5. Thus, TREE-DELETE runs
in O.h/ time on a tree of height h.

In summary, we have proved the following theorem.

Theorem 12.3
The dynamic-set operations I NSERT and DELETE can be implemented so that each
one runs in O.h/ time on a binary search tree of height h.

326 Chapter 12 Binary Search Trees

Exercises
12.3-1
Give a recursive version of the TREE-I NSERT procedure.
12.3-2
Suppose that you construct a binary search tree by repeatedly inserting distinct
values into the tree. Argue that the number of nodes examined in searching for a
value in the tree is 1 plus the number of nodes examined when the value was ûrst
inserted into the tree.
12.3-3
You can sort a given set of n numbers by ûrst building a binary search tree contain-
ing these numbers (using TREE-I NSERT repeatedly to insert the numbers one by
one) and then printing the numbers by an inorder tree walk. What are the worst-
case and best-case running times for this sorting algorithm?
12.3-4
When TREE-DELETE calls TRANSPLANT, under what circumstances can the pa-
rameter v of TRANSPLANT be NIL?
12.3-5
Is the operation of deletion <commutative= in the sense that deleting x and then y
from a binary search tree leaves the same tree as deleting y and then x ? Argue why
it is or give a counterexample.
12.3-6
Suppose that instead of each node x keeping the attribute x: p, pointing to x ’s
parent, it keeps x: succ, pointing to x ’s successor. Give pseudocode for TREE-
SEARCH, TREE-I NSERT, and TREE-DELETE on a binary search tree T using this
representation. These procedures should operate in O.h/ time, where h is the
height of the tree T . You may assume that all keys in the binary search tree are
distinct. (Hint: You might wish to implement a subroutine that returns the parent
of a node.)
12.3-7
When node ´ in TREE-DELETE has two children, you can choose node y to be
its predecessor rather than its successor. What other changes to TREE-DELETE
are necessary if you do so? Some have argued that a fair strategy, giving equal
priority to predecessor and successor, yields better empirical performance. How
might TREE-DELETE be minimally changed to implement such a fair strategy?

Problems for Chapter 12 327

Problems

12-1 Binary search trees with equal keys
Equal keys pose a problem for the implementation of binary search trees.
a. What is the asymptotic performance of TREE-I NSERT when used to insert n

items with identical keys into an initially empty binary search tree?
Consider changing TREE-I NSERT to test whether ´: key D x: key before line 5 and
to test whether ´: key D y: key before line 11. If equality holds, implement one
of the following strategies. For each strategy, ûnd the asymptotic performance of
inserting n items with identical keys into an initially empty binary search tree. (The
strategies are described for line 5, which compares the keys of ´ and x . Substitute
y for x to arrive at the strategies for line 11.)
b. Keep a boolean üag x: b at node x , and set x to either x: left or x: right based on

the value of x: b, which alternates between FALSE and TRUE each time TREE-
I NSERT visits x while inserting a node with the same key as x .

c. Keep a list of nodes with equal keys at x , and insert ´ into the list.

d. Randomly set x to either x: left or x: right. (Give the worst-case performance
and informally derive the expected running time.)

12-2 Radix trees
Given two strings a D a 0 a 1 : : : a p and b D b 0 b 1 : : : b q , where each a i and each b j
belongs to some ordered set of characters, we say that string a is lexicographically
less than string b if either
1. there exists an integer j , where 0 හ j හ min fp; qg, such that a i D b i for all
i D 0; 1; : : : ; j 1 and a j < b j , or

2. p < q and a i D b i for all i D 0; 1; : : : ; p.
For example, if a and b are bit strings, then 10100 < 10110 by rule 1 (letting
j D 3) and 10100 < 101000 by rule 2. This ordering is similar to that used in
English-language dictionaries.

The radix tree data structure shown in Figure 12.5 (also known as a trie) stores
the bit strings 1011, 10, 011, 100, and 0. When searching for a key a D a 0 a 1 : : : a p ,
go left at a node of depth i if a i D 0 and right if a i D 1. Let S be a set of
distinct bit strings whose lengths sum to n. Show how to use a radix tree to sort S
lexicographically in ‚.n/ time. For the example in Figure 12.5, the output of the
sort should be the sequence 0, 011, 10, 100, 1011.

328 Chapter 12 Binary Search Trees

011

0

100

10

1011

0 1

1 0

1 0 1

1

Figure 12.5 A radix tree storing the bit strings 1011, 10, 011, 100, and 0. To determine each node’s
key, traverse the simple path from the root to that node. There is no need, therefore, to store the keys
in the nodes. The keys appear here for illustrative purposes only. Keys corresponding to blue nodes
are not in the tree. Such nodes are present only to establish a path to other nodes.

12-3 Average node depth in a randomly built binary search tree
A randomly built binary search tree on n keys is a binary search tree created by
starting with an empty tree and inserting the keys in random order, where each of
the nŠ permutations of the keys is equally likely. In this problem, you will prove
that the average depth of a node in a randomly built binary search tree with n nodes
is O.lg n/. The technique reveals a surprising similarity between the building of
a binary search tree and the execution of RANDOMIZED-QUICKSORT from Sec-
tion 7.3.

Denote the depth of any node x in tree T by d.x; T /. Then the total path
length P.T / of a tree T is the sum, over all nodes x in T , of d.x; T /.
a. Argue that the average depth of a node in T is

1
n

X

x2T

d.x; T / D
1
n
P.T / :

Thus, you need to show that the expected value of P.T / is O.n lg n/.
b. Let T L and T R denote the left and right subtrees of tree T , respectively. Argue

that if T has n nodes, then

P.T / D P.T L / C P.T R / C n 1 :

c. Let P.n/ denote the average total path length of a randomly built binary search
tree with n nodes. Show that

Problems for Chapter 12 329

P.n/ D
1
n

n1 X

i D0

.P.i/ C P.n i 1/ C n 1/ :

d. Show how to rewrite P.n/ as

P.n/ D
2
n

n1 X

kD1

P.k/ C ‚.n/ :

e. Recalling the alternative analysis of the randomized version of quicksort given
in Problem 7-3, conclude that P.n/ D O.n lg n/.

Each recursive invocation of randomized quicksort chooses a random pivot element
to partition the set of elements being sorted. Each node of a binary search tree
partitions the set of elements that fall into the subtree rooted at that node.
f. Describe an implementation of quicksort in which the comparisons to sort a set

of elements are exactly the same as the comparisons to insert the elements into
a binary search tree. (The order in which comparisons are made may differ, but
the same comparisons must occur.)

12-4 Number of different binary trees
Let b n denote the number of different binary trees with n nodes. In this problem,
you will ûnd a formula for b n , as well as an asymptotic estimate.
a. Show that b 0 D 1 and that, for n 1,

b n D
n1 X

kD0

b k b n1k :

b. Referring to Problem 4-5 on page 121 for the deûnition of a generating function,
let B.x/ be the generating function

B.x/ D
1 X

nD0

b n x n :

Show that B.x/ D xB.x/ 2 C 1, and hence one way to express B.x/ in closed
form is
B.x/ D

1
2x

ã
1

p
1 4x

ä
:

The Taylor expansion of f .x/ around the point x D a is given by

330 Chapter 12 Binary Search Trees

f .x/ D
1 X

kD0

f .k/ .a/
kŠ

.x a/ k ;

where f .k/ .x/ is the kth derivative of f evaluated at x .
c. Show that

b n D
1

n C 1

2n
n

!

(the nth Catalan number) by using the Taylor expansion of p
1 4x around

x D 0. (If you wish, instead of using the Taylor expansion, you may use
the generalization of the binomial theorem, equation (C.4) on page 1181, to
noninteger exponents n, where for any real number n and for any integer k, you
can interpret ã n

k

ä to be n.n 1/ .n k C 1/=kŠ if k 0, and 0 otherwise.)
d. Show that

b n D
4 n

p
�n 3=2

.1 C O.1=n// :

Chapter notes

Knuth [261] contains a good discussion of simple binary search trees as well as
many variations. Binary search trees seem to have been independently discovered
by a number of people in the late 1950s. Radix trees are often called <tries,= which
comes from the middle letters in the word retrieval. Knuth [261] also discusses
them.
Many texts, including the ûrst two editions of this book, describe a somewhat

simpler method of deleting a node from a binary search tree when both of its chil-
dren are present. Instead of replacing node ´ by its successor y , delete node y but
copy its key and satellite data into node ´. The downside of this approach is that
the node actually deleted might not be the node passed to the delete procedure. If
other components of a program maintain pointers to nodes in the tree, they could
mistakenly end up with <stale= pointers to nodes that have been deleted. Although
the deletion method presented in this edition of this book is a bit more complicated,
it guarantees that a call to delete node ´ deletes node ´ and only node ´.
Section 14.5 will show how to construct an optimal binary search tree when

you know the search frequencies before constructing the tree. That is, given the
frequencies of searching for each key and the frequencies of searching for values
that fall between keys in the tree, a set of searches in the constructed binary search
tree examines the minimum number of nodes.

13 Red-Black Trees

Chapter 12 showed that a binary search tree of height h can support any of the basic
dynamic-set operations4such as SEARCH, PREDECESSOR, SUCCESSOR, MINI -
MUM, MAXIMUM, I NSERT, and DELETE4in O.h/ time. Thus, the set operations
are fast if the height of the search tree is small. If its height is large, however, the
set operations may run no faster than with a linked list. Red-black trees are one
of many search-tree schemes that are <balanced= in order to guarantee that basic
dynamic-set operations take O.lg n/ time in the worst case.

13.1 Properties of red-black trees

A red-black tree is a binary search tree with one extra bit of storage per node: its
color, which can be either RED or BLACK. By constraining the node colors on
any simple path from the root to a leaf, red-black trees ensure that no such path is
more than twice as long as any other, so that the tree is approximately balanced.
Indeed, as we’re about to see, the height of a red-black tree with n keys is at most
2 lg.n C 1/, which is O.lg n/.

Each node of the tree now contains the attributes color , key, left , right , and p. If
a child or the parent of a node does not exist, the corresponding pointer attribute of
the node contains the value NIL. Think of these NILs as pointers to leaves (external
nodes) of the binary search tree and the normal, key-bearing nodes as internal nodes
of the tree.
A red-black tree is a binary search tree that satisûes the following red-black

properties:
1. Every node is either red or black.
2. The root is black.
3. Every leaf (NIL) is black.

332 Chapter 13 Red-Black Trees

4. If a node is red, then both its children are black.
5. For each node, all simple paths from the node to descendant leaves contain the

same number of black nodes.
Figure 13.1(a) shows an example of a red-black tree.

As a matter of convenience in dealing with boundary conditions in red-black
tree code, we use a single sentinel to represent NIL (see page 262). For a red-black
tree T , the sentinel T: nil is an object with the same attributes as an ordinary node
in the tree. Its color attribute is BLACK, and its other attributes4p, left , right ,
and key4can take on arbitrary values. As Figure 13.1(b) shows, all pointers to NIL
are replaced by pointers to the sentinel T: nil.
Why use the sentinel? The sentinel makes it possible to treat a NIL child of a

node x as an ordinary node whose parent is x . An alternative design would use a
distinct sentinel node for each NIL in the tree, so that the parent of each NIL is well
deûned. That approach needlessly wastes space, however. Instead, just the one
sentinel T: nil represents all the NILs4all leaves and the root’s parent. The values
of the attributes p, left, right , and key of the sentinel are immaterial. The red-black
tree procedures can place whatever values in the sentinel that yield simpler code.
We generally conûne our interest to the internal nodes of a red-black tree, since

they hold the key values. The remainder of this chapter omits the leaves in drawings
of red-black trees, as shown in Figure 13.1(c).

We call the number of black nodes on any simple path from, but not including, a
node x down to a leaf the black-height of the node, denoted bh.x/. By property 5,
the notion of black-height is well deûned, since all descending simple paths from
the node have the same number of black nodes. The black-height of a red-black
tree is the black-height of its root.
The following lemma shows why red-black trees make good search trees.

Lemma 13.1
A red-black tree with n internal nodes has height at most 2 lg.n C 1/.

Proof We start by showing that the subtree rooted at any node x contains at least
2 bh.x/ 1 internal nodes. We prove this claim by induction on the height of x . If
the height of x is 0, then x must be a leaf (T: nil), and the subtree rooted at x indeed
contains at least 2 bh.x/ 1 D 2 0 1 D 0 internal nodes. For the inductive step,
consider a node x that has positive height and is an internal node. Then node x
has two children, either or both of which may be a leaf. If a child is black, then
it contributes 1 to x ’s black-height but not to its own. If a child is red, then it
contributes to neither x ’s black-height nor its own. Therefore, each child has a
black-height of either bh.x/ 1 (if it’s black) or bh.x/ (if it’s red). Since the
height of a child of x is less than the height of x itself, we can apply the inductive

13.1 Properties of red-black trees 333

NIL NIL

NIL NIL NIL NIL NIL

NIL NIL

NIL NIL

NIL NIL NIL NIL

NIL NIL NIL NIL

NIL NIL

26

41

47 30

28 38

35 39

17

21

23 19

20

14

16

15

10

12 7

3 1

1 1

2

1

1

2

1

1 1

2

3

1 1

1 1

2 1

2

3

(a)

26

41

47 30

28 38

35 39

17

21

23 19

20

14

16

15

10

12 7

3

(b)

26

41

47 30

28 38

35 39

17

21

23 19

20

14

16

15

10

12 7

3 (c)

T: nil

Figure 13.1 A red-black tree. Every node in a red-black tree is either red or black, the children
of a red node are both black, and every simple path from a node to a descendant leaf contains the
same number of black nodes. (a) Every leaf, shown as a NIL, is black. Each non-NIL node is marked
with its black-height, where NILs have black-height 0. (b) The same red-black tree but with each NIL
replaced by the single sentinel T: nil, which is always black, and with black-heights omitted. The
root’s parent is also the sentinel. (c) The same red-black tree but with leaves and the root’s parent
omitted entirely. The remainder of this chapter uses this drawing style.

334 Chapter 13 Red-Black Trees

hypothesis to conclude that each child has at least 2 bh.x/1 1 internal nodes. Thus,
the subtree rooted at x contains at least .2 bh.x/1 1/ C.2 bh.x/1 1/ C1 D 2 bh.x/ 1
internal nodes, which proves the claim.

To complete the proof of the lemma, let h be the height of the tree. According
to property 4, at least half the nodes on any simple path from the root to a leaf, not
including the root, must be black. Consequently, the black-height of the root must
be at least h=2, and thus,
n 2 h=2 1 :

Moving the 1 to the left-hand side and taking logarithms on both sides yields
lg.n C 1/ h=2, or h හ 2 lg.n C 1/.

As an immediate consequence of this lemma, each of the dynamic-set opera-
tions SEARCH, MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR runs
in O.lg n/ time on a red-black tree, since each can run in O.h/ time on a bi-
nary search tree of height h (as shown in Chapter 12) and any red-black tree on
n nodes is a binary search tree with height O.lg n/. (Of course, references to NIL
in the algorithms of Chapter 12 have to be replaced by T: nil.) Although the pro-
cedures TREE-I NSERT and TREE-DELETE from Chapter 12 run in O.lg n/ time
when given a red-black tree as input, you cannot just use them to implement the
dynamic-set operations I NSERT and DELETE. They do not necessarily maintain
the red-black properties, so you might not end up with a legal red-black tree. The
remainder of this chapter shows how to insert into and delete from a red-black tree
in O.lg n/ time.

Exercises
13.1-1
In the style of Figure 13.1(a), draw the complete binary search tree of height 3 on
the keys f1; 2; : : : ; 15g. Add the NIL leaves and color the nodes in three different
ways such that the black-heights of the resulting red-black trees are 2, 3, and 4.
13.1-2
Draw the red-black tree that results after TREE-I NSERT is called on the tree in
Figure 13.1 with key 36. If the inserted node is colored red, is the resulting tree a
red-black tree? What if it is colored black?
13.1-3
Deûne a relaxed red-black tree as a binary search tree that satisûes red-black prop-
erties 1, 3, 4, and 5, but whose root may be either red or black. Consider a relaxed
red-black tree T whose root is red. If the root of T is changed to black but no other
changes occur, is the resulting tree a red-black tree?

13.2 Rotations 335

13.1-4
Suppose that every black node in a red-black tree <absorbs= all of its red children,
so that the children of any red node become children of the black parent. (Ignore
what happens to the keys.) What are the possible degrees of a black node after all
its red children are absorbed? What can you say about the depths of the leaves of
the resulting tree?
13.1-5
Show that the longest simple path from a node x in a red-black tree to a descendant
leaf has length at most twice that of the shortest simple path from node x to a
descendant leaf.
13.1-6
What is the largest possible number of internal nodes in a red-black tree with black-
height k? What is the smallest possible number?
13.1-7
Describe a red-black tree on n keys that realizes the largest possible ratio of red in-
ternal nodes to black internal nodes. What is this ratio? What tree has the smallest
possible ratio, and what is the ratio?
13.1-8
Argue that in a red-black tree, a red node cannot have exactly one non-NIL child.

13.2 Rotations

The search-tree operations TREE-I NSERT and TREE-DELETE, when run on a red-
black tree with n keys, take O.lg n/ time. Because they modify the tree, the result
may violate the red-black properties enumerated in Section 13.1. To restore these
properties, colors and pointers within nodes need to change.

The pointer structure changes through rotation, which is a local operation in a
search tree that preserves the binary-search-tree property. Figure 13.2 shows the
two kinds of rotations: left rotations and right rotations. Let’s look at a left rotation
on a node x , which transforms the structure on the right side of the ûgure to the
structure on the left. Node x has a right child y , which must not be T: nil. The left
rotation changes the subtree originally rooted at x by <twisting= the link between x
and y to the left. The new root of the subtree is node y , with x as y ’s left child and
y ’s original left child (the subtree represented by ˇ in the ûgure) as x ’s right child.

The pseudocode for LEFT-ROTATE appearing on the following page assumes
that x: right ¤ T: nil and that the root’s parent is T: nil. Figure 13.3 shows an

336 Chapter 13 Red-Black Trees

y
x

³ ´

µ

x
y ³

´ µ

LEFT-ROTATE(T, x)

RIGHT-ROTATE(T, y)

Figure 13.2 The rotation operations on a binary search tree. The operation L EFT-ROTATE.T; x/
transforms the conûguration of the two nodes on the right into the conûguration on the left by chang-
ing a constant number of pointers. The inverse operation R IGHT-ROTATE.T; y/ transforms the con-
ûguration on the left into the conûguration on the right. The letters ˛, ˇ, and � represent arbitrary
subtrees. A rotation operation preserves the binary-search-tree property: the keys in ˛ precede x: key,
which precedes the keys in ˇ, which precede y: key, which precedes the keys in � .

example of how LEFT-ROTATE modiûes a binary search tree. The code for R IGHT-
ROTATE is symmetric. Both LEFT-ROTATE and RIGHT-ROTATE run in O.1/ time.
Only pointers are changed by a rotation, and all other attributes in a node remain
the same.

LEFT-ROTATE .T; x/
1 y D x: right
2 x: right D y: left // turn y ’s left subtree into x ’s right subtree
3 if y: left ¤ T: nil // if y ’s left subtree is not empty . . .
4 y: left: p D x // . . . then x becomes the parent of the subtree’s root
5 y: p D x: p // x ’s parent becomes y ’s parent
6 if x: p == T: nil // if x was the root . . .
7 T: root D y // . . . then y becomes the root
8 elseif x == x: p: left // otherwise, if x was a left child . . .
9 x: p: left D y // . . . then y becomes a left child
10 else x: p: right D y // otherwise, x was a right child, and now y is
11 y: left D x // make x become y ’s left child
12 x: p D y

Exercises
13.2-1
Write pseudocode for RIGHT-ROTATE.

13.2 Rotations 337

2
3

4

6

7

11

9 18

14

12 17

19

22
20

x
y

2
3

4

6

7

18

19

14

12 17

22
20

x
y

11

9

LEFT-ROTATE(T, x)

Figure 13.3 An example of how the procedure LEFT-ROTATE.T; x/ modiûes a binary search tree.
Inorder tree walks of the input tree and the modiûed tree produce the same listing of key values.

13.2-2
Argue that in every n-node binary search tree, there are exactly n 1 possible
rotations.
13.2-3
Let a, b, and c be arbitrary nodes in subtrees ˛, ˇ, and � , respectively, in the right
tree of Figure 13.2. How do the depths of a, b, and c change when a left rotation
is performed on node x in the ûgure?
13.2-4
Show that any arbitrary n-node binary search tree can be transformed into any other
arbitrary n-node binary search tree using O.n/ rotations. (Hint: First show that at
most n 1 right rotations sufûce to transform the tree into a right-going chain.)

? 13.2-5
We say that a binary search tree T 1 can be right-converted to binary search tree T 2
if it is possible to obtain T 2 from T 1 via a series of calls to RIGHT-ROTATE. Give
an example of two trees T 1 and T 2 such that T 1 cannot be right-converted to T 2 .
Then, show that if a tree T 1 can be right-converted to T 2 , it can be right-converted
using O.n 2 / calls to RIGHT-ROTATE.

338 Chapter 13 Red-Black Trees

13.3 Insertion

In order to insert a node into a red-black tree with n internal nodes in O.lg n/ time
and maintain the red-black properties, we’ll need to slightly modify the TREE-
I NSERT procedure on page 321. The procedure RB-I NSERT starts by inserting
node ´ into the tree T as if it were an ordinary binary search tree, and then it col-
ors ´ red. (Exercise 13.3-1 asks you to explain why to make node ´ red rather
than black.) To guarantee that the red-black properties are preserved, an auxiliary
procedure RB-I NSERT-FIXUP on the facing page recolors nodes and performs ro-
tations. The call RB-I NSERT .T; ´/ inserts node ´, whose key is assumed to have
already been ûlled in, into the red-black tree T .

RB-I NSERT .T; ´/
1 x D T: root // node being compared with ´
2 y D T: nil // y will be parent of ´
3 while x ¤ T: nil // descend until reaching the sentinel
4 y D x
5 if ´: key < x: key
6 x D x: left
7 else x D x: right
8 ´: p D y // found the location4insert ´ with parent y
9 if y = = T: nil
10 T: root D ´ // tree T was empty
11 elseif ´: key < y: key
12 y: left D ´
13 else y: right D ´
14 ´: left D T: nil // both of ´’s children are the sentinel
15 ´: right D T: nil
16 ´: color D RED // the new node starts out red
17 RB-I NSERT-FIXUP .T; ´/ // correct any violations of red-black properties

The procedures TREE-I NSERT and RB-I NSERT differ in four ways. First, all
instances of NIL in TREE-I NSERT are replaced by T: nil. Second, lines 14315 of
RB-I NSERT set ´: left and ´: right to T: nil, in order to maintain the proper tree
structure. (TREE-I NSERT assumed that ´’s children were already NIL.) Third,
line 16 colors ´ red. Fourth, because coloring ´ red may cause a violation of one
of the red-black properties, line 17 of RB-I NSERT calls RB-I NSERT-FIXUP .T; ´/
in order to restore the red-black properties.

13.3 Insertion 339

RB-I NSERT-FIXUP .T; ´/
1 while ´: p: color == RED
2 if ´: p = = ´: p: p: left // is ´’s parent a left child?
3 y D ´: p: p: right // y is ´’s uncle
4 if y: color == RED // are ´’s parent and uncle both red?
5 ´: p: color D BLACK *

case 1
6 y: color D BLACK
7 ´: p: p: color D RED
8 ´ D ´: p: p
9 else
10 if ´ == ´: p: right
11 ´ D ´: p

ð
case 2 12 LEFT-ROTATE .T; ´/

13 ´: p: color D BLACK)

case 3 14 ´: p: p: color D RED
15 RIGHT-ROTATE .T; ´: p: p/
16 else // same as lines 3315, but with <right= and <left= exchanged
17 y D ´: p: p: left
18 if y: color == RED
19 ´: p: color D BLACK
20 y: color D BLACK
21 ´: p: p: color D RED
22 ´ D ´: p: p
23 else
24 if ´ == ´: p: left
25 ´ D ´: p
26 RIGHT-ROTATE .T; ´/
27 ´: p: color D BLACK
28 ´: p: p: color D RED
29 LEFT-ROTATE .T; ´: p: p/
30 T: root : color D BLACK

To understand how RB-I NSERT-FIXUP works, let’s examine the code in three
major steps. First, we’ll determine which violations of the red-black properties
might arise in RB-I NSERT upon inserting node ´ and coloring it red. Second, we’ll
consider the overall goal of the while loop in lines 1329. Finally, we’ll explore each
of the three cases within the while loop’s body (case 2 falls through into case 3, so
these two cases are not mutually exclusive) and see how they accomplish the goal.

340 Chapter 13 Red-Black Trees

In describing the structure of a red-black tree, we’ll often need to refer to the
sibling of a node’s parent. We use the term uncle for such a node. 1 Figure 13.4
shows how RB-I NSERT-FIXUP operates on a sample red-black tree, with cases
depending in part on the colors of a node, its parent, and its uncle.
What violations of the red-black properties might occur upon the call to

RB-I NSERT-FIXUP ? Property 1 certainly continues to hold (every node is either
red or black), as does property 3 (every leaf is black), since both children of the
newly inserted red node are the sentinel T: nil. Property 5, which says that the
number of black nodes is the same on every simple path from a given node, is sat-
isûed as well, because node ´ replaces the (black) sentinel, and node ´ is red with
sentinel children. Thus, the only properties that might be violated are property 2,
which requires the root to be black, and property 4, which says that a red node
cannot have a red child. Both possible violations may arise because ´ is colored
red. Property 2 is violated if ´ is the root, and property 4 is violated if ´’s parent
is red. Figure 13.4(a) shows a violation of property 4 after the node ´ has been
inserted.

The while loop of lines 1329 has two symmetric possibilities: lines 3315 deal
with the situation in which node ´’s parent ´: p is a left child of ´’s grandpar-
ent ´: p: p, and lines 17329 apply when ´’s parent is a right child. Our proof will
focus only on lines 3315, relying on the symmetry in lines 17329.
We’ll show that the while loop maintains the following three-part invariant at

the start of each iteration of the loop:
a. Node ´ is red.
b. If ´: p is the root, then ´: p is black.
c. If the tree violates any of the red-black properties, then it violates at most

one of them, and the violation is of either property 2 or property 4, but
not both. If the tree violates property 2, it is because ´ is the root and is
red. If the tree violates property 4, it is because both ´ and ´: p are red.

Part (c), which deals with violations of red-black properties, is more central to
showing that RB-I NSERT-FIXUP restores the red-black properties than parts (a)
and (b), which we’ll use along the way to understand situations in the code. Be-
cause we’ll be focusing on node ´ and nodes near it in the tree, it helps to know
from part (a) that ´ is red. Part (b) will help show that ´’s grandparent ´: p: p exists
when it’s referenced in lines 2, 3, 7, 8, 14, and 15 (recall that we’re focusing only
on lines 3315).

1 Although we try to avoid gendered language in this book, the English language lacks a gender-
neutral word for a parent’s sibling.

13.3 Insertion 341

z
y

11

2

1 7

5

4

8

14

15

z
y

11

2

1 7

5

4

8

14

15

(a)

(b)

Case 1

z
y

11

7

2 8

4

14

15 (c)

Case 2

1 5

4

z
7

2

1 5

11

14 (d)

Case 3

4

8

15

Figure 13.4 The operation of RB-I NSERT-FIXUP. (a) A node ´ after insertion. Because both ´
and its parent ´: p are red, a violation of property 4 occurs. Since ´’s uncle y is red, case 1 in the code
applies. Node ´’s grandparent ´: p: p must be black, and its blackness transfers down one level to ´’s
parent and uncle. Once the pointer ´ moves up two levels in the tree, the tree shown in (b) results.
Once again, ´ and its parent are both red, but this time ´’s uncle y is black. Since ´ is the right child
of ´: p, case 2 applies. Performing a left rotation results in the tree in (c). Now ´ is the left child
of its parent, and case 3 applies. Recoloring and right rotat ion yield the tree in (d), which is a legal
red-black tree.

342 Chapter 13 Red-Black Trees

Recall that to use a loop invariant, we need to show that the invariant is true
upon entering the ûrst iteration of the loop, that each iteration maintains it, that
the loop terminates, and that the loop invariant gives us a useful property at loop
termination. We’ll see that each iteration of the loop has two possible outcomes:
either the pointer ´ moves up the tree, or some rotations occur and then the loop
terminates.
Initialization: Before RB-I NSERT is called, the red-black tree has no violations.

RB-I NSERT adds a red node ´ and calls RB-I NSERT-FIXUP. We’ll show that
each part of the invariant holds at the time RB-I NSERT-FIXUP is called:
a. When RB-I NSERT-FIXUP is called, ´ is the red node that was added.
b. If ´: p is the root, then ´: p started out black and did not change before the
call of RB-I NSERT-FIXUP.

c. We have already seen that properties 1, 3, and 5 hold when RB-I NSERT-
FIXUP is called.
If the tree violates property 2 (the root must be black), then the red root
must be the newly added node ´, which is the only internal node in the tree.
Because the parent and both children of ´ are the sentinel, which is black, the
tree does not also violate property 4 (both children of a red node are black).
Thus this violation of property 2 is the only violation of red-black properties
in the entire tree.
If the tree violates property 4, then, because the children of node ´ are black
sentinels and the tree had no other violations prior to ´ being added, the
violation must be because both ´ and ´: p are red. Moreover, the tree violates
no other red-black properties.

Maintenance: There are six cases within the while loop, but we’ll examine only
the three cases in lines 3315, when node ´’s parent ´: p is a left child of ´’s
grandparent ´: p: p. The proof for lines 17329 is symmetric. The node ´: p: p
exists, since by part (b) of the loop invariant, if ´: p is the root, then ´: p is
black. Since RB-I NSERT-FIXUP enters a loop iteration only if ´: p is red, we
know that ´: p cannot be the root. Hence, ´: p: p exists.
Case 1 differs from cases 2 and 3 by the color of ´’s uncle y . Line 3 makes
y point to ´’s uncle ´: p: p: right , and line 4 tests y ’s color. If y is red, then
case 1 executes. Otherwise, control passes to cases 2 and 3. In all three cases,
´’s grandparent ´: p: p is black, since its parent ´: p is red, and property 4 is
violated only between ´ and ´: p.

13.3 Insertion 343

z
y

C

D A

B ³

´ µ

¶ ε

(a)
C

D A

B ³

´ µ

¶ ε

new z

y
C

D B

¶ ε

C

D B

A

³ ´

µ ¶ ε

new z
(b)

A

³ ´

µ z

Figure 13.5 Case 1 of the procedure RB-I NSERT-FIXUP. Both ´ and its parent ´: p are red, violat-
ing property 4. In case 1, ´’s uncle y is red. The same action occurs regardless of whether (a) ´ is a
right child or (b) ´ is a left child. Each of the subtrees ˛, ˇ, � , ı, and " has a black root4possibly
the sentinel4and each has the same black-height. The code for case 1 moves the blackness of ´’s
grandparent down to ´’s parent and uncle, preserving property 5: all downward simple paths from a
node to a leaf have the same number of blacks. The while loop continues with node ´’s grandpar-
ent ´: p: p as the new ´. If the action of case 1 causes a new violation of property 4 to occur, it must
be only between the new ´, which is red, and its parent, if it is red as well.

Case 1: ´’s uncle y is red
Figure 13.5 shows the situation for case 1 (lines 538), which occurs when
both ´: p and y are red. Because ´’s grandparent ´: p: p is black, its blackness
can transfer down one level to both ´: p and y , thereby ûxing the problem of ´
and ´: p both being red. Having had its blackness transferred down one level,
´’s grandparent becomes red, thereby maintaining property 5. The while loop
repeats with ´: p: p as the new node ´, so that the pointer ´ moves up two levels
in the tree.
Now, we show that case 1 maintains the loop invariant at the start of the next
iteration. We use ´ to denote node ´ in the current iteration, and ´ 0 D ´: p: p
to denote the node that will be called node ´ at the test in line 1 upon the next
iteration.
a. Because this iteration colors ´: p: p red, node ´ 0 is red at the start of the next

iteration.
b. The node ´ 0 : p is ´: p: p: p in this iteration, and the color of this node does not

change. If this node is the root, it was black prior to this iteration, and it
remains black at the start of the next iteration.

344 Chapter 13 Red-Black Trees

C

A

B ³

´ µ

¶

Case 2

z
y B

A

³ ´

µ

¶

Case 3

z

y z A

B

C

³ ´ µ ¶

C

Figure 13.6 Cases 2 and 3 of the procedure RB-I NSERT-FIXUP. As in case 1, property 4 is violated
in either case 2 or case 3 because ´ and its parent ´: p are both red. Each of the subtrees ˛, ˇ, � ,
and ı has a black root (˛, ˇ, and � from property 4, and ı because otherwise case 1 would apply),
and each has the same black-height. Case 2 transforms into case 3 by a left rotation, which preserves
property 5: all downward simple paths from a node to a leaf have the same number of blacks. Case 3
causes some color changes and a right rotation, which also preserve property 5. The while loop then
terminates, because property 4 is satisûed: there are no longer two red nodes in a row.

c. We have already argued that case 1 maintains property 5, and it does not
introduce a violation of properties 1 or 3.
If node ´ 0 is the root at the start of the next iteration, then case 1 corrected
the lone violation of property 4 in this iteration. Since ´ 0 is red and it is the
root, property 2 becomes the only one that is violated, and this violation is
due to ´ 0 .
If node ´ 0 is not the root at the start of the next iteration, then case 1 has
not created a violation of property 2. Case 1 corrected the lone violation
of property 4 that existed at the start of this iteration. It then made ´ 0 red
and left ´ 0 : p alone. If ´ 0 : p was black, there is no violation of property 4.
If ́ 0 : p was red, coloring ´ 0 red created one violation of property 4, between ´ 0
and ´ 0 : p.

Case 2: ´’s uncle y is black and ´ is a right child
Case 3: ´’s uncle y is black and ´ is a left child
In cases 2 and 3, the color of ´’s uncle y is black. We distinguish the two cases,
which assume that ´’s parent ´: p is red and a left child, according to whether ´
is a right or left child of ´: p. Lines 11312 constitute case 2, which is shown in
Figure 13.6 together with case 3. In case 2, node ´ is a right child of its parent.
A left rotation immediately transforms the situation into case 3 (lines 13315), in
which node ´ is a left child. Because both ´ and ´: p are red, the rotation affects
neither the black-heights of nodes nor property 5. Whether case 3 executes
directly or through case 2, ´’s uncle y is black, since otherwise case 1 would
have run. Additionally, the node ´: p: p exists, since we have argued that this

13.3 Insertion 345

node existed at the time that lines 2 and 3 were executed, and after moving ´
up one level in line 11 and then down one level in line 12, the identity of ´: p: p
remains unchanged. Case 3 performs some color changes and a right rotation,
which preserve property 5. At this point, there are no longer two red nodes in
a row. The while loop terminates upon the next test in line 1, since ´: p is now
black.
We now show that cases 2 and 3 maintain the loop invariant. (As we have just
argued, ´: p will be black upon the next test in line 1, and the loop body will not
execute again.)
a. Case 2 makes ´ point to ´: p, which is red. No further change to ´ or its color
occurs in cases 2 and 3.

b. Case 3 makes ´: p black, so that if ´: p is the root at the start of the next
iteration, it is black.

c. As in case 1, properties 1, 3, and 5 are maintained in cases 2 and 3.
Since node ´ is not the root in cases 2 and 3, we know that there is no viola-
tion of property 2. Cases 2 and 3 do not introduce a violation of property 2,
since the only node that is made red becomes a child of a black node by the
rotation in case 3.
Cases 2 and 3 correct the lone violation of property 4, and they do not intro-
duce another violation.

Termination: To see that the loop terminates, observe that if only case 1 occurs,
then the node pointer ´ moves toward the root in each iteration, so that eventu-
ally ´: p is black. (If ´ is the root, then ´: p is the sentinel T: nil, which is black.)
If either case 2 or case 3 occurs, then we’ve seen that the loop terminates. Since
the loop terminates because ´: p is black, the tree does not violate property 4
at loop termination. By the loop invariant, the only property that might fail to
hold is property 2. Line 30 restores this property by coloring the root black, so
that when RB-I NSERT-FIXUP terminates, all the red-black properties hold.
Thus, we have shown that RB-I NSERT-FIXUP correctly restores the red-black

properties.

Analysis
What is the running time of RB-I NSERT? Since the height of a red-black tree on n
nodes is O.lg n/, lines 1316 of RB-I NSERT take O.lg n/ time. In RB-I NSERT-
FIXUP, the while loop repeats only if case 1 occurs, and then the pointer ´ moves
two levels up the tree. The total number of times the while loop can be executed
is therefore O.lg n/. Thus, RB-I NSERT takes a total of O.lg n/ time. Moreover, it

346 Chapter 13 Red-Black Trees

never performs more than two rotations, since the while loop terminates if case 2
or case 3 is executed.

Exercises
13.3-1
Line 16 of RB-I NSERT sets the color of the newly inserted node ´ to red. If in-
stead ´’s color were set to black, then property 4 of a red-black tree would not be
violated. Why not set ´’s color to black?
13.3-2
Show the red-black trees that result after successively inserting the keys 41; 38; 31;
12; 19; 8 into an initially empty red-black tree.
13.3-3
Suppose that the black-height of each of the subtrees ˛; ˇ; �; ı; " in Figures 13.5
and 13.6 is k. Label each node in each ûgure with its black-height to verify that
the indicated transformation preserves property 5.
13.3-4
Professor Teach is concerned that RB-I NSERT-FIXUP might set T: nil: color to
RED, in which case the test in line 1 would not cause the loop to terminate when ´
is the root. Show that the professor’s concern is unfounded by arguing that RB-
I NSERT-FIXUP never sets T: nil: color to RED.
13.3-5
Consider a red-black tree formed by inserting n nodes with RB-I NSERT. Argue
that if n > 1, the tree has at least one red node.
13.3-6
Suggest how to implement RB-I NSERT efûciently if the representation for red-
black trees includes no storage for parent pointers.

13.4 Deletion

Like the other basic operations on an n-node red-black tree, deletion of a node
takes O.lg n/ time. Deleting a node from a red-black tree is more complicated
than inserting a node.
The procedure for deleting a node from a red-black tree is based on the TREE-

DELETE procedure on page 325. First, we need to customize the TRANSPLANT

13.4 Deletion 347

subroutine on page 324 that TREE-DELETE calls so that it applies to a red-black
tree. Like TRANSPLANT, the new procedure RB-TRANSPLANT replaces the sub-
tree rooted at node u by the subtree rooted at node v. The RB-TRANSPLANT pro-
cedure differs from TRANSPLANT in two ways. First, line 1 references the sentinel
T: nil instead of NIL. Second, the assignment to v: p in line 6 occurs uncondition-
ally: the procedure can assign to v: p even if v points to the sentinel. We’ll take
advantage of the ability to assign to v: p when v D T: nil.

RB-TRANSPLANT .T; u; v/
1 if u: p == T: nil
2 T: root D v
3 elseif u == u: p: left
4 u: p: left D v
5 else u: p: right D v
6 v: p D u: p

The procedure RB-DELETE on the next page is like the TREE-DELETE proce-
dure, but with additional lines of pseudocode. The additional lines deal with nodes
x and y that may be involved in violations of the red-black properties. When the
node ´ being deleted has at most one child, then y will be ´. When ´ has two
children, then, as in TREE-DELETE, y will be ´’s successor, which has no left
child and moves into ´’s position in the tree. Additionally, y takes on ´’s color.
In either case, node y has at most one child: node x , which takes y ’s place in the
tree. (Node x will be the sentinel T: nil if y has no children.) Since node y will
be either removed from the tree or moved within the tree, the procedure needs to
keep track of y ’s original color. If the red-black properties might be violated after
deleting node ´, RB-DELETE calls the auxiliary procedure RB-DELETE-FIXUP,
which changes colors and performs rotations to restore the red-black properties.
Although RB-DELETE contains almost twice as many lines of pseudocode as

TREE-DELETE, the two procedures have the same basic structure. You can ûnd
each line of TREE-DELETE within RB-DELETE (with the changes of replacing
NIL by T: nil and replacing calls to TRANSPLANT by calls to RB-TRANSPLANT),
executed under the same conditions.

In detail, here are the other differences between the two procedures:
 Lines 1 and 9 set node y as described above: line 1 when node ´ has at most

one child and line 9 when ´ has two children.
 Because node y ’s color might change, the variable y-original-color stores y ’s

color before any changes occur. Lines 2 and 10 set this variable immediately
after assignments to y . When node ´ has two children, then nodes y and ´ are

348 Chapter 13 Red-Black Trees

RB-DELETE .T; ´/
1 y D ´
2 y-original-color D y: color
3 if ´: left = = T: nil
4 x D ´: right
5 RB-TRANSPLANT .T; ´; ´: right / // replace ´ by its right child
6 elseif ´: right = = T: nil
7 x D ´: left
8 RB-TRANSPLANT .T; ´; ´: left / // replace ´ by its left child
9 else y D TREE-MINIMUM.´: right / // y is ´’s successor
10 y-original-color D y: color
11 x D y: right
12 if y ¤ ´: right // is y farther down the tree?
13 RB-TRANSPLANT .T; y; y: right / // replace y by its right child
14 y: right D ´: right // ´’s right child becomes
15 y: right : p D y // y ’s right child
16 else x: p D y // in case x is T: nil
17 RB-TRANSPLANT .T; ´; y/ // replace ´ by its successor y
18 y: left D ´: left // and give ´’s left child to y ,
19 y: left: p D y // which had no left child
20 y: color D ´: color
21 if y-original-color = = BLACK // if any red-black violations occurred,
22 RB-DELETE-FIXUP .T; x/ // correct them

distinct. In this case, line 17 moves y into ´’s original position in the tree (that
is, ´’s location in the tree at the time RB-DELETE was called), and line 20 gives
y the same color as ´. When node y was originally black, removing or moving
it could cause violations of the red-black properties, which are corrected by the
call of RB-DELETE-FIXUP in line 22.

 As discussed, the procedure keeps track of the node x that moves into node y ’s
original position at the time of call. The assignments in lines 4, 7, and 11 set x
to point to either y ’s only child or, if y has no children, the sentinel T: nil.

 Since node x moves into node y ’s original position, the attribute x: p must be set
correctly. If node ´ has two children and y is ´’s right child, then y just moves
into ´’s position, with x remaining a child of y . Line 12 checks for this case.
Although you might think that setting x: p to y in line 16 is unnecessary since
x is a child of y , the call of RB-DELETE-FIXUP relies on x: p being y even if
x is T: nil. Thus, when ´ has two children and y is ´’s right child, executing

13.4 Deletion 349

line 16 is necessary if y ’s right child is T: nil, and otherwise it does not change
anything.
Otherwise, node ´ is either the same as node y or it is a proper ancestor of
y ’s original parent. In these cases, the calls of RB-TRANSPLANT in lines 5,
8, and 13 set x: p correctly in line 6 of RB-TRANSPLANT. (In these calls of
RB-TRANSPLANT, the third parameter passed is the same as x .)

 Finally, if node y was black, one or more violations of the red-black properties
might arise. The call of RB-DELETE-FIXUP in line 22 restores the red-black
properties. If y was red, the red-black properties still hold when y is removed
or moved, for the following reasons:
1. No black-heights in the tree have changed. (See Exercise 13.4-1.)
2. No red nodes have been made adjacent. If ´ has at most one child, then y

and ´ are the same node. That node is removed, with a child taking its place.
If the removed node was red, then neither its parent nor its children can also
be red, so moving a child to take its place cannot cause two red nodes to
become adjacent. If, on the other hand, ´ has two children, then y takes ´’s
place in the tree, along with ´’s color, so there cannot be two adjacent red
nodes at y ’s new position in the tree. In addition, if y was not ´’s right child,
then y ’s original right child x replaces y in the tree. Since y is red, x must
be black, and so replacing y by x cannot cause two red nodes to become
adjacent.

3. Because y could not have been the root if it was red, the root remains black.
If node y was black, three problems may arise, which the call of RB-DELETE-

FIXUP will remedy. First, if y was the root and a red child of y became the new
root, property 2 is violated. Second, if both x and its new parent are red, then a
violation of property 4 occurs. Third, moving y within the tree causes any simple
path that previously contained y to have one less black node. Thus, property 5 is
now violated by any ancestor of y in the tree. We can correct the violation of prop-
erty 5 by saying that when the black node y is removed or moved, its blackness
transfers to the node x that moves into y ’s original position, giving x an <extra=
black. That is, if we add 1 to the count of black nodes on any simple path that con-
tains x , then under this interpretation, property 5 holds. But now another problem
emerges: node x is neither red nor black, thereby violating property 1. Instead,
node x is either <doubly black= or <red-and-black,= and it contributes either 2 or 1,
respectively, to the count of black nodes on simple paths containing x . The color
attribute of x will still be either RED (if x is red-and-black) or BLACK (if x is dou-
bly black). In other words, the extra black on a node is reüected in x ’s pointing to
the node rather than in the color attribute.

350 Chapter 13 Red-Black Trees

The procedure RB-DELETE-FIXUP on the next page restores properties 1, 2,
and 4. Exercises 13.4-2 and 13.4-3 ask you to show that the procedure restores
properties 2 and 4, and so in the remainder of this section, we focus on property 1.
The goal of the while loop in lines 1343 is to move the extra black up the tree until
1. x points to a red-and-black node, in which case line 44 colors x (singly) black;
2. x points to the root, in which case the extra black simply vanishes; or
3. having performed suitable rotations and recolorings, the loop exits.
Like RB-I NSERT-FIXUP, the RB-DELETE-FIXUP procedure handles two sym-
metric situations: lines 3322 for when node x is a left child, and lines 24343 for
when x is a right child. Our proof focuses on the four cases shown in lines 3322.

Within the while loop, x always points to a nonroot doubly black node. Line 2
determines whether x is a left child or a right child of its parent x: p so that either
lines 3322 or 24343 will execute in a given iteration. The sibling of x is always
denoted by a pointer w. Since node x is doubly black, node w cannot be T: nil,
because otherwise, the number of blacks on the simple path from x: p to the (singly
black) leaf w would be smaller than the number on the simple path from x: p to x .
Recall that the RB-DELETE procedure always assigns to x: p before calling RB-

DELETE-FIXUP (either within the call of RB-TRANSPLANT in line 13 or the as-
signment in line 16), even when node x is the sentinel T: nil. That is because
RB-DELETE-FIXUP references x ’s parent x: p in several places, and this attribute
must point to the node that became x ’s parent in RB-DELETE4even if x is T: nil.
Figure 13.7 demonstrates the four cases in the code when node x is a left child.

(As in RB-I NSERT-FIXUP, the cases in RB-DELETE-FIXUP are not mutually ex-
clusive.) Before examining each case in detail, let’s look more generally at how
we can verify that the transformation in each of the cases preserves property 5.
The key idea is that in each case, the transformation applied preserves the num-
ber of black nodes (including x ’s extra black) from (and including) the root of the
subtree shown to the roots of each of the subtrees ˛; ˇ; : : : ; � . Thus, if property 5
holds prior to the transformation, it continues to hold afterward. For example, in
Figure 13.7(a), which illustrates case 1, the number of black nodes from the root
to the root of either subtree ˛ or ˇ is 3, both before and after the transformation.
(Again, remember that node x adds an extra black.) Similarly, the number of black
nodes from the root to the root of any of � , ı , ", and � is 2, both before and after
the transformation. 2 In Figure 13.7(b), the counting must involve the value c of the
color attribute of the root of the subtree shown, which can be either RED or BLACK.

2 If property 5 holds, we can assume that paths from the roots of � , ı, ", and � down to leaves contain
one more black than do paths from the roots of ˛ and ˇ down to leaves.

13.4 Deletion 351

RB-DELETE-FIXUP .T; x/
1 while x ¤ T: root and x: color == BLACK
2 if x == x: p: left // is x a left child?
3 w D x: p: right // w is x’s sibling
4 if w: color == RED
5 w: color D BLACK *

case 1
6 x: p: color D RED
7 LEFT-ROTATE .T; x: p/
8 w D x: p: right
9 if w: left: color == BLACK and w: right: color == BLACK
10 w: color D RED

ð
case 2 11 x D x: p

12 else
13 if w: right: color == BLACK
14 w: left: color D BLACK

*
case 3 15 w: color D RED

16 RIGHT-ROTATE .T;w/
17 w D x: p: right
18 w: color D x: p: color …

case 4
19 x: p: color D BLACK
20 w: right: color D BLACK
21 LEFT-ROTATE .T; x: p/
22 x D T: root
23 else // same as lines 3322, but with <right= and <left= exchanged
24 w D x: p: left
25 if w: color == RED
26 w: color D BLACK
27 x: p: color D RED
28 RIGHT-ROTATE .T; x: p/
29 w D x: p: left
30 if w: right: color == BLACK and w: left: color == BLACK
31 w: color D RED
32 x D x: p
33 else
34 if w: left: color == BLACK
35 w: right: color D BLACK
36 w: color D RED
37 LEFT-ROTATE .T;w/
38 w D x: p: left
39 w: color D x: p: color
40 x: p: color D BLACK
41 w: left: color D BLACK
42 RIGHT-ROTATE .T; x: p/
43 x D T: root
44 x: color D BLACK

352 Chapter 13 Red-Black Trees

A

B

D

C E ³ ´

µ ¶ ε ζ

x w
A

B

C

D

E

x new w

³ ´ µ ¶

ε ζ

A

B

D

C E ³ ´

µ ¶ ε ζ

x w
c

A

B

D

C E ³ ´

µ ¶ ε ζ

c new x

A

B

D

C E ³ ´

µ ¶ ε ζ

x w
c

A

B

C

D ³ ´ µ

¶

ε ζ

x
c

new w

A

B

D

C E ³ ´

µ ¶

ε ζ

x w
c c

³ ´

A

B

C

D

E (d)

(c)

(b)

(a)

µ ¶ ε ζ

Case 4

Case 3

Case 2

Case 1

E

cʹ cʹ

new x D T: root

Figure 13.7 The cases in lines 3322 of the procedure RB-DELETE-FIXUP. Brown nodes have
color attributes represented by c and c 0 , which may be either RED or BLACK. The letters ˛; ˇ; : : : ; �
represent arbitrary subtrees. Each case transforms the conûguration on the left into the conûguration
on the right by changing some colors and/or performing a rotation. Any node pointed to by x has
an extra black and is either doubly black or red-and-black. Only case 2 causes the loop to repeat.
(a) Case 1 is transformed into case 2, 3, or 4 by exchanging the colors of nodes B and D and
performing a left rotation. (b) In case 2, the extra black represented by the pointer x moves up the
tree by coloring node D red and setting x to point to node B . If case 2 is entered through case 1, the
while loop terminates because the new node x is red-and-black, and therefore the value c of its color
attribute is RED. (c) Case 3 is transformed to case 4 by exchanging the colors of nodes C and D and
performing a right rotation. (d) Case 4 removes the extra black represented by x by changing some
colors and performing a left rotation (without violating the red-black properties), and then the loop
terminates.

13.4 Deletion 353

If we deûne count.RED/ D 0 and count.BLACK/ D 1, then the number of black
nodes from the root to ˛ is 2 C count.c/, both before and after the transformation.
In this case, after the transformation, the new node x has color attribute c , but this
node is really either red-and-black (if c D RED) or doubly black (if c D BLACK).
You can verify the other cases similarly (see Exercise 13.4-6).

Case 1: x’s sibling w is red
Case 1 (lines 538 and Figure 13.7(a)) occurs when node w, the sibling of node x ,
is red. Because w is red, it must have black children. This case switches the colors
of w and x: p and then performs a left-rotation on x: p without violating any of the
red-black properties. The new sibling of x , which is one of w’s children prior to
the rotation, is now black, and thus case 1 converts into one of cases 2, 3, or 4.
Cases 2, 3, and 4 occur when node w is black and are distinguished by the colors

of w’s children.

Case 2: x’s sibling w is black, and both of w’s children are black
In case 2 (lines 10311 and Figure 13.7(b)), both of w’s children are black. Since w
is also black, this case removes one black from both x and w, leaving x with only
one black and leaving w red. To compensate for x and w each losing one black,
x ’s parent x: p can take on an extra black. Line 11 does so by moving x up one
level, so that the while loop repeats with x: p as the new node x . If case 2 enters
through case 1, the new node x is red-and-black, since the original x: p was red.
Hence, the value c of the color attribute of the new node x is RED, and the loop
terminates when it tests the loop condition. Line 44 then colors the new node x
(singly) black.

Case 3: x’s sibling w is black, w’s left child is red, and w’s right child is black
Case 3 (lines 14317 and Figure 13.7(c)) occurs when w is black, its left child is
red, and its right child is black. This case switches the colors of w and its left
child w: left and then performs a right rotation on w without violating any of the
red-black properties. The new sibling w of x is now a black node with a red right
child, and thus case 3 falls through into case 4.

Case 4: x’s sibling w is black, and w’s right child is red
Case 4 (lines 18322 and Figure 13.7(d)) occurs when node x ’s sibling w is black
and w’s right child is red. Some color changes and a left rotation on x: p allow
the extra black on x to vanish, making it singly black, without violating any of the
red-black properties. Line 22 sets x to be the root, and the while loop terminates
when it next tests the loop condition.

354 Chapter 13 Red-Black Trees

Analysis
What is the running time of RB-DELETE? Since the height of a red-black tree of n
nodes is O.lg n/, the total cost of the procedure without the call to RB-DELETE-
FIXUP takes O.lg n/ time. Within RB-DELETE-FIXUP, each of cases 1, 3, and 4
lead to termination after performing a constant number of color changes and at
most three rotations. Case 2 is the only case in which the while loop can be re-
peated, and then the pointer x moves up the tree at most O.lg n/ times, performing
no rotations. Thus, the procedure RB-DELETE-FIXUP takes O.lg n/ time and per-
forms at most three rotations, and the overall time for RB-DELETE is therefore
also O.lg n/.

Exercises
13.4-1
Show that if node y in RB-DELETE is red, then no black-heights change.
13.4-2
Argue that after RB-DELETE-FIXUP executes, the root of the tree must be black.
13.4-3
Argue that if in RB-DELETE both x and x: p are red, then property 4 is restored by
the call to RB-DELETE-FIXUP .T; x/.
13.4-4
In Exercise 13.3-2 on page 346, you found the red-black tree that results from suc-
cessively inserting the keys 41; 38; 31; 12; 19; 8 into an initially empty tree. Now
show the red-black trees that result from the successive deletion of the keys in the
order 8; 12; 19; 31; 38; 41.
13.4-5
Which lines of the code for RB-DELETE-FIXUP might examine or modify the
sentinel T: nil?
13.4-6
In each of the cases of Figure 13.7, give the count of black nodes from the root of
the subtree shown to the roots of each of the subtrees ˛; ˇ; : : : ; � , and verify that
each count remains the same after the transformation. When a node has a color
attribute c or c 0 , use the notation count.c/ or count.c 0 / symbolically in your count.
13.4-7
Professors Skelton and Baron worry that at the start of case 1 of RB-DELETE-
FIXUP, the node x: p might not be black. If x: p is not black, then lines 536 are

Problems for Chapter 13 355

wrong. Show that x: p must be black at the start of case 1, so that the professors
need not be concerned.
13.4-8
A node x is inserted into a red-black tree with RB-I NSERT and then is immediately
deleted with RB-DELETE. Is the resulting red-black tree always the same as the
initial red-black tree? Justify your answer.

? 13.4-9
Consider the operation RB-ENUMERATE .T; r; a; b/, which outputs all the keys k
such that a හ k හ b in a subtree rooted at node r in an n-node red-black tree T .
Describe how to implement RB-ENUMERATE in ‚.m C lg n/ time, where m is
the number of keys that are output. Assume that the keys in T are unique and that
the values a and b appear as keys in T . How does your solution change if a and b
might not appear in T ?

Problems

13-1 Persistent dynamic sets
During the course of an algorithm, you sometimes ûnd that you need to maintain
past versions of a dynamic set as it is updated. We call such a set persistent. One
way to implement a persistent set is to copy the entire set whenever it is modi-
ûed, but this approach can slow down a program and also consume a lot of space.
Sometimes, you can do much better.

Consider a persistent set S with the operations I NSERT, DELETE, and SEARCH,
which you implement using binary search trees as shown in Figure 13.8(a). Main-
tain a separate root for every version of the set. In order to insert the key 5 into the
set, create a new node with key 5. This node becomes the left child of a new node
with key 7, since you cannot modify the existing node with key 7. Similarly, the
new node with key 7 becomes the left child of a new node with key 8 whose right
child is the existing node with key 10. The new node with key 8 becomes, in turn,
the right child of a new root r 0 with key 4 whose left child is the existing node with
key 3. Thus, you copy only part of the tree and share some of the nodes with the
original tree, as shown in Figure 13.8(b).

Assume that each tree node has the attributes key, left , and right but no parent.
(See also Exercise 13.3-6 on page 346.)
a. For a persistent binary search tree (not a red-black tree, just a binary search

tree), identify the nodes that need to change to insert or delete a node.

356 Chapter 13 Red-Black Trees

4

3

2

8

7 10

4

8

7

5

(b)

r rʹ 4

3

2

8

7 10

(a)

r

Figure 13.8 (a) A binary search tree with keys 2; 3; 4; 7; 8; 10. (b) The persistent binary search
tree that results from the insertion of key 5. The most recent version of the set consists of the nodes
reachable from the root r 0 , and the previous version consists of the nodes reachable from r . Blue
nodes are added when key 5 is inserted.

b. Write a procedure PERSISTENT-TREE-I NSERT .T; ´/ that, given a persistent
binary search tree T and a node ´ to insert, returns a new persistent tree T 0
that is the result of inserting ´ into T . Assume that you have a procedure
COPY-NODE.x/ that makes a copy of node x , including all of its attributes.

c. If the height of the persistent binary search tree T is h, what are the time and
space requirements of your implementation of PERSISTENT-TREE-I NSERT?
(The space requirement is proportional to the number of nodes that are copied.)

d. Suppose that you include the parent attribute in each node. In this case, the
PERSISTENT-TREE-I NSERT procedure needs to perform additional copying.
Prove that PERSISTENT-TREE-I NSERT then requires �.n/ time and space,
where n is the number of nodes in the tree.

e. Show how to use red-black trees to guarantee that the worst-case running time
and space are O.lg n/ per insertion or deletion. You may assume that all keys
are distinct.

13-2 Join operation on red-black trees
The join operation takes two dynamic sets S 1 and S 2 and an element x such that
for any x 1 2 S 1 and x 2 2 S 2 , we have x 1 : key හ x: key හ x 2 : key. It returns a set
S D S 1 [fx g [S 2 . In this problem, we investigate how to implement the join
operation on red-black trees.
a. Suppose that you store the black-height of a red-black tree T as the new at-

tribute T: bh. Argue that RB-I NSERT and RB-DELETE can maintain the bh

Problems for Chapter 13 357

attribute without requiring extra storage in the nodes of the tree and without
increasing the asymptotic running times. Show how to determine the black-
height of each node visited while descending through T , using O.1/ time per
node visited.

Let T 1 and T 2 be red-black trees and x be a key value such that for any nodes
x 1 in T 1 and x 2 in T 2 , we have x 1 : key හ x: key හ x 2 : key. You will show how
to implement the operation RB-J OIN.T 1 ; x; T 2 /, which destroys T 1 and T 2 and
returns a red-black tree T D T 1 [fx g [T 2 . Let n be the total number of nodes in
T 1 and T 2 .
b. Assume that T 1 : bh T 2 : bh. Describe an O.lg n/-time algorithm that ûnds a

black node y in T 1 with the largest key from among those nodes whose black-
height is T 2 : bh.

c. Let T y be the subtree rooted at y . Describe how T y [fx g [T 2 can replace T y
in O.1/ time without destroying the binary-search-tree property.

d. What color should you make x so that red-black properties 1, 3, and 5 are
maintained? Describe how to enforce properties 2 and 4 in O.lg n/ time.

e. Argue that no generality is lost by making the assumption in part (b). Describe
the symmetric situation that arises when T 1 : bh හ T 2 : bh.

f. Argue that the running time of RB-J OIN is O.lg n/.

13-3 AVL trees
An AVL tree is a binary search tree that is height balanced: for each node x , the
heights of the left and right subtrees of x differ by at most 1. To implement an
AVL tree, maintain an extra attribute h in each node such that x: h is the height of
node x . As for any other binary search tree T , assume that T: root points to the root
node.
a. Prove that an AVL tree with n nodes has height O.lg n/. (Hint: Prove that

an AVL tree of height h has at least F h nodes, where F h is the hth Fibonacci
number.)

b. To insert into an AVL tree, ûrst place a node into the appropriate place in bi-
nary search tree order. Afterward, the tree might no longer be height balanced.
Speciûcally, the heights of the left and right children of some node might differ
by 2. Describe a procedure BALANCE.x/, which takes a subtree rooted at x
whose left and right children are height balanced and have heights that differ

358 Chapter 13 Red-Black Trees

by at most 2, so that jx: right : h x: left: hj හ 2, and alters the subtree rooted
at x to be height balanced. The procedure should return a pointer to the node
that is the root of the subtree after alterations occur. (Hint: Use rotations.)

c. Using part (b), describe a recursive procedure AVL-I NSERT .T; ´/ that takes
an AVL tree T and a newly created node ´ (whose key has already been ûlled
in), and adds ´ into T , maintaining the property that T is an AVL tree. As in
TREE-I NSERT from Section 12.3, assume that ´: key has already been ûlled in
and that ´: left D NIL and ´: right D NIL. Assume as well that ´: h D 0.

d. Show that AVL-I NSERT, run on an n-node AVL tree, takes O.lg n/ time and
performs O.lg n/ rotations.

Chapter notes

The idea of balancing a search tree is due to Adel’son-Vel’ski˘ ı and Landis [2], who
introduced a class of balanced search trees called <AVL trees= in 1962, described in
Problem 13-3. Another class of search trees, called <2-3 trees,= was introduced by
J. E. Hopcroft (unpublished) in 1970. A 2-3 tree maintains balance by manipulating
the degrees of nodes in the tree, where each node has either two or three children.
Chapter 18 covers a generalization of 2-3 trees introduced by Bayer and McCreight
[39], called <B-trees.=
Red-black trees were invented by Bayer [38] under the name <symmetric binary

B-trees.= Guibas and Sedgewick [202] studied their properties at length and in-
troduced the red/black color convention. Andersson [16] gives a simpler-to-code
variant of red-black trees. Weiss [451] calls this variant AA-trees. An AA-tree is
similar to a red-black tree except that left children can never be red.
Sedgewick and Wayne [402] present red-black trees as a modiûed version of 2-3

trees in which a node with three children is split into two nodes with two children
each. One of these nodes becomes the left child of the other, and only left children
can be red. They call this structure a <left-leaning red-black binary search tree.=
Although the code for left-leaning red-black binary search trees is more concise
than the red-black tree pseudocode in this chapter, operations on left-leaning red-
black binary search trees do not limit the number of rotations per operation to a
constant. This distinction will matter in Chapter 17.

Treaps, a hybrid of binary search trees and heaps, were proposed by Seidel and
Aragon [404]. They are the default implementation of a dictionary in LEDA [324],
which is a well-implemented collection of data structures and algorithms.

There are many other variations on balanced binary trees, including weight-
balanced trees [344], k-neighbor trees [318], and scapegoat trees [174]. Perhaps

Notes for Chapter 13 359

the most intriguing are the <splay trees= introduced by Sleator and Tarjan [418],
which are <self-adjusting.= (See Tarjan [429] for a good description of splay trees.)
Splay trees maintain balance without any explicit balance condition such as color.
Instead, <splay operations= (which involve rotations) are performed within the tree
every time an access is made. The amortized cost (see Chapter 16) of each oper-
ation on an n-node tree is O.lg n/. Splay trees have been conjectured to perform
within a constant factor of the best ofüine rotation-based tree. The best known
competitive ratio (see Chapter 27) for a rotation-based tree is the Tango Tree of
Demaine et al. [109].
Skip lists [369] provide an alternative to balanced binary trees. A skip list is a

linked list that is augmented with a number of additional pointers. Each dictionary
operation runs in O.lg n/ expected time on a skip list of n items.

Part IV Advanced Design and Analysis Techniques

Introduction

This part covers three important techniques used in designing and analyzing efû-
cient algorithms: dynamic programming (Chapter 14), greedy algorithms (Chap-
ter 15), and amortized analysis (Chapter 16). Earlier parts have presented other
widely applicable techniques, such as divide-and-conquer , randomization, and how
to solve recurrences. The techniques in this part are somewhat more sophisticated,
but you will be able to use them solve many computational problems. The themes
introduced in this part will recur later in this book.

Dynamic programming typically applies to optimization problems in which you
make a set of choices in order to arrive at an optimal solution, each choice generates
subproblems of the same form as the original problem, and the same subproblems
arise repeatedly. The key strategy is to store the solution to each such subproblem
rather than recompute it. Chapter 14 shows how this simple idea can sometimes
transform exponential-time algorithms into polynomial-time algorithms.
Like dynamic-programming algorithms, greedy algorithms typically apply to

optimization problems in which you make a set of choices in order to arrive at an
optimal solution. The idea of a greedy algorithm is to make each choice in a locally
optimal manner, resulting in a faster algorithm than you get with dynamic program-
ming. Chapter 15 will help you determine when the greedy approach works.

The technique of amortized analysis applies to certain algorithms that perform
a sequence of similar operations. Instead of bounding the cost of the sequence of
operations by bounding the actual cost of each operation separately, an amortized
analysis provides a worst-case bound on the actual cost of the entire sequence. One
advantage of this approach is that although some operations might be expensive,
many others might be cheap. You can use amortized analysis when designing
algorithms, since the design of an algorithm and the analysis of its running time
are often closely intertwined. Chapter 16 introduces three ways to perform an
amortized analysis of an algorithm.

14 Dynamic Programming

Dynamic programming, like the divide-and-conquer method, solves problems by
combining the solutions to subproblems. (<Programming= in this context refers
to a tabular method, not to writing computer code.) As we saw in Chapters 2
and 4, divide-and-conquer algorithms partition the problem into disjoint subprob-
lems, solve the subproblems recursively, and then combine their solutions to solve
the original problem. In contrast, dynamic programming applies when the subprob-
lems overlap4that is, when subproblems share subsubproblems. In this context,
a divide-and-conquer algorithm does more work than necessary, repeatedly solv-
ing the common subsubproblems. A dynamic-programming algorithm solves each
subsubproblem just once and then saves its answer in a table, thereby avoiding the
work of recomputing the answer every time it solves each subsubproblem.

Dynamic programming typically applies to optimization problems. Such prob-
lems can have many possible solutions. Each solution has a value, and you want
to ûnd a solution with the optimal (minimum or maximum) value. We call such
a solution an optimal solution to the problem, as opposed to the optimal solution,
since there may be several solutions that achieve the optimal value.
To develop a dynamic-programming algorithm, follow a sequence of four steps:

1. Characterize the structure of an optimal solution.
2. Recursively deûne the value of an optimal solution.
3. Compute the value of an optimal solution, typically in a bottom-up fashion.
4. Construct an optimal solution from computed information.
Steps 133 form the basis of a dynamic-programming solution to a problem. If you
need only the value of an optimal solution, and not the solution itself, then you
can omit step 4. When you do perform step 4, it often pays to maintain additional
information during step 3 so that you can easily construct an optimal solution.
The sections that follow use the dynamic-programming method to solve some

optimization problems. Section 14.1 examines the problem of cutting a rod into

14.1 Rod cutting 363

rods of smaller length in a way that maximizes their total value. Section 14.2
shows how to multiply a chain of matrices while performing the fewest total scalar
multiplications. Given these examples of dynamic programming, Section 14.3 dis-
cusses two key characteristics that a problem must have for dynamic programming
to be a viable solution technique. Section 14.4 then shows how to ûnd the longest
common subsequence of two sequences via dynamic programming. Finally, Sec-
tion 14.5 uses dynamic programming to construct binary search trees that are opti-
mal, given a known distribution of keys to be looked up.

14.1 Rod cutting

Our ûrst example uses dynamic programming to solve a simple problem in decid-
ing where to cut steel rods. Serling Enterprises buys long steel rods and cuts them
into shorter rods, which it then sells. Each cut is free. The management of Serling
Enterprises wants to know the best way to cut up the rods.

Serling Enterprises has a table giving, for i D 1; 2; : : :, the price p i in dollars
that they charge for a rod of length i inches. The length of each rod in inches is
always an integer. Figure 14.1 gives a sample price table.

The rod-cutting problem is the following. Given a rod of length n inches and
a table of prices p i for i D 1; 2; : : : ; n, determine the maximum revenue r n ob-
tainable by cutting up the rod and selling the pieces. If the price p n for a rod of
length n is large enough, an optimal solution might require no cutting at all.

Consider the case when n D 4. Figure 14.2 shows all the ways to cut up a rod
of 4 inches in length, including the way with no cuts at all. Cutting a 4-inch rod
into two 2-inch pieces produces revenue p 2 C p 2 D 5 C 5 D 10, which is optimal.

Serling Enterprises can cut up a rod of length n in 2 n1 different ways, since they
have an independent option of cutting, or not cutting, at distance i inches from the
left end, for i D 1; 2; : : : ; n 1. 1 We denote a decomposition into pieces using
ordinary additive notation, so that 7 D 2 C 2 C 3 indicates that a rod of length 7 is
cut into three pieces4two of length 2 and one of length 3. If an optimal solution
cuts the rod into k pieces, for some 1 හ k හ n, then an optimal decomposition
n D i 1 C i 2 C C i k

1 If pieces are required to be cut in order of monotonically increasing size, there are fewer ways to
consider. For n D 4, only 5 such ways are possible: parts (a), (b), (c), (e), and (h) in Figure 14.2. The
number of ways is called the partition function, which is approximately equal to e

p
2n=3 =4n

p
3.

This quantity is less than 2 n1 , but still much greater than any polynomial in n. We won’t pursue
this line of inquiry further, however.

364 Chapter 14 Dynamic Programming

length i 1 2 3 4 5 6 7 8 9 10
price p i 1 5 8 9 10 17 17 20 24 30

Figure 14.1 A sample price table for rods. Each rod of length i inches earns the company p i
dollars of revenue.

9

(a)

1

(b)

8

(c) (d)

(e) (f) (g)

1

(h)

1 1 1

5 5 1 8

5 1 1 5 1 1 5 1 1

Figure 14.2 The 8 possible ways of cutting up a rod of length 4. Above each piece is the value
of that piece, according to the sample price chart of Figure 14.1. The optimal strategy is part (c)4
cutting the rod into two pieces of length 24which has total value 10.

of the rod into pieces of lengths i 1 , i 2 , . . . , i k provides maximum corresponding
revenue
r n D p i 1 C p i 2 C C p i k :

For the sample problem in Figure 14.1, you can determine the optimal revenue
ûgures r i , for i D 1; 2; : : : ; 10, by inspection, with the corresponding optimal
decompositions
r 1 D 1 from solution 1 D 1 (no cuts) ;
r 2 D 5 from solution 2 D 2 (no cuts) ;
r 3 D 8 from solution 3 D 3 (no cuts) ;
r 4 D 10 from solution 4 D 2 C 2 ;
r 5 D 13 from solution 5 D 2 C 3 ;
r 6 D 17 from solution 6 D 6 (no cuts) ;
r 7 D 18 from solution 7 D 1 C 6 or 7 D 2 C 2 C 3 ;
r 8 D 22 from solution 8 D 2 C 6 ;
r 9 D 25 from solution 9 D 3 C 6 ;
r 10 D 30 from solution 10 D 10 (no cuts) :

14.1 Rod cutting 365

More generally, we can express the values r n for n 1 in terms of optimal
revenues from shorter rods:
r n D max fp n ; r 1 C r n1 ; r 2 C r n2 ; : : : ; r n1 C r 1 g : (14.1)
The ûrst argument, p n , corresponds to making no cuts at all and selling the rod of
length n as is. The other n 1 arguments to max correspond to the maximum rev-
enue obtained by making an initial cut of the rod into two pieces of size i and n i ,
for each i D 1; 2; : : : ; n 1, and then optimally cutting up those pieces further, ob-
taining revenues r i and r ni from those two pieces. Since you don’t know ahead of
time which value of i optimizes revenue, you have to consider all possible values
for i and pick the one that maximizes revenue. You also have the option of picking
no i at all if the greatest revenue comes from selling the rod uncut.

To solve the original problem of size n, you solve smaller problems of the same
type. Once you make the ûrst cut, the two resulting pieces form independent in-
stances of the rod-cutting problem. The overall optimal solution incorporates op-
timal solutions to the two resulting subproblems, maximizing revenue from each
of those two pieces. We say that the rod-cutting problem exhibits optimal sub-
structure: optimal solutions to a problem incorporate optimal solutions to related
subproblems, which you may solve independently.

In a related, but slightly simpler, way to arrange a recursive structure for the
rod-cutting problem, let’s view a decomposition as consisting of a ûrst piece of
length i cut off the left-hand end, and then a right-hand remainder of length n i .
Only the remainder, and not the ûrst piece, may be further divided. Think of every
decomposition of a length-n rod in this way: as a ûrst piece followed by some
decomposition of the remainder. Then we can express the solution with no cuts
at all by saying that the ûrst piece has size i D n and revenue p n and that the
remainder has size 0 with corresponding revenue r 0 D 0. We thus obtain the
following simpler version of equation (14.1):
r n D max fp i C r ni W 1 හ i හ ng : (14.2)
In this formulation, an optimal solution embodies the solution to only one related
subproblem4the remainder4rather than two.

Recursive top-down implementation

The CUT-ROD procedure on the following page implements the computation im-
plicit in equation (14.2) in a straightforward, top-down, recursive manner. It takes
as input an array pŒ1 W n� of prices and an integer n, and it returns the maxi-
mum revenue possible for a rod of length n. For length n D 0, no revenue
is possible, and so CUT-ROD returns 0 in line 2. Line 3 initializes the max-
imum revenue q to 1, so that the for loop in lines 435 correctly computes

366 Chapter 14 Dynamic Programming

q D max fp i C CUT-ROD.p; n i/ W 1 හ i හ ng. Line 6 then returns this value.
A simple induction on n proves that this answer is equal to the desired answer r n ,
using equation (14.2).

CUT-ROD.p; n/
1 if n == 0
2 return 0
3 q D 1
4 for i D 1 to n
5 q D max fq; pŒi � C CUT-ROD.p; n i/g
6 return q

If you code up CUT-ROD in your favorite programming language and run it on
your computer, you’ll ûnd that once the input size becomes moderately large, your
program takes a long time to run. For n D 40, your program may take several
minutes and possibly more than an hour. For large values of n, you’ll also discover
that each time you increase n by 1, your program’s running time approximately
doubles.

Why is CUT-ROD so inefûcient? The problem is that CUT-ROD calls itself re-
cursively over and over again with the same parameter values, which means that
it solves the same subproblems repeatedly. Figure 14.3 shows a recursion tree
demonstrating what happens for n D 4: CUT-ROD.p; n/ calls CUT-ROD.p; n i/
for i D 1; 2; : : : ; n. Equivalently, CUT-ROD.p; n/ calls CUT-ROD.p; j / for each
j D 0; 1; : : : ; n 1. When this process unfolds recursively, the amount of work
done, as a function of n, grows explosively.

To analyze the running time of CUT-ROD, let T .n/ denote the total number of
calls made to CUT-ROD.p; n/ for a particular value of n. This expression equals
the number of nodes in a subtree whose root is labeled n in the recursion tree. The
count includes the initial call at its root. Thus, T .0/ D 1 and

T .n/ D 1 C
n1 X

j D0

T .j / : (14.3)

The initial 1 is for the call at the root, and the term T .j / counts the number of calls
(including recursive calls) due to the call CUT-ROD.p; n i/, where j D n i .
As Exercise 14.1-1 asks you to show,
T .n/ D 2 n ; (14.4)
and so the running time of CUT-ROD is exponential in n.

In retrospect, this exponential running time is not so surprising. CUT-ROD ex-
plicitly considers all possible ways of cutting up a rod of length n. How many ways

14.1 Rod cutting 367

3

1 0

0

0

0 1

2 0

0

1

2

0

1 0

4

Figure 14.3 The recursion tree showing recursive calls resulting from a call C UT-ROD.p; n/ for
n D 4. Each node label gives the size n of the corresponding subproblem, so that an edge from
a parent with label s to a child with label t corresponds to cutting off an initial piece of size s t
and leaving a remaining subproblem of size t . A path from the root to a leaf corresponds to one of
the 2 n1 ways of cutting up a rod of length n. In general, this recursion tree has 2 n nodes and 2 n1

leaves.

are there? A rod of length n has n 1 potential locations to cut. Each possible way
to cut up the rod makes a cut at some subset of these n 1 locations, including the
empty set, which makes for no cuts. Viewing each cut location as a distinct mem-
ber of a set of n 1 elements, you can see that there are 2 n1 subsets. Each leaf
in the recursion tree of Figure 14.3 corresponds to one possible way to cut up the
rod. Hence, the recursion tree has 2 n1 leaves. The labels on the simple path from
the root to a leaf give the sizes of each remaining right-hand piece before making
each cut. That is, the labels give the corresponding cut points, measured from the
right-hand end of the rod.

Using dynamic programming for optimal rod cutting

Now, let’s see how to use dynamic programming to convert CUT-ROD into an
efûcient algorithm.
The dynamic-programming method works as follows. Instead of solving the

same subproblems repeatedly, as in the naive recursion solution, arrange for each
subproblem to be solved only once. There’s actually an obvious way to do so: the
ûrst time you solve a subproblem, save its solution. If you need to refer to this
subproblem’s solution again later, just look it up, rather than recomputing it.

Saving subproblem solutions comes with a cost: the additional memory needed
to store solutions. Dynamic programming thus serves as an example of a time-
memory trade-off . The savings may be dramatic. For example, we’re about to use
dynamic programming to go from the exponential-time algorithm for rod cutting

368 Chapter 14 Dynamic Programming

down to a ‚.n 2 /-time algorithm. A dynamic-programming approach runs in poly-
nomial time when the number of distinct subproblems involved is polynomial in
the input size and you can solve each such subproblem in polynomial time.

There are usually two equivalent ways to implement a dynamic-programming
approach. Solutions to the rod-cutting problem illustrate both of them.
The ûrst approach is top-down with memoization. 2 In this approach, you write

the procedure recursively in a natural manner, but modiûed to save the result of
each subproblem (usually in an array or hash table). The procedure now ûrst checks
to see whether it has previously solved this subproblem. If so, it returns the saved
value, saving further computation at this level. If not, the procedure computes the
value in the usual manner but also saves it. We say that the recursive procedure has
been memoized: it <remembers= what results it has computed previously.

The second approach is the bottom-up method. This approach typically de-
pends on some natural notion of the <size= of a subproblem, such that solving any
particular subproblem depends only on solving <smaller= subproblems. Solve the
subproblems in size order, smallest ûrst, storing the solution to each subproblem
when it is ûrst solved. In this way, when solving a particular subproblem, there
are already saved solutions for all of the smaller subproblems its solution depends
upon. You need to solve each subproblem only once, and when you ûrst see it, you
have already solved all of its prerequisite subproblems.

These two approaches yield algorithms with the same asymptotic running time,
except in unusual circumstances where the top-down approach does not actually
recurse to examine all possible subproblems. The bottom-up approach often has
much better constant factors, since it has lower overhead for procedure calls.

The procedures MEMOIZED-CUT-ROD and MEMOIZED-CUT-ROD-AUX on
the facing page demonstrate how to memoize the top-down CUT-ROD proce-
dure. The main procedure MEMOIZED-CUT-ROD initializes a new auxiliary array
rŒ0 W n� with the value 1 which, since known revenue values are always nonneg-
ative, is a convenient choice for denoting <unknown.= MEMOIZED-CUT-ROD then
calls its helper procedure, MEMOIZED-CUT-ROD-AUX, which is just the memo-
ized version of the exponential-time procedure, CUT-ROD. It ûrst checks in line 1
to see whether the desired value is already known and, if it is, then line 2 returns it.
Otherwise, lines 337 compute the desired value q in the usual manner, line 8 saves
it in rŒn�, and line 9 returns it.
The bottom-up version, BOTTOM-UP-CUT-ROD on the next page, is even sim-

pler. Using the bottom-up dynamic-programming approach, BOTTOM-UP-CUT-
ROD takes advantage of the natural ordering of the subproblems: a subproblem of

2 The technical term <memoization= is not a misspelling of <memorization.= The word <memoiza-
tion= comes from <memo,= since the technique consists of recording a value to be looked up later.

14.1 Rod cutting 369

MEMOIZED-CUT-ROD .p; n/
1 let rŒ0 W n� be a new array // will remember solution values in r
2 for i D 0 to n
3 rŒi � D 1
4 return MEMOIZED-CUT-ROD-AUX .p; n; r/

MEMOIZED-CUT-ROD-AUX .p; n; r/
1 if rŒn� 0 // already have a solution for length n?
2 return rŒn�
3 if n = = 0
4 q D 0
5 else q D 1
6 for i D 1 to n // i is the position of the ûrst cut
7 q D max fq; pŒi � C MEMOIZED-CUT-ROD-AUX .p; n i; r/g
8 rŒn� D q // remember the solution value for length n
9 return q

BOTTOM-UP-CUT-ROD .p; n/
1 let rŒ0 W n� be a new array // will remember solution values in r
2 rŒ0� D 0
3 for j D 1 to n // for increasing rod length j
4 q D 1
5 for i D 1 to j // i is the position of the ûrst cut
6 q D max fq; pŒi � C rŒj i �g
7 rŒj � D q // remember the solution value for length j
8 return rŒn�

size i is <smaller= than a subproblem of size j if i < j . Thus, the procedure solves
subproblems of sizes j D 0; 1; : : : ; n, in that order.
Line 1 of BOTTOM-UP-CUT-ROD creates a new array rŒ0 W n� in which to save

the results of the subproblems, and line 2 initializes rŒ0� to 0, since a rod of length 0
earns no revenue. Lines 336 solve each subproblem of size j , for j D 1; 2; : : : ; n,
in order of increasing size. The approach used to solve a problem of a particular
size j is the same as that used by CUT-ROD, except that line 6 now directly refer-
ences array entry rŒj i � instead of making a recursive call to solve the subproblem
of size j i . Line 7 saves in rŒj � the solution to the subproblem of size j . Finally,
line 8 returns rŒn�, which equals the optimal value r n .
The bottom-up and top-down versions have the same asymptotic running time.

The running time of BOTTOM-UP-CUT-ROD is ‚.n 2 /, due to its doubly nested

370 Chapter 14 Dynamic Programming

3

0

1

2

4

Figure 14.4 The subproblem graph for the rod-cutting problem with n D 4. The vertex labels give
the sizes of the corresponding subproblems. A directed edge .x; y/ indicates that solving subprob-
lem x requires a solution to subproblem y. This graph is a reduced version of the recursion tree of
Figure 14.3, in which all nodes with the same label are collapsed into a single vertex and all edges
go from parent to child.

loop structure. The number of iterations of its inner for loop, in lines 536, forms
an arithmetic series. The running time of its top-down counterpart, MEMOIZED-
CUT-ROD, is also ‚.n 2 /, although this running time may be a little harder to see.
Because a recursive call to solve a previously solved subproblem returns immedi-
ately, MEMOIZED-CUT-ROD solves each subproblem just once. It solves subprob-
lems for sizes 0; 1; : : : ; n. To solve a subproblem of size n, the for loop of lines 637
iterates n times. Thus, the total number of iterations of this for loop, over all re-
cursive calls of MEMOIZED-CUT-ROD, forms an arithmetic series, giving a total
of ‚.n 2 / iterations, just like the inner for loop of BOTTOM-UP-CUT-ROD. (We
actually are using a form of aggregate analysis here. We’ll see aggregate analysis
in detail in Section 16.1.)

Subproblem graphs
When you think about a dynamic-programming problem, you need to understand
the set of subproblems involved and how subproblems depend on one another.

The subproblem graph for the problem embodies exactly this information. Fig-
ure 14.4 shows the subproblem graph for the rod-cutting problem with n D 4. It
is a directed graph, containing one vertex for each distinct subproblem. The sub-
problem graph has a directed edge from the vertex for subproblem x to the vertex
for subproblem y if determining an optimal solution for subproblem x involves
directly considering an optimal solution for subproblem y . For example, the sub-
problem graph contains an edge from x to y if a top-down recursive procedure for
solving x directly calls itself to solve y . You can think of the subproblem graph as

14.1 Rod cutting 371

a <reduced= or <collapsed= version of the recursion tree for the top-down recursive
method, with all nodes for the same subproblem coalesced into a single vertex and
all edges directed from parent to child.
The bottom-up method for dynamic programming considers the vertices of the

subproblem graph in such an order that you solve the subproblems y adjacent to
a given subproblem x before you solve subproblem x . (As Section B.4 notes, the
adjacency relation in a directed graph is not necessarily symmetric.) Using ter-
minology that we’ll see in Section 20.4, in a bottom-up dynamic-programming
algorithm, you consider the vertices of the subproblem graph in an order that is a
<reverse topological sort,= or a <topological sort of the transpose= of the subprob-
lem graph. In other words, no subproblem is considered until all of the subprob-
lems it depends upon have been solved. Similarly, using notions that we’ll visit in
Section 20.3, you can view the top-down method (with memoization) for dynamic
programming as a <depth-ûrst search= of the subproblem graph.

The size of the subproblem graph G D .V;E/ can help you determine the
running time of the dynamic-programming algorithm. Since you solve each sub-
problem just once, the running time is the sum of the times needed to solve each
subproblem. Typically, the time to compute the solution to a subproblem is propor-
tional to the degree (number of outgoing edges) of the corresponding vertex in the
subproblem graph, and the number of subproblems is equal to the number of ver-
tices in the subproblem graph. In this common case, the running time of dynamic
programming is linear in the number of vertices and edges.

Reconstructing a solution

The procedures MEMOIZED-CUT-ROD and BOTTOM-UP-CUT-ROD return the
value of an optimal solution to the rod-cutting problem, but they do not return
the solution itself : a list of piece sizes.
Let’s see how to extend the dynamic-programming approach to record not only

the optimal value computed for each subproblem, but also a choice that led to the
optimal value. With this information, you can readily print an optimal solution.
The procedure EXTENDED-BOTTOM-UP-CUT-ROD on the next page computes,
for each rod size j , not only the maximum revenue r j , but also s j , the optimal size
of the ûrst piece to cut off. It’s similar to BOTTOM-UP-CUT-ROD, except that it
creates the array s in line 1, and it updates sŒj � in line 8 to hold the optimal size i
of the ûrst piece to cut off when solving a subproblem of size j .

The procedure PRINT-CUT-ROD-SOLUTION on the following page takes as in-
put an array pŒ1 W n� of prices and a rod size n. It calls EXTENDED-BOTTOM-
UP-CUT-ROD to compute the array sŒ1 W n� of optimal ûrst-piece sizes. Then
it prints out the complete list of piece sizes in an optimal decomposition of a

372 Chapter 14 Dynamic Programming

rod of length n. For the sample price chart appearing in Figure 14.1, the call
EXTENDED-BOTTOM-UP-CUT-ROD .p; 10/ returns the following arrays:
i 0 1 2 3 4 5 6 7 8 9 10
rŒi � 0 1 5 8 10 13 17 18 22 25 30
sŒi � 1 2 3 2 2 6 1 2 3 10

A call to PRINT-CUT-ROD-SOLUTION .p; 10/ prints just 10, but a call with n D 7
prints the cuts 1 and 6, which correspond to the ûrst optimal decomposition for r 7
given earlier.

EXTENDED-BOTTOM-UP-CUT-ROD .p; n/
1 let rŒ0 W n� and sŒ1 W n� be new arrays
2 rŒ0� D 0
3 for j D 1 to n // for increasing rod length j
4 q D 1
5 for i D 1 to j // i is the position of the ûrst cut
6 if q < pŒi � C rŒj i �
7 q D pŒi � C rŒj i �
8 sŒj � D i // best cut location so far for length j
9 rŒj � D q // remember the solution value for length j
10 return r and s

PRINT-CUT-ROD-SOLUTION .p; n/
1 .r; s/ D EXTENDED-BOTTOM-UP-CUT-ROD .p; n/
2 while n > 0
3 print sŒn� // cut location for length n
4 n D n sŒn� // length of the remainder of the rod

Exercises
14.1-1
Show that equation (14.4) follows from equation (14.3) and the initial condition
T .0/ D 1.
14.1-2
Show, by means of a counterexample, that the following <greedy= strategy does
not always determine an optimal way to cut rods. Deûne the density of a rod of
length i to be p i =i , that is, its value per inch. The greedy strategy for a rod of
length n cuts off a ûrst piece of length i , where 1 හ i හ n, having maximum

14.2 Matrix-chain multiplication 373

density. It then continues by applying the greedy strategy to the remaining piece of
length n i .
14.1-3
Consider a modiûcation of the rod-cutting problem in which, in addition to a
price p i for each rod, each cut incurs a ûxed cost of c . The revenue associated with
a solution is now the sum of the prices of the pieces minus the costs of making the
cuts. Give a dynamic-programming algorithm to solve this modiûed problem.
14.1-4
Modify CUT-ROD and MEMOIZED-CUT-ROD-AUX so that their for loops go up
to only bn=2c, rather than up to n. What other changes to the procedures do you
need to make? How are their running times affected?
14.1-5
Modify MEMOIZED-CUT-ROD to return not only the value but the actual solution.
14.1-6
The Fibonacci numbers are deûned by recurrence (3.31) on page 69. Give an
O.n/-time dynamic-programming algorithm to compute the nth Fibonacci number.
Draw the subproblem graph. How many vertices and edges does the graph contain?

14.2 Matrix-chain multiplication

Our next example of dynamic programming is an algorithm that solves the problem
of matrix-chain multiplication. Given a sequence (chain) hA 1 ; A 2 ; : : : ; A n i of n
matrices to be multiplied, where the matrices aren’t necessarily square, the goal is
to compute the product
A 1 A 2 A n : (14.5)
using the standard algorithm 3 for multiplying rectangular matrices, which we’ll see
in a moment, while minimizing the number of scalar multiplications.
You can evaluate the expression (14.5) using the algorithm for multiplying pairs

of rectangular matrices as a subroutine once you have parenthesized it to resolve
all ambiguities in how the matrices are multiplied together. Matrix multiplication
is associative, and so all parenthesizations yield the same product. A product of

3 None of the three methods from Sections 4.1 and Section 4.2 can be used directly, because they
apply only to square matrices.

374 Chapter 14 Dynamic Programming

matrices is fully parenthesized if it is either a single matrix or the product of two
fully parenthesized matrix products, surrounded by parentheses. For example, if
the chain of matrices is hA 1 ; A 2 ; A 3 ; A 4 i, then you can fully parenthesize the prod-
uct A 1 A 2 A 3 A 4 in ûve distinct ways:
.A 1 .A 2 .A 3 A 4 /// ;
.A 1 ..A 2 A 3 /A 4 // ;
..A 1 A 2 /.A 3 A 4 // ;
..A 1 .A 2 A 3 //A 4 / ;
...A 1 A 2 /A 3 /A 4 / :

How you parenthesize a chain of matrices can have a dramatic impact on the
cost of evaluating the product. Consider ûrst the cost of multiplying two rectangu-
lar matrices. The standard algorithm is given by the procedure RECTANGULAR-
MATRIX-MULTIPLY, which generalizes the square-matrix multiplication proce-
dure MATRIX-MULTIPLY on page 81. The RECTANGULAR-MATRIX-MULTIPLY
procedure computes C D C C A B for three matrices A D .a ij /, B D .b ij /, and
C D .c ij /, where A is p q, B is q r , and C is p r .

RECTANGULAR-MATRIX-MULTIPLY .A;B;C; p; q; r/
1 for i D 1 to p
2 for j D 1 to r
3 for k D 1 to q
4 c ij D c ij C a ik b kj

The running time of RECTANGULAR-MATRIX-MULTIPLY is dominated by the
number of scalar multiplications in line 4, which is pqr . Therefore, we’ll consider
the cost of multiplying matrices to be the number of scalar multiplications. (The
number of scalar multiplications dominates even if we consider initializing C D 0
to perform just C D A B .)

To illustrate the different costs incurred by different parenthesizations of a ma-
trix product, consider the problem of a chain hA 1 ; A 2 ; A 3 i of three matrices. Sup-
pose that the dimensions of the matrices are 10 100, 100 5, and 5 50, re-
spectively. Multiplying according to the parenthesization ..A 1 A 2 /A 3 / performs
10 100 5 D 5000 scalar multiplications to compute the 10 5 matrix prod-
uct A 1 A 2 , plus another 10 5 50 D 2500 scalar multiplications to multiply this
matrix by A 3 , for a total of 7500 scalar multiplications. Multiplying according
to the alternative parenthesization .A 1 .A 2 A 3 // performs 100 5 50 D 25,000
scalar multiplications to compute the 100 50 matrix product A 2 A 3 , plus another
10 100 50 D 50,000 scalar multiplications to multiply A 1 by this matrix, for a

14.2 Matrix-chain multiplication 375

total of 75,000 scalar multiplications. Thus, computing the product according to
the ûrst parenthesization is 10 times faster.

We state the matrix-chain multiplication problem as follows: given a chain
hA 1 ;A 2 ; : : : ;A n i of n matrices, where for i D 1; 2; : : : ; n, matrix A i has dimension
p i 1 p i , fully parenthesize the product A 1 A 2 A n in a way that minimizes
the number of scalar multiplications. The input is the sequence of dimensions
hp 0 ; p 1 ; p 2 ; : : : ; p n i.
The matrix-chain multiplication problem does not entail actually multiplying

matrices. The goal is only to determine an order for multiplying matrices that
has the lowest cost. Typically, the time invested in determining this optimal order
is more than paid for by the time saved later on when actually performing the
matrix multiplications (such as performing only 7500 scalar multiplications instead
of 75,000).

Counting the number of parenthesizations
Before solving the matrix-chain multiplication problem by dynamic programming,
let us convince ourselves that exhaustively checking all possible parenthesizations
is not an efûcient algorithm. Denote the number of alternative parenthesizations
of a sequence of n matrices by P.n/. When n D 1, the sequence consists of just
one matrix, and therefore there is only one way to fully parenthesize the matrix
product. When n 2, a fully parenthesized matrix product is the product of two
fully parenthesized matrix subproducts, and the split between the two subproducts
may occur between the kth and .k C 1/st matrices for any k D 1; 2; : : : ; n 1.
Thus, we obtain the recurrence

P.n/ D

)
1 if n D 1 ;
n1 X

kD1

P.k/P.n k/ if n 2 :
(14.6)

Problem 12-4 on page 329 asked you to show that the solution to a similar recur-
rence is the sequence of Catalan numbers, which grows as �.4 n =n 3=2 /. A simpler
exercise (see Exercise 14.2-3) is to show that the solution to the recurrence (14.6)
is �.2 n /. The number of solutions is thus exponential in n, and the brute-force
method of exhaustive search makes for a poor strategy when determining how to
optimally parenthesize a matrix chain.

Applying dynamic programming

Let’s use the dynamic-programming method to determine how to optimally paren-
thesize a matrix chain, by following the four-step sequence that we stated at the
beginning of this chapter:

376 Chapter 14 Dynamic Programming

1. Characterize the structure of an optimal solution.
2. Recursively deûne the value of an optimal solution.
3. Compute the value of an optimal solution.
4. Construct an optimal solution from computed information.
We’ll go through these steps in order, demonstrating how to apply each step to the
problem.

Step 1: The structure of an optimal parenthesization

In the ûrst step of the dynamic-programming method, you ûnd the optimal sub-
structure and then use it to construct an optimal solution to the problem from opti-
mal solutions to subproblems. To perform this step for the matrix-chain multipli-
cation problem, it’s convenient to ûrst introduce some notation. Let A i Wj , where
i හ j , denote the matrix that results from evaluating the product A i A i C1 A j .
If the problem is nontrivial, that is, i < j , then to parenthesize the product
A i A i C1 A j , the product must split between A k and A kC1 for some integer k
in the range i හ k < j . That is, for some value of k, ûrst compute the matrices
A i Wk and A kC1Wj , and then multiply them together to produce the ûnal product A i Wj .
The cost of parenthesizing this way is the cost of computing the matrix A i Wk , plus
the cost of computing A kC1Wj , plus the cost of multiplying them together.

The optimal substructure of this problem is as follows. Suppose that to op-
timally parenthesize A i A i C1 A j , you split the product between A k and A kC1 .
Then the way you parenthesize the <preûx= subchain A i A i C1 A k within this
optimal parenthesization of A i A i C1 A j must be an optimal parenthesization of
A i A i C1 A k . Why? If there were a less costly way to parenthesize A i A i C1 A k ,
then you could substitute that parenthesization in the optimal parenthesization
of A i A i C1 A j to produce another way to parenthesize A i A i C1 A j whose cost
is lower than the optimum: a contradiction. A similar observation holds for how
to parenthesize the subchain A kC1 A kC2 A j in the optimal parenthesization of
A i A i C1 A j : it must be an optimal parenthesization of A kC1 A kC2 A j .
Now let’s use the optimal substructure to show how to construct an optimal

solution to the problem from optimal solutions to subproblems. Any solution to a
nontrivial instance of the matrix-chain multiplication problem requires splitting the
product, and any optimal solution contains within it optimal solutions to subprob-
lem instances. Thus, to build an optimal solution to an instance of the matrix-chain
multiplication problem, split the problem into two subproblems (optimally paren-
thesizing A i A i C1 A k and A kC1 A kC2 A j), ûnd optimal solutions to the two
subproblem instances, and then combine these optimal subproblem solutions. To
ensure that you’ve examined the optimal split, you must consider all possible splits.

14.2 Matrix-chain multiplication 377

Step 2: A recursive solution

The next step is to deûne the cost of an optimal solution recursively in terms of the
optimal solutions to subproblems. For the matrix-chain multiplication problem, a
subproblem is to determine the minimum cost of parenthesizing A i A i C1 A j for
1 හ i හ j හ n. Given the input dimensions hp 0 ; p 1 ; p 2 ; : : : ; p n i, an index pair
i; j speciûes a subproblem. Let mŒi; j � be the minimum number of scalar multi-
plications needed to compute the matrix A i Wj . For the full problem, the lowest-cost
way to compute A 1Wn is thus mŒ1; n�.
We can deûne mŒi; j � recursively as follows. If i D j , the problem is trivial:

the chain consists of just one matrix A i Wi D A i , so that no scalar multiplications
are necessary to compute the product. Thus, mŒi; i � D 0 for i D 1; 2; : : : ; n. To
compute mŒi; j � when i < j , we take advantage of the structure of an optimal
solution from step 1. Suppose that an optimal parenthesization splits the product
A i A i C1 A j between A k and A kC1 , where i හ k < j . Then, mŒi; j � equals
the minimum cost mŒi; k� for computing the subproduct A i Wk , plus the minimum
cost mŒk C 1; j � for computing the subproduct, A kC1Wj , plus the cost of multiplying
these two matrices together. Because each matrix A i is p i 1 p i , computing the
matrix product A i Wk A kC1Wj takes p i 1 p k p j scalar multiplications. Thus, we obtain
mŒi; j � D mŒi; k� C mŒk C 1; j � C p i 1 p k p j :

This recursive equation assumes that you know the value of k. But you don’t,
at least not yet. You have to try all possible values of k. How many are there?
Just j i , namely k D i; i C 1; : : : ; j 1. Since the optimal parenthesization
must use one of these values for k, you need only check them all to ûnd the best.
Thus, the recursive deûnition for the minimum cost of parenthesizing the product
A i A i C1 A j becomes

mŒi; j � D

(
0 if i D j ;
min fmŒi; k� C mŒk C 1; j � C p i 1 p k p j W i හ k < j g if i < j :

(14.7)
The mŒi; j � values give the costs of optimal solutions to subproblems, but they

do not provide all the information you need to construct an optimal solution. To
help you do so, let’s deûne sŒi; j � to be a value of k at which you split the product
A i A i C1 A j in an optimal parenthesization. That is, sŒi; j � equals a value k such
that mŒi; j � D mŒi; k� C mŒk C 1; j � C p i 1 p k p j .

Step 3: Computing the optimal costs
At this point, you could write a recursive algorithm based on recurrence (14.7) to
compute the minimum cost mŒ1; n� for multiplying A 1 A 2 A n . But as we saw

378 Chapter 14 Dynamic Programming

for the rod-cutting problem, and as we shall see in Section 14.3, this recursive
algorithm takes exponential time. That’s no better than the brute-force method of
checking each way of parenthesizing the product.
Fortunately, there aren’t all that many distinct subproblems: just one subproblem

for each choice of i and j satisfying 1 හ i හ j හ n, or ã n
2

ä C n D ‚.n 2 / in all. 4

A recursive algorithm may encounter each subproblem many times in different
branches of its recursion tree. This property of overlapping subproblems is the
second hallmark of when dynamic programming applies (the ûrst hallmark being
optimal substructure).
Instead of computing the solution to recurrence (14.7) recursively, let’s com-

pute the optimal cost by using a tabular, bottom-up approach, as in the procedure
MATRIX-CHAIN-ORDER. (The corresponding top-down approach using memo-
ization appears in Section 14.3.) The input is a sequence p D hp 0 ; p 1 ; : : : ; p n i
of matrix dimensions, along with n, so that for i D 1; 2; : : : ; n, matrix A i has di-
mensions p i 1 p i . The procedure uses an auxiliary table mŒ1 W n; 1 W n� to store
the mŒi; j � costs and another auxiliary table sŒ1 W n 1; 2 W n� that records which
index k achieved the optimal cost in computing mŒi; j �. The table s will help in
constructing an optimal solution.

MATRIX-CHAIN-ORDER .p; n/
1 let mŒ1 W n; 1 W n� and sŒ1 W n 1; 2 W n� be new tables
2 for i D 1 to n // chain length 1
3 mŒi; i � D 0
4 for l D 2 to n // l is the chain length
5 for i D 1 to n l C 1 // chain begins at A i
6 j D i C l 1 // chain ends at A j
7 mŒi; j � D 1
8 for k D i to j 1 // try A i Wk A kC1Wj
9 q D mŒi; k� C mŒk C 1; j � C p i 1 p k p j
10 if q < mŒi; j �
11 mŒi; j � D q // remember this cost
12 sŒi; j � D k // remember this index
13 return m and s

In what order should the algorithm ûll in the table entries? To answer this ques-
tion, let’s see which entries of the table need to be accessed when computing the

4 The ã n
2
ä term counts all pairs in which i < j . Because i and j may be equal, we need to add in

the n term.

14.2 Matrix-chain multiplication 379

cost mŒi; j �. Equation (14.7) tells us that to compute the cost of matrix prod-
uct A i Wj , ûrst the costs of the products A i Wk and A kC1Wj need to have been com-
puted for all k D i; i C 1; : : : ; j 1. The chain A i A i C1 A j consists of j i C 1
matrices, and the chains A i A i C1 : : : A k and A kC1 A kC2 : : : A j consist of k i C 1
and j k matrices, respectively. Since k < j , a chain of k i C 1 matrices
consists of fewer than j i C 1 matrices. Likewise, since k i , a chain of j k
matrices consists of fewer than j i C 1 matrices. Thus, the algorithm should ûll
in the table m from shorter matrix chains to longer matrix chains. That is, for the
subproblem of optimally parenthesizing the chain A i A i C1 A j , it makes sense to
consider the subproblem size as the length j i C 1 of the chain.
Now, let’s see how the MATRIX-CHAIN-ORDER procedure ûlls in the mŒi; j �

entries in order of increasing chain length. Lines 233 initialize mŒi; i � D 0 for
i D 1; 2; : : : ; n, since any matrix chain with just one matrix requires no scalar
multiplications. In the for loop of lines 4312, the loop variable l denotes the length
of matrix chains whose minimum costs are being computed. Each iteration of this
loop uses recurrence (14.7) to compute mŒi; i C l 1� for i D 1; 2; : : : ; n l C 1. In
the ûrst iteration, l D 2, and so the loop computes mŒi; i C1� for i D 1; 2; : : : ; n1:
the minimum costs for chains of length l D 2. The second time through the loop,
it computes mŒi; i C 2� for i D 1; 2; : : : ; n 2: the minimum costs for chains of
length l D 3. And so on, ending with a single matrix chain of length l D n and
computing mŒ1; n�. When lines 7312 compute an mŒi; j � cost, this cost depends
only on table entries mŒi; k� and mŒk C 1; j �, which have already been computed.
Figure 14.5 illustrates the m and s tables, as ûlled in by the MATRIX-CHAIN-

ORDER procedure on a chain of n D 6 matrices. Since mŒi; j � is deûned only
for i හ j , only the portion of the table m on or above the main diagonal is used.
The ûgure shows the table rotated to make the main diagonal run horizontally. The
matrix chain is listed along the bottom. Using this layout, the minimum cost mŒi; j �
for multiplying a subchain A i A i C1 A j of matrices appears at the intersection of
lines running northeast from A i and northwest from A j . Reading across, each
diagonal in the table contains the entries for matrix chains of the same length.
MATRIX-CHAIN-ORDER computes the rows from bottom to top and from left to
right within each row. It computes each entry mŒi; j � using the products p i 1 p k p j
for k D i; i C 1; : : : ; j 1 and all entries southwest and southeast from mŒi; j �.

A simple inspection of the nested loop structure of MATRIX-CHAIN-ORDER
yields a running time of O.n 3 / for the algorithm. The loops are nested three deep,
and each loop index (l , i , and k) takes on at most n 1 values. Exercise 14.2-5 asks
you to show that the running time of this algorithm is in fact also �.n 3 /. The al-
gorithm requires ‚.n 2 / space to store the m and s tables. Thus, MATRIX-CHAIN-
ORDER is much more efûcient than the exponential-time method of enumerating
all possible parenthesizations and checking each one.

380 Chapter 14 Dynamic Programming

A 6 A 5 A 4 A 3 A 2 A 1

0 0 0 0 0 0
15,750 2,625 750 1,000 5,000

7,875 4,375 2,500 3,500

9,375 7,125 5,375

11,875 10,500

15,125

1

2
3

4

5

6 1

2
3

4

5

6

j i

m

1 2 3 4 5

1 3 3 5

3 3 3

3 3

3

2
3

4

5

6 1

2
3

4

5

j i

s

Figure 14.5 The m and s tables computed by MATRIX-CHAIN-ORDER for n D 6 and the follow-
ing matrix dimensions:

matrix A 1 A 2 A 3 A 4 A 5 A 6
dimension 30 35 35 15 15 5 5 10 10 20 20 25

The tables are rotated so that the main diagonal runs horizontally. The m table uses only the main
diagonal and upper triangle, and the s table uses only the upper triangle. The minimum number of
scalar multiplications to multiply the 6 matrices is mŒ1; 6� D 15,125. Of the entries that are not tan,
the pairs that have the same color are taken together in line 9 when computing

mŒ2; 5� D min

8 ˆ <

ˆ :

mŒ2; 2� C mŒ3; 5� C p 1 p 2 p 5 D 0 C 2500 C 35 15 20 D 13,000 ;
mŒ2; 3� C mŒ4; 5� C p 1 p 3 p 5 D 2625 C 1000 C 35 5 20 D 7125 ;
mŒ2; 4� C mŒ5; 5� C p 1 p 4 p 5 D 4375 C 0 C 35 10 20 D 11,375

D 7125 :

Step 4: Constructing an optimal solution

Although MATRIX-CHAIN-ORDER determines the optimal number of scalar mul-
tiplications needed to compute a matrix-chain product, it does not directly show
how to multiply the matrices. The table sŒ1 W n 1; 2 W n� provides the information
needed to do so. Each entry sŒi; j � records a value of k such that an optimal paren-
thesization of A i A i C1 A j splits the product between A k and A kC1 . The ûnal
matrix multiplication in computing A 1Wn optimally is A 1WsŒ1;nŁ A sŒ1;nŁC1Wn . The s ta-
ble contains the information needed to determine the earlier matrix multiplications
as well, using recursion: sŒ1; sŒ1; n�� determines the last matrix multiplication when
computing A 1WsŒ1;nŁ and sŒsŒ1; n� C 1; n� determines the last matrix multiplication
when computing A sŒ1;nŁC1Wn . The recursive procedure PRINT-OPTIMAL-PARENS
on the facing page prints an optimal parenthesization of the matrix chain product
A i A i C1 A j , given the s table computed by MATRIX-CHAIN-ORDER and the in-

14.2 Matrix-chain multiplication 381

dices i and j . The initial call PRINT-OPTIMAL-PARENS .s; 1; n/ prints an optimal
parenthesization of the full matrix chain product A 1 A 2 A n . In the example of
Figure 14.5, the call PRINT-OPTIMAL-PARENS .s; 1; 6/ prints the optimal paren-
thesization ..A 1 .A 2 A 3 //..A 4 A 5 /A 6 //.

PRINT-OPTIMAL-PARENS .s; i; j /
1 if i = = j
2 print <A= i
3 else print <(=
4 PRINT-OPTIMAL-PARENS .s; i; sŒi; j �/
5 PRINT-OPTIMAL-PARENS .s; sŒi; j � C 1; j /
6 print <)=

Exercises
14.2-1
Find an optimal parenthesization of a matrix-chain product whose sequence of
dimensions is h5; 10; 3; 12; 5; 50; 6i.
14.2-2
Give a recursive algorithm MATRIX-CHAIN-MULTIPLY .A; s; i; j / that actually
performs the optimal matrix-chain multiplication, given the sequence of matri-
ces hA 1 ; A 2 ; : : : ; A n i, the s table computed by MATRIX-CHAIN-ORDER, and the
indices i and j . (The initial call is MATRIX-CHAIN-MULTIPLY .A; s; 1; n/.) As-
sume that the call RECTANGULAR-MATRIX-MULTIPLY .A;B/ returns the product
of matrices A and B .
14.2-3
Use the substitution method to show that the solution to the recurrence (14.6)
is �.2 n /.
14.2-4
Describe the subproblem graph for matrix-chain multiplication with an input chain
of length n. How many vertices does it have? How many edges does it have, and
which edges are they?
14.2-5
Let R.i; j / be the number of times that table entry mŒi; j � is referenced while
computing other table entries in a call of MATRIX-CHAIN-ORDER. Show that the
total number of references for the entire table is

382 Chapter 14 Dynamic Programming

n X

i D1

n X

j Di

R.i; j / D
n 3 n
3

:

(Hint: You may ûnd equation (A.4) on page 1141 useful.)
14.2-6
Show that a full parenthesization of an n-element expression has exactly n 1 pairs
of parentheses.

14.3 Elements of dynamic programming

Although you have just seen two complete examples of the dynamic-programming
method, you might still be wondering just when the method applies. From an engi-
neering perspective, when should you look for a dynamic-programming solution to
a problem? In this section, we’ll examine the two key ingredients that an optimiza-
tion problem must have in order for dynamic programming to apply: optimal sub-
structure and overlapping subproblems. We’ll also revisit and discuss more fully
how memoization might help you take advantage of the overlapping-subproblems
property in a top-down recursive approach.

Optimal substructure
The ûrst step in solving an optimization problem by dynamic programming is to
characterize the structure of an optimal solution. Recall that a problem exhibits
optimal substructure if an optimal solution to the problem contains within it opti-
mal solutions to subproblems. When a problem exhibits optimal substructure, that
gives you a good clue that dynamic programming might apply. (As Chapter 15
discusses, it also might mean that a greedy strategy applies, however.) Dynamic
programming builds an optimal solution to the problem from optimal solutions to
subproblems. Consequently, you must take care to ensure that the range of sub-
problems you consider includes those used in an optimal solution.
Optimal substructure was key to solving both of the previous problems in this

chapter. In Section 14.1, we observed that the optimal way of cutting up a rod of
length n (if Serling Enterprises makes any cuts at all) involves optimally cutting
up the two pieces resulting from the ûrst cut. In Section 14.2, we noted that an
optimal parenthesization of the matrix chain product A i A i C1 A j that splits the
product between A k and A kC1 contains within it optimal solutions to the problems
of parenthesizing A i A i C1 A k and A kC1 A kC2 A j .

14.3 Elements of dynamic programming 383

You will ûnd yourself following a common pattern in discovering optimal sub-
structure:
1. You show that a solution to the problem consists of making a choice, such as

choosing an initial cut in a rod or choosing an index at which to split the matrix
chain. Making this choice leaves one or more subproblems to be solved.

2. You suppose that for a given problem, you are given the choice that leads to an
optimal solution. You do not concern yourself yet with how to determine this
choice. You just assume that it has been given to you.

3. Given this choice, you determine which subproblems ensue and how to best
characterize the resulting space of subproblems.

4. You show that the solutions to the subproblems used within an optimal solution
to the problem must themselves be optimal by using a <cut-and-paste= tech-
nique. You do so by supposing that each of the subproblem solutions is not
optimal and then deriving a contradiction. In particular, by <cutting out= the
nonoptimal solution to each subproblem and <pasting in= the optimal one, you
show that you can get a better solution to the original problem, thus contradict-
ing your supposition that you already had an optimal solution. If an optimal
solution gives rise to more than one subproblem, they are typically so similar
that you can modify the cut-and-paste argument for one to apply to the others
with little effort.

To characterize the space of subproblems, a good rule of thumb says to try to
keep the space as simple as possible and then expand it as necessary. For example,
the space of subproblems for the rod-cutting problem contained the problems of
optimally cutting up a rod of length i for each size i . This subproblem space
worked well, and it was not necessary to try a more general space of subproblems.

Conversely, suppose that you tried to constrain the subproblem space for matrix-
chain multiplication to matrix products of the form A 1 A 2 A j . As before, an
optimal parenthesization must split this product between A k and A kC1 for some
1 හ k < j . Unless you can guarantee that k always equals j 1, you will ûnd that
you have subproblems of the form A 1 A 2 A k and A kC1 A kC2 A j . Moreover,
the latter subproblem does not have the form A 1 A 2 A j . To solve this problem by
dynamic programming, you need to allow the subproblems to vary at <both ends.=
That is, both i and j need to vary in the subproblem of parenthesizing the product
A i A i C1 A j .
Optimal substructure varies across problem domains in two ways:

1. how many subproblems an optimal solution to the original problem uses, and
2. how many choices you have in determining which subproblem(s) to use in an

optimal solution.

384 Chapter 14 Dynamic Programming

In the rod-cutting problem, an optimal solution for cutting up a rod of size n uses
just one subproblem (of size n i), but we have to consider n choices for i in order
to determine which one yields an optimal solution. Matrix-chain multiplication for
the subchain A i A i C1 A j serves an example with two subproblems and j i
choices. For a given matrix A k where the product splits, two subproblems arise4
parenthesizing A i A i C1 A k and parenthesizing A kC1 A kC2 A j 4and we have
to solve both of them optimally. Once we determine the optimal solutions to sub-
problems, we choose from among j i candidates for the index k.
Informally, the running time of a dynamic-programming algorithm depends on

the product of two factors: the number of subproblems overall and how many
choices you look at for each subproblem. In rod cutting, we had ‚.n/ subproblems
overall, and at most n choices to examine for each, yielding an O.n 2 / running time.
Matrix-chain multiplication had ‚.n 2 / subproblems overall, and each had at most
n 1 choices, giving an O.n 3 / running time (actually, a ‚.n 3 / running time, by
Exercise 14.2-5).

Usually, the subproblem graph gives an alternative way to perform the same
analysis. Each vertex corresponds to a subproblem, and the choices for a subprob-
lem are the edges incident from that subproblem. Recall that in rod cutting, the
subproblem graph has n vertices and at most n edges per vertex, yielding an O.n 2 /
running time. For matrix-chain multiplication, if you were to draw the subprob-
lem graph, it would have ‚.n 2 / vertices and each vertex would have degree at
most n 1, giving a total of O.n 3 / vertices and edges.

Dynamic programming often uses optimal substructure in a bottom-up fashion.
That is, you ûrst ûnd optimal solutions to subproblems and, having solved the
subproblems, you ûnd an optimal solution to the problem. Finding an optimal so-
lution to the problem entails making a choice among subproblems as to which you
will use in solving the problem. The cost of the problem solution is usually the
subproblem costs plus a cost that is directly attributable to the choice itself. In
rod cutting, for example, ûrst we solved the subproblems of determining optimal
ways to cut up rods of length i for i D 0; 1; : : : ; n 1, and then we determined
which of these subproblems yielded an optimal solution for a rod of length n, us-
ing equation (14.2). The cost attributable to the choice itself is the term p i in
equation (14.2). In matrix-chain multiplication, we determined optimal parenthe-
sizations of subchains of A i A i C1 A j , and then we chose the matrix A k at which
to split the product. The cost attributable to the choice itself is the term p i 1 p k p j .
Chapter 15 explores <greedy algorithms,= which have many similarities to dy-

namic programming. In particular, problems to which greedy algorithms apply
have optimal substructure. One major difference between greedy algorithms and
dynamic programming is that instead of ûrst ûnding optimal solutions to subprob-
lems and then making an informed choice, greedy algorithms ûrst make a <greedy=
choice4the choice that looks best at the time4and then solve a resulting subprob-

14.3 Elements of dynamic programming 385

lem, without bothering to solve all possible related smaller subproblems. Surpris-
ingly, in some cases this strategy works!

Subtleties
You should be careful not to assume that optimal substructure applies when it does
not. Consider the following two problems whose input consists of a directed graph
G D .V;E/ and vertices u; v 2 V .
Unweighted shortest path: 5 Find a path from u to v consisting of the fewest

edges. Such a path must be simple, since removing a cycle from a path produces
a path with fewer edges.

Unweighted longest simple path: Find a simple path from u to v consisting of
the most edges. (Without the requirement that the path must be simple, the
problem is undeûned, since repeatedly traversing a cycle creates paths with an
arbitrarily large number of edges.)
The unweighted shortest-path problem exhibits optimal substructure. Here’s

how. Suppose that u ¤ v, so that the problem is nontrivial. Then, any path p
from u to v must contain an intermediate vertex, say w. (Note that w may be u
or v.) Then, we can decompose the path u p

❀ v into subpaths u p 1
❀ w p 2

❀ v. The
number of edges in p equals the number of edges in p 1 plus the number of edges
in p 2 . We claim that if p is an optimal (i.e., shortest) path from u to v, then p 1
must be a shortest path from u to w. Why? As suggested earlier, use a <cut-and-
paste= argument: if there were another path, say p 0 1 , from u to w with fewer edges
than p 1 , then we could cut out p 1 and paste in p 0 1 to produce a path u

p 0
1
❀ w p 2

❀ v
with fewer edges than p, thus contradicting p’s optimality. Likewise, p 2 must be
a shortest path from w to v. Thus, to ûnd a shortest path from u to v, consider
all intermediate vertices w, ûnd a shortest path from u to w and a shortest path
from w to v, and choose an intermediate vertex w that yields the overall shortest
path. Section 23.2 uses a variant of this observation of optimal substructure to ûnd
a shortest path between every pair of vertices on a weighted, directed graph.
You might be tempted to assume that the problem of ûnding an unweighted

longest simple path exhibits optimal substructure as well. After all, if we decom-
pose a longest simple path u p

❀ v into subpaths u p 1
❀ w p 2

❀ v, then mustn’t p 1
be a longest simple path from u to w, and mustn’t p 2 be a longest simple path
from w to v? The answer is no! Figure 14.6 supplies an example. Consider the

5 We use the term <unweighted= to distinguish this problem from that of ûnding shortest paths with
weighted edges, which we shall see in Chapters 22 and 23. You can use the breadth-ûrst search
technique of Chapter 20 to solve the unweighted problem.

386 Chapter 14 Dynamic Programming

q r

s t

Figure 14.6 A directed graph showing that the problem of ûnding a longest simple path in an
unweighted directed graph does not have optimal substructure. The path q ! r ! t is a longest
simple path from q to t , but the subpath q ! r is not a longest simple path from q to r , nor is the
subpath r ! t a longest simple path from r to t .

path q ! r ! t , which is a longest simple path from q to t . Is q ! r a longest
simple path from q to r ? No, for the path q ! s ! t ! r is a simple path
that is longer. Is r ! t a longest simple path from r to t ? No again, for the path
r ! q ! s ! t is a simple path that is longer.

This example shows that for longest simple paths, not only does the problem
lack optimal substructure, but you cannot necessarily assemble a <legal= solution
to the problem from solutions to subproblems. If you combine the longest simple
paths q ! s ! t ! r and r ! q ! s ! t , you get the path q ! s ! t ! r !
q ! s ! t , which is not simple. Indeed, the problem of ûnding an unweighted
longest simple path does not appear to have any sort of optimal substructure. No
efûcient dynamic-programming algorithm for this problem has ever been found. In
fact, this problem is NP-complete, which4as we shall see in Chapter 344means
that we are unlikely to ûnd a way to solve it in polynomial time.

Why is the substructure of a longest simple path so different from that of a short-
est path? Although a solution to a problem for both longest and shortest paths uses
two subproblems, the subproblems in ûnding the longest simple path are not inde-
pendent, whereas for shortest paths they are. What do we mean by subproblems
being independent? We mean that the solution to one subproblem does not affect
the solution to another subproblem of the same problem. For the example of Fig-
ure 14.6, we have the problem of ûnding a longest simple path from q to t with
two subproblems: ûnding longest simple paths from q to r and from r to t . For
the ûrst of these subproblems, we chose the path q ! s ! t ! r , which used
the vertices s and t . These vertices cannot appear in a solution to the second sub-
problem, since the combination of the two solutions to subproblems yields a path
that is not simple. If vertex t cannot be in the solution to the second problem, then
there is no way to solve it, since t is required to be on the path that forms the solu-
tion, and it is not the vertex where the subproblem solutions are <spliced= together
(that vertex being r). Because vertices s and t appear in one subproblem solution,
they cannot appear in the other subproblem solution. One of them must be in the
solution to the other subproblem, however, and an optimal solution requires both.

14.3 Elements of dynamic programming 387

Thus, we say that these subproblems are not independent. Looked at another way,
using resources in solving one subproblem (those resources being vertices) renders
them unavailable for the other subproblem.
Why, then, are the subproblems independent for ûnding a shortest path? The

answer is that by nature, the subproblems do not share resources. We claim that
if a vertex w is on a shortest path p from u to v, then we can splice together any
shortest path u p 1

❀ w and any shortest path w p 2
❀ v to produce a shortest path from u

to v. We are assured that, other than w, no vertex can appear in both paths p 1
and p 2 . Why? Suppose that some vertex x ¤ w appears in both p 1 and p 2 , so that
we can decompose p 1 as u p ux

❀ x ❀ w and p 2 as w ❀ x p xv
❀ v. By the optimal

substructure of this problem, path p has as many edges as p 1 and p 2 together. Let’s
say that p has e edges. Now let us construct a path p 0 D u p ux

❀ x p xv
❀ v from u to v.

Because we have excised the paths from x to w and from w to x , each of which
contains at least one edge, path p 0 contains at most e 2 edges, which contradicts
the assumption that p is a shortest path. Thus, we are assured that the subproblems
for the shortest-path problem are independent.
The two problems examined in Sections 14.1 and 14.2 have independent sub-

problems. In matrix-chain multiplication, the subproblems are multiplying sub-
chains A i A i C1 A k and A kC1 A kC2 A j . These subchains are disjoint, so that
no matrix could possibly be included in both of them. In rod cutting, to determine
the best way to cut up a rod of length n, we looked at the best ways of cutting up
rods of length i for i D 0; 1; : : : ; n 1. Because an optimal solution to the length-n
problem includes just one of these subproblem solutions (after cutting off the ûrst
piece), independence of subproblems is not an issue.

Overlapping subproblems
The second ingredient that an optimization problem must have for dynamic pro-
gramming to apply is that the space of subproblems must be <small= in the sense
that a recursive algorithm for the problem solves the same subproblems over and
over, rather than always generating new subproblems. Typically, the total number
of distinct subproblems is a polynomial in the input size. When a recursive algo-
rithm revisits the same problem repeatedly, we say that the optimization problem
has overlapping subproblems. 6 In contrast, a problem for which a divide-and-

6 It may seem strange that dynamic programming relies on subproblems being both independent
and overlapping. Although these requirements may sound contradictory, they describe two different
notions, rather than two points on the same axis. Two subprob lems of the same problem are inde-
pendent if they do not share resources. Two subproblems are overlapping if they are really the same
subproblem that occurs as a subproblem of different problems.

388 Chapter 14 Dynamic Programming

1,4

1,1 2,4 1,2 3,4 1,3 4,4

2,2 3,4 2,3 4,4 1,1 2,2 3,3 4,4 1,1 2,3 1,2 3,3

3,3 4,4 2,2 3,3 2,2 3,3 1,1 2,2

Figure 14.7 The recursion tree for the computation of RECURSIVE-MATRIX-CHAIN.p; 1; 4/.
Each node contains the parameters i and j . The computations performed in a subtree shaded blue
are replaced by a single table lookup in MEMOIZED-MATRIX-CHAIN.

conquer approach is suitable usually generates brand-new problems at each step
of the recursion. Dynamic-programming algorithms typically take advantage of
overlapping subproblems by solving each subproblem once and then storing the
solution in a table where it can be looked up when needed, using constant time per
lookup.
In Section 14.1, we brieüy examined how a recursive solution to rod cutting

makes exponentially many calls to ûnd solutions of smaller subproblems. The
dynamic-programming solution reduces the running time from the exponential
time of the recursive algorithm down to quadratic time.
To illustrate the overlapping-subproblems property in greater detail, let’s revisit

the matrix-chain multiplication problem. Referring back to Figure 14.5, observe
that MATRIX-CHAIN-ORDER repeatedly looks up the solution to subproblems in
lower rows when solving subproblems in higher rows. For example, it references
entry mŒ3; 4� four times: during the computations of mŒ2; 4�, mŒ1; 4�, mŒ3; 5�,
and mŒ3; 6�. If the algorithm were to recompute mŒ3; 4� each time, rather than
just looking it up, the running time would increase dramatically. To see how, con-
sider the inefûcient recursive procedure RECURSIVE-MATRIX-CHAIN on the fac-
ing page, which determines mŒi; j �, the minimum number of scalar multiplications
needed to compute the matrix-chain product A i Wj D A i A i C1 A j . The procedure
is based directly on the recurrence (14.7). Figure 14.7 shows the recursion tree
produced by the call RECURSIVE-MATRIX-CHAIN.p; 1; 4/. Each node is labeled
by the values of the parameters i and j . Observe that some pairs of values occur
many times.

In fact, the time to compute mŒ1; n� by this recursive procedure is at least expo-
nential in n. To see why, let T .n/ denote the time taken by RECURSIVE-MATRIX-

14.3 Elements of dynamic programming 389

RECURSIVE-MATRIX-CHAIN .p; i; j /
1 if i = = j
2 return 0
3 mŒi; j � D 1
4 for k D i to j 1
5 q D RECURSIVE-MATRIX-CHAIN .p; i; k/

C RECURSIVE-MATRIX-CHAIN .p; k C 1; j /
C p i 1 p k p j

6 if q < mŒi; j �
7 mŒi; j � D q
8 return mŒi; j �

CHAIN to compute an optimal parenthesization of a chain of n matrices. Because
the execution of lines 132 and of lines 637 each take at least unit time, as does the
multiplication in line 5, inspection of the procedure yields the recurrence

T .n/

Ĩ
1 if n D 1 ;

1 C
n1 X

kD1

.T .k/ C T .n k/ C 1/ if n > 1 :

Noting that for i D 1; 2; : : : ; n 1, each term T .i/ appears once as T .k/ and once
as T .n k/, and collecting the n 1 1s in the summation together with the 1 out
front, we can rewrite the recurrence as

T .n/ 2
n1 X

i D1

T .i/ C n : (14.8)

Let’s prove that T .n/ D �.2 n / using the substitution method. Speciûcally, we’ll
show that T .n/ 2 n1 for all n 1. For the base case n D 1, the summation is
empty, and we get T .1/ 1 D 2 0 . Inductively, for n 2 we have

T .n/ 2
n1 X

i D1

2 i 1 C n

D 2
n2 X

j D0

2 j C n (letting j D i 1)

D 2.2 n1 1/ C n (by equation (A.6) on page 1142)
D 2 n 2 C n
 2 n1 ;

390 Chapter 14 Dynamic Programming

which completes the proof. Thus, the total amount of work performed by the call
RECURSIVE-MATRIX-CHAIN .p; 1; n/ is at least exponential in n.
Compare this top-down, recursive algorithm (without memoization) with the

bottom-up dynamic-programming algorithm. The latter is more efûcient because it
takes advantage of the overlapping-subproblems property. Matrix-chain multipli-
cation has only ‚.n 2 / distinct subproblems, and the dynamic-programming algo-
rithm solves each exactly once. The recursive algorithm, on the other hand, must
solve each subproblem every time it reappears in the recursion tree. Whenever a
recursion tree for the natural recursive solution to a problem contains the same sub-
problem repeatedly, and the total number of distinct subproblems is small, dynamic
programming can improve efûciency, sometimes dramatically.

Reconstructing an optimal solution

As a practical matter, you’ll often want to store in a separate table which choice you
made in each subproblem so that you do not have to reconstruct this information
from the table of costs.
For matrix-chain multiplication, the table sŒi; j � saves a signiûcant amount of

work when we need to reconstruct an optimal solution. Suppose that the MATRIX-
CHAIN-ORDER procedure on page 378 did not maintain the sŒi; j � table, so that it
ûlled in only the table mŒi; j � containing optimal subproblem costs. The procedure
chooses from among j i possibilities when determining which subproblems to
use in an optimal solution to parenthesizing A i A i C1 A j , and j i is not a con-
stant. Therefore, it would take ‚.j i/ D !.1/ time to reconstruct which subprob-
lems it chose for a solution to a given problem. Because MATRIX-CHAIN-ORDER
stores in sŒi; j � the index of the matrix at which it split the product A i A i C1 A j ,
the PRINT-OPTIMAL-PARENS procedure on page 381 can look up each choice in
O.1/ time.

Memoization

As we saw for the rod-cutting problem, there is an alternative approach to dy-
namic programming that often offers the efûciency of the bottom-up dynamic-
programming approach while maintaining a top-down strategy. The idea is to
memoize the natural, but inefûcient, recursive algorithm. As in the bottom-up ap-
proach, you maintain a table with subproblem solutions, but the control structure
for ûlling in the table is more like the recursive algorithm.

A memoized recursive algorithm maintains an entry in a table for the solution to
each subproblem. Each table entry initially contains a special value to indicate that
the entry has yet to be ûlled in. When the subproblem is ûrst encountered as the
recursive algorithm unfolds, its solution is computed and then stored in the table.

14.3 Elements of dynamic programming 391

Each subsequent encounter of this subproblem simply looks up the value stored in
the table and returns it. 7

The procedure MEMOIZED-MATRIX-CHAIN is a memoized version of the pro-
cedure RECURSIVE-MATRIX-CHAIN on page 389. Note where it resembles the
memoized top-down method on page 369 for the rod-cutting problem.

MEMOIZED-MATRIX-CHAIN .p; n/
1 let mŒ1 W n; 1 W n� be a new table
2 for i D 1 to n
3 for j D i to n
4 mŒi; j � D 1
5 return LOOKUP-CHAIN.m;p; 1; n/

LOOKUP-CHAIN.m;p; i; j /
1 if mŒi; j � < 1
2 return mŒi; j �
3 if i = = j
4 mŒi; j � D 0
5 else for k D i to j 1
6 q D LOOKUP-CHAIN.m;p; i; k/

C LOOKUP-CHAIN.m;p; k C 1; j / C p i 1 p k p j
7 if q < mŒi; j �
8 mŒi; j � D q
9 return mŒi; j �

The MEMOIZED-MATRIX-CHAIN procedure, like the bottom-up MATRIX-
CHAIN-ORDER procedure on page 378, maintains a table mŒ1 W n; 1 W n� of com-
puted values of mŒi; j �, the minimum number of scalar multiplications needed to
compute the matrix A i Wj . Each table entry initially contains the value 1 to indicate
that the entry has yet to be ûlled in. Upon calling LOOKUP-CHAIN.m;p; i; j /,
if line 1 ûnds that mŒi; j � < 1, then the procedure simply returns the pre-
viously computed cost mŒi; j � in line 2. Otherwise, the cost is computed
as in RECURSIVE-MATRIX-CHAIN, stored in mŒi; j �, and returned. Thus,
LOOKUP-CHAIN.m;p; i; j / always returns the value of mŒi; j �, but it computes
it only upon the ûrst call of LOOKUP-CHAIN with these speciûc values of i and j .

7 This approach presupposes that you know the set of all possible subproblem parameters and that
you have established the relationship between table positions and subproblems. Another, more gen-
eral, approach is to memoize by using hashing with the subproblem parameters as keys.

392 Chapter 14 Dynamic Programming

Figure 14.7 illustrates how MEMOIZED-MATRIX-CHAIN saves time compared
with RECURSIVE-MATRIX-CHAIN. Subtrees shaded blue represent values that
are looked up rather than recomputed.
Like the bottom-up procedure MATRIX-CHAIN-ORDER, the memoized proce-

dure MEMOIZED-MATRIX-CHAIN runs in O.n 3 / time. To begin with, line 4 of
MEMOIZED-MATRIX-CHAIN executes ‚.n 2 / times, which dominates the running
time outside of the call to LOOKUP-CHAIN in line 5. We can categorize the calls
of LOOKUP-CHAIN into two types:
1. calls in which mŒi; j � D 1, so that lines 339 execute, and
2. calls in which mŒi; j � < 1, so that LOOKUP-CHAIN simply returns in line 2.
There are ‚.n 2 / calls of the ûrst type, one per table entry. All calls of the sec-
ond type are made as recursive calls by calls of the ûrst type. Whenever a given
call of LOOKUP-CHAIN makes recursive calls, it makes O.n/ of them. There-
fore, there are O.n 3 / calls of the second type in all. Each call of the second type
takes O.1/ time, and each call of the ûrst type takes O.n/ time plus the time spent
in its recursive calls. The total time, therefore, is O.n 3 /. Memoization thus turns
an �.2 n /-time algorithm into an O.n 3 /-time algorithm.
We have seen how to solve the matrix-chain multiplication problem by either a

top-down, memoized dynamic-programming algorithm or a bottom-up dynamic-
programming algorithm in O.n 3 / time. Both the bottom-up and memoized meth-
ods take advantage of the overlapping-subproblems property. There are only ‚.n 2 /
distinct subproblems in total, and either of these methods computes the solution to
each subproblem only once. Without memoization, the natural recursive algorithm
runs in exponential time, since solved subproblems are repeatedly solved.

In general practice, if all subproblems must be solved at least once, a bottom-up
dynamic-programming algorithm usually outperforms the corresponding top-down
memoized algorithm by a constant factor, because the bottom-up algorithm has no
overhead for recursion and less overhead for maintaining the table. Moreover, for
some problems you can exploit the regular pattern of table accesses in the dynamic-
programming algorithm to reduce time or space requirements even further. On the
other hand, in certain situations, some of the subproblems in the subproblem space
might not need to be solved at all. In that case, the memoized solution has the
advantage of solving only those subproblems that are deûnitely required.

Exercises
14.3-1
Which is a more efûcient way to determine the optimal number of multiplications
in a matrix-chain multiplication problem: enumerating all the ways of parenthesiz-

14.4 Longest common subsequence 393

ing the product and computing the number of multiplications for each, or running
RECURSIVE-MATRIX-CHAIN? Justify your answer.
14.3-2
Draw the recursion tree for the MERGE-SORT procedure from Section 2.3.1 on an
array of 16 elements. Explain why memoization fails to speed up a good divide-
and-conquer algorithm such as MERGE-SORT.
14.3-3
Consider the antithetical variant of the matrix-chain multiplication problem where
the goal is to parenthesize the sequence of matrices so as to maximize, rather than
minimize, the number of scalar multiplications. Does this problem exhibit optimal
substructure?
14.3-4
As stated, in dynamic programming, you ûrst solve the subproblems and then
choose which of them to use in an optimal solution to the problem. Professor
Capulet claims that she does not always need to solve all the subproblems in or-
der to ûnd an optimal solution. She suggests that she can ûnd an optimal solution
to the matrix-chain multiplication problem by always choosing the matrix A k at
which to split the subproduct A i A i C1 A j (by selecting k to minimize the quan-
tity p i 1 p k p j) before solving the subproblems. Find an instance of the matrix-
chain multiplication problem for which this greedy approach yields a suboptimal
solution.
14.3-5
Suppose that the rod-cutting problem of Section 14.1 also had a limit l i on the
number of pieces of length i allowed to be produced, for i D 1; 2; : : : ; n. Show
that the optimal-substructure property described in Section 14.1 no longer holds.

14.4 Longest common subsequence

Biological applications often need to compare the DNA of two (or more) dif-
ferent organisms. A strand of DNA consists of a string of molecules called
bases, where the possible bases are adenine, cytosine, guanine, and thymine.
Representing each of these bases by its initial letter, we can express a strand
of DNA as a string over the 4-element set fA; C; G; Tg. (See Section C.1 for
the deûnition of a string.) For example, the DNA of one organism may be
S 1 D ACCGGTCGAGTGCGCGGAAGCCGGCCGAA , and the DNA of another organ-
ism may be S 2 D GTCGTTCGGAATGCCGTTGCTCTGTAAA . One reason to com-

394 Chapter 14 Dynamic Programming

pare two strands of DNA is to determine how <similar= the two strands are, as some
measure of how closely related the two organisms are. We can, and do, deûne sim-
ilarity in many different ways. For example, we can say that two DNA strands are
similar if one is a substring of the other. (Chapter 32 explores algorithms to solve
this problem.) In our example, neither S 1 nor S 2 is a substring of the other. Alter-
natively, we could say that two strands are similar if the number of changes needed
to turn one into the other is small. (Problem 14-5 looks at this notion.) Yet another
way to measure the similarity of strands S 1 and S 2 is by ûnding a third strand S 3
in which the bases in S 3 appear in each of S 1 and S 2 . These bases must appear
in the same order, but not necessarily consecutively. The longer the strand S 3 we
can ûnd, the more similar S 1 and S 2 are. In our example, the longest strand S 3 is
GTCGTCGGAAGCCGGCCGAA .
We formalize this last notion of similarity as the longest-common-subsequence

problem. A subsequence of a given sequence is just the given sequence with 0 or
more elements left out. Formally, given a sequence X D hx 1 ; x 2 ; : : : ; x m i, another
sequence Z D h´ 1 ; ´ 2 ; : : : ; ´ k i is a subsequence of X if there exists a strictly
increasing sequence hi 1 ; i 2 ; : : : ; i k i of indices of X such that for all j D 1; 2; : : : ; k,
we have x i j D ´ j . For example, Z D hB; C; D; B i is a subsequence of X D
hA;B;C;B;D;A;B i with corresponding index sequence h2; 3; 5; 7i.
Given two sequences X and Y , we say that a sequence Z is a common sub-

sequence of X and Y if Z is a subsequence of both X and Y . For example, if
X D hA;B;C;B;D;A;B i and Y D hB;D;C;A;B;Ai, the sequence hB;C;Ai is
a common subsequence of both X and Y . The sequence hB;C;Ai is not a longest
common subsequence (LCS) of X and Y , however, since it has length 3 and the
sequence hB; C; B; Ai, which is also common to both sequences X and Y , has
length 4. The sequence hB; C; B; Ai is an LCS of X and Y , as is the sequence
hB;D;A;B i, since X and Y have no common subsequence of length 5 or greater.

In the longest-common-subsequence problem, the input is two sequences X D
hx 1 ; x 2 ; : : : ; x m i and Y D hy 1 ; y 2 ; : : : ; y n i, and the goal is to ûnd a maximum-
length common subsequence of X and Y . This section shows how to efûciently
solve the LCS problem using dynamic programming.

Step 1: Characterizing a longest common subsequence
You can solve the LCS problem with a brute-force approach: enumerate all subse-
quences of X and check each subsequence to see whether it is also a subsequence
of Y , keeping track of the longest subsequence you ûnd. Each subsequence of X
corresponds to a subset of the indices f1; 2; : : : ;mg of X . Because X has 2 m sub-
sequences, this approach requires exponential time, making it impractical for long
sequences.

14.4 Longest common subsequence 395

The LCS problem has an optimal-substructure property, however, as the fol-
lowing theorem shows. As we’ll see, the natural classes of subproblems corre-
spond to pairs of <preûxes= of the two input sequences. To be precise, given a
sequence X D hx 1 ; x 2 ; : : : ; x m i, we deûne the i th preûx of X , for i D 0; 1; : : : ;m,
as X i D hx 1 ; x 2 ; : : : ; x i i. For example, if X D hA; B; C; B; D; A; B i, then
X 4 D hA;B;C;B i and X 0 is the empty sequence.

Theorem 14.1 (Optimal substructure of an LCS)
Let X D hx 1 ; x 2 ; : : : ; x m i and Y D hy 1 ; y 2 ; : : : ; y n i be sequences, and let Z D
h´ 1 ; ´ 2 ; : : : ; ´ k i be any LCS of X and Y .
1. If x m D y n , then ´ k D x m D y n and Z k1 is an LCS of X m1 and Y n1 .
2. If x m ¤ y n and ´ k ¤ x m , then Z is an LCS of X m1 and Y .
3. If x m ¤ y n and ´ k ¤ y n , then Z is an LCS of X and Y n1 .

Proof (1) If ´ k ¤ x m , then we could append x m D y n to Z to obtain a common
subsequence of X and Y of length k C 1, contradicting the supposition that Z is
a longest common subsequence of X and Y . Thus, we must have ´ k D x m D y n .
Now, the preûx Z k1 is a length-.k 1/ common subsequence of X m1 and Y n1 .
We wish to show that it is an LCS. Suppose for the purpose of contradiction
that there exists a common subsequence W of X m1 and Y n1 with length greater
than k 1. Then, appending x m D y n to W produces a common subsequence of
X and Y whose length is greater than k, which is a contradiction.

(2) If ́ k ¤ x m , then Z is a common subsequence of X m1 and Y . If there were a
common subsequence W of X m1 and Y with length greater than k, then W would
also be a common subsequence of X m and Y , contradicting the assumption that Z
is an LCS of X and Y .
(3) The proof is symmetric to (2).

The way that Theorem 14.1 characterizes longest common subsequences says
that an LCS of two sequences contains within it an LCS of preûxes of the two se-
quences. Thus, the LCS problem has an optimal-substructure property. A recursive
solution also has the overlapping-subproblems property, as we’ll see in a moment.

Step 2: A recursive solution

Theorem 14.1 implies that you should examine either one or two subproblems
when ûnding an LCS of X D hx 1 ; x 2 ; : : : ; x m i and Y D hy 1 ; y 2 ; : : : ; y n i. If
x m D y n , you need to ûnd an LCS of X m1 and Y n1 . Appending x m D y n to
this LCS yields an LCS of X and Y . If x m ¤ y n , then you have to solve two
subproblems: ûnding an LCS of X m1 and Y and ûnding an LCS of X and Y n1 .

396 Chapter 14 Dynamic Programming

Whichever of these two LCSs is longer is an LCS of X and Y . Because these
cases exhaust all possibilities, one of the optimal subproblem solutions must appear
within an LCS of X and Y .
The LCS problem has the overlapping-subproblems property. Here’s how. To

ûnd an LCS of X and Y , you might need to ûnd the LCSs of X and Y n1 and of
X m1 and Y . But each of these subproblems has the subsubproblem of ûnding an
LCS of X m1 and Y n1 . Many other subproblems share subsubproblems.
As in the matrix-chain multiplication problem, solving the LCS problem recur-

sively involves establishing a recurrence for the value of an optimal solution. Let’s
deûne cŒi; j � to be the length of an LCS of the sequences X i and Y j . If either i D 0
or j D 0, one of the sequences has length 0, and so the LCS has length 0. The
optimal substructure of the LCS problem gives the recursive formula

cŒi; j � D

Ĩ
0 if i D 0 or j D 0 ;
cŒi 1; j 1� C 1 if i; j > 0 and x i D y j ;
max fcŒi; j 1�; cŒi 1; j �g if i; j > 0 and x i ¤ y j :

(14.9)

In this recursive formulation, a condition in the problem restricts which sub-
problems to consider. When x i D y j , you can and should consider the subproblem
of ûnding an LCS of X i 1 and Y j 1 . Otherwise, you instead consider the two
subproblems of ûnding an LCS of X i and Y j 1 and of X i 1 and Y j . In the pre-
vious dynamic-programming algorithms we have examined4for rod cutting and
matrix-chain multiplication4we didn’t rule out any subproblems due to conditions
in the problem. Finding an LCS is not the only dynamic-programming algorithm
that rules out subproblems based on conditions in the problem. For example, the
edit-distance problem (see Problem 14-5) has this characteristic.

Step 3: Computing the length of an LCS

Based on equation (14.9), you could write an exponential-time recursive algorithm
to compute the length of an LCS of two sequences. Since the LCS problem has only
‚.mn/ distinct subproblems (computing cŒi; j � for 0 හ i හ m and 0 හ j හ n),
dynamic programming can compute the solutions bottom up.
The procedure LCS-LENGTH on the next page takes two sequences X D hx 1 ;

x 2 ; : : : ; x m i and Y D hy 1 ; y 2 ; : : : ; y n i as inputs, along with their lengths. It
stores the cŒi; j � values in a table cŒ0 W m; 0 W n�, and it computes the entries in row-
major order. That is, the procedure ûlls in the ûrst row of c from left to right, then
the second row, and so on. The procedure also maintains the table bŒ1 W m; 1 W n� to
help in constructing an optimal solution. Intuitively, bŒi; j � points to the table entry
corresponding to the optimal subproblem solution chosen when computing cŒi; j �.
The procedure returns the b and c tables, where cŒm; n� contains the length of an
LCS of X and Y . Figure 14.8 shows the tables produced by LCS-LENGTH on the

14.4 Longest common subsequence 397

sequences X D hA;B; C; B; D;A; B i and Y D hB;D; C; A; B; Ai. The running
time of the procedure is ‚.mn/, since each table entry takes ‚.1/ time to compute.

LCS-LENGTH.X; Y;m; n/
1 let bŒ1 W m; 1 W n� and cŒ0 W m; 0 W n� be new tables
2 for i D 1 to m
3 cŒi; 0� D 0
4 for j D 0 to n
5 cŒ0; j � D 0
6 for i D 1 to m // compute table entries in row-major order
7 for j D 1 to n
8 if x i = = y j
9 cŒi; j � D cŒi 1; j 1� C 1
10 bŒi; j � D <-=
11 elseif cŒi 1; j � cŒi; j 1�
12 cŒi; j � D cŒi 1; j �
13 bŒi; j � D <"=
14 else cŒi; j � D cŒi; j 1�
15 bŒi; j � D <=
16 return c and b

PRINT-LCS.b;X; i; j /
1 if i == 0 or j == 0
2 return // the LCS has length 0
3 if bŒi; j � == <-=
4 PRINT-LCS.b;X; i 1; j 1/
5 print x i // same as y j
6 elseif bŒi; j � == <"=
7 PRINT-LCS.b;X; i 1; j /
8 else PRINT-LCS.b;X; i; j 1/

Step 4: Constructing an LCS

With the b table returned by LCS-LENGTH, you can quickly construct an LCS of
X D hx 1 ;x 2 ; : : : ;x m i and Y D hy 1 ;y 2 ; : : : ;y n i. Begin at bŒm; n� and trace through
the table by following the arrows. Each <-= encountered in an entry bŒi; j � im-
plies that x i D y j is an element of the LCS that LCS-LENGTH found. This
method gives you the elements of this LCS in reverse order. The recursive pro-
cedure PRINT-LCS prints out an LCS of X and Y in the proper, forward order.

398 Chapter 14 Dynamic Programming

0 0 0 0 0 0 0
0 0 0 0 1 1 1

0 1 1 1 2 2
0 1 1 2 2 2
0 1 1 2 2 3

0 1 2 2 2 3 3

0 1 2 2 3 3

0 1 2 2 3 4 4

1

2
3

4

B D C A B A

1 2 3 4 5 6 0

A

B

C

B

D

A

B

1

2
3

4

5

6

7

0

j

i

x i

y j

Figure 14.8 The c and b tables computed by LCS-LENGTH on the sequences X D hA; B; C; B;
D;A;Bi and Y D hB;D;C;A;B;Ai. The square in row i and column j contains the value of cŒi; j �
and the appropriate arrow for the value of bŒi; j �. The entry 4 in cŒ7; 6�4the lower right-hand corner
of the table4is the length of an LCS hB; C; B; Ai of X and Y . For i; j > 0, entry cŒi; j � depends
only on whether x i D y j and the values in entries cŒi 1; j �, cŒi; j 1�, and cŒi 1; j 1�, which
are computed before cŒi; j �. To reconstruct the elements of an LCS, follow the bŒi; j � arrows from
the lower right-hand corner, as shown by the sequence shaded blue. Each <-= on the shaded-blue
sequence corresponds to an entry (highlighted) for which x i D y j is a member of an LCS.

The initial call is PRINT-LCS.b;X;m; n/. For the b table in Figure 14.8, this pro-
cedure prints BCBA. The procedure takes O.m C n/ time, since it decrements at
least one of i and j in each recursive call.

Improving the code
Once you have developed an algorithm, you will often ûnd that you can improve
on the time or space it uses. Some changes can simplify the code and improve
constant factors but otherwise yield no asymptotic improvement in performance.
Others can yield substantial asymptotic savings in time and space.

In the LCS algorithm, for example, you can eliminate the b table altogether.
Each cŒi; j � entry depends on only three other c table entries: cŒi 1; j 1�,
cŒi 1; j �, and cŒi; j 1�. Given the value of cŒi; j �, you can determine in O.1/
time which of these three values was used to compute cŒi; j �, without inspecting
table b. Thus, you can reconstruct an LCS in O.mCn/ time using a procedure sim-
ilar to PRINT-LCS. (Exercise 14.4-2 asks you to give the pseudocode.) Alt hough
this method saves ‚.mn/ space, the auxiliary space requirement for computing

14.4 Longest common subsequence 399

an LCS does not asymptotically decrease, since the c table takes ‚.mn/ space
anyway.

You can, however, reduce the asymptotic space requirements for LCS-LENGTH,
since it needs only two rows of table c at a time: the row being computed and the
previous row. (In fact, as Exercise 14.4-4 asks you to show, you can use only
slightly more than the space for one row of c to compute the length of an LCS.)
This improvement works if you need only the length of an LCS. If you need
to reconstruct the elements of an LCS, the smaller table does not keep enough
information to retrace the algorithm’s steps in O.m C n/ time.

Exercises
14.4-1
Determine an LCS of h1; 0; 0; 1; 0; 1; 0; 1i and h0; 1; 0; 1; 1; 0; 1; 1; 0i.
14.4-2
Give pseudocode to reconstruct an LCS from the completed c table and the original
sequences X D hx 1 ; x 2 ; : : : ; x m i and Y D hy 1 ; y 2 ; : : : ; y n i in O.m C n/ time,
without using the b table.
14.4-3
Give a memoized version of LCS-LENGTH that runs in O.mn/ time.
14.4-4
Show how to compute the length of an LCS using only 2 min fm;ng entries in the
c table plus O.1/ additional space. Then show how to do the same thing, but using
min fm;ng entries plus O.1/ additional space.
14.4-5
Give an O.n 2 /-time algorithm to ûnd the longest monotonically increasing subse-
quence of a sequence of n numbers.

? 14.4-6
Give an O.n lg n/-time algorithm to ûnd the longest monotonically increasing sub-
sequence of a sequence of n numbers. (Hint: The last element of a candidate subse-
quence of length i is at least as large as the last element of a candidate subsequence
of length i 1. Maintain candidate subsequences by linking them through the input
sequence.)

400 Chapter 14 Dynamic Programming

14.5 Optimal binary search trees

Suppose that you are designing a program to translate text from English to Latvian.
For each occurrence of each English word in the text, you need to look up its
Latvian equivalent. You can perform these lookup operations by building a binary
search tree with n English words as keys and their Latvian equivalents as satellite
data. Because you will search the tree for each individual word in the text, you want
the total time spent searching to be as low as possible. You can ensure an O.lg n/
search time per occurrence by using a red-black tree or any other balanced binary
search tree. Words appear with different frequencies, however, and a frequently
used word such as the can end up appearing far from the root while a rarely used
word such as naumachia appears near the root. Such an organization would slow
down the translation, since the number of nodes visited when searching for a key
in a binary search tree equals 1 plus the depth of the node containing the key. You
want words that occur frequently in the text to be placed nearer the root. 8 Moreover,
some words in the text might have no Latvian translation, 9 and such words would
not appear in the binary search tree at all. How can you organize a binary search
tree so as to minimize the number of nodes visited in all searches, given that you
know how often each word occurs?

What you need is an optimal binary search tree. Formally, given a sequence
K D hk 1 ; k 2 ; : : : ; k n i of n distinct keys such that k 1 < k 2 < < k n , build a
binary search tree containing them. For each key k i , you are given the probabil-
ity p i that any given search is for key k i . Since some searches may be for values
not in K, you also have n C 1 <dummy= keys d 0 ; d 1 ; d 2 ; : : : ; d n representing those
values. In particular, d 0 represents all values less than k 1 , d n represents all val-
ues greater than k n , and for i D 1; 2; : : : ; n 1, the dummy key d i represents all
values between k i and k i C1 . For each dummy key d i , you have the probability q i
that a search corresponds to d i . Figure 14.9 shows two binary search trees for a
set of n D 5 keys. Each key k i is an internal node, and each dummy key d i is a
leaf. Since every search is either successful (ûnding some key k i) or unsuccessful
(ûnding some dummy key d i), we have
n X

i D1

p i C
n X

i D0

q i D 1 : (14.10)

8 If the subject of the text is ancient Rome, you might want naumachia to appear near the root.
9 Yes, naumachia has a Latvian counterpart: nomaˇ cija.

14.5 Optimal binary search trees 401

k 2

k 1 k 4

k 3 k 5 d 0 d 1

d 2 d 3 d 4 d 5

k 2

k 1

k 4

k 3

k 5

d 0 d 1

d 2 d 3

d 4

d 5

node depth probability contribution
k 1 1 0.15 0.30
k 2 0 0.10 0.10
k 3 2 0.05 0.15
k 4 1 0.10 0.20
k 5 2 0.20 0.60
d 0 2 0.05 0.15
d 1 2 0.10 0.30
d 2 3 0.05 0.20
d 3 3 0.05 0.20
d 4 3 0.05 0.20
d 5 3 0.10 0.40
Total 2.80

(a)

node depth probability contribution
k 1 1 0.15 0.30
k 2 0 0.10 0.10
k 3 3 0.05 0.20
k 4 2 0.10 0.30
k 5 1 0.20 0.40
d 0 2 0.05 0.15
d 1 2 0.10 0.30
d 2 4 0.05 0.25
d 3 4 0.05 0.25
d 4 3 0.05 0.20
d 5 2 0.10 0.30
Total 2.75

(b)

Figure 14.9 Two binary search trees for a set of n D 5 keys with the following probabilities:
i 0 1 2 3 4 5
p i 0.15 0.10 0.05 0.10 0.20
q i 0.05 0.10 0.05 0.05 0.05 0.10

(a) A binary search tree with expected search cost 2.80. (b) A binary search tree with expected search
cost 2.75. This tree is optimal.

Knowing the probabilities of searches for each key and each dummy key allows
us to determine the expected cost of a search in a given binary search tree T . Let
us assume that the actual cost of a search equals the number of nodes examined,
which is the depth of the node found by the search in T , plus 1. Then the expected
cost of a search in T is

E Œsearch cost in T � D
n X

i D1

.depth T .k i / C 1/ p i C
n X

i D0

.depth T .d i / C 1/ q i

D 1 C
n X

i D1

depth T .k i / p i C
n X

i D0

depth T .d i / q i ; (14.11)

402 Chapter 14 Dynamic Programming

where depth T denotes a node’s depth in the tree T . The last equation follows from
equation (14.10). Figure 14.9 shows how to calculate the expected search cost node
by node.

For a given set of probabilities, your goal is to construct a binary search tree
whose expected search cost is smallest. We call such a tree an optimal binary
search tree. Figure 14.9(a) shows one binary search tree, with expected cost 2:80,
for the probabilities given in the ûgure caption. Part (b) of the ûgure displays an
optimal binary search tree, with expected cost 2:75. This example demonstrates
that an optimal binary search tree is not necessarily a tree whose overall height
is smallest. Nor does an optimal binary search tree always have the key with the
greatest probability at the root. Here, key k 5 has the greatest search probability of
any key, yet the root of the optimal binary search tree shown is k 2 . (The lowest
expected cost of any binary search tree with k 5 at the root is 2.85.)
As with matrix-chain multiplication, exhaustive checking of all possibilities fails

to yield an efûcient algorithm. You can label the nodes of any n-node binary tree
with the keys k 1 ; k 2 ; : : : ; k n to construct a binary search tree, and then add in the
dummy keys as leaves. In Problem 12-4 on page 329, we saw that the number
of binary trees with n nodes is �.4 n =n 3=2 /. Thus you would need to examine an
exponential number of binary search trees to perform an exhaustive search. We’ll
see how to solve this problem more efûciently with dynamic programming.

Step 1: The structure of an optimal binary search tree
To characterize the optimal substructure of optimal binary search trees, we start
with an observation about subtrees. Consider any subtree of a binary search tree.
It must contain keys in a contiguous range k i ; : : : ; k j , for some 1 හ i හ j හ n.
In addition, a subtree that contains keys k i ; : : : ; k j must also have as its leaves the
dummy keys d i 1 ; : : : ; d j .

Now we can state the optimal substructure: if an optimal binary search tree T
has a subtree T 0 containing keys k i ; : : : ; k j , then this subtree T 0 must be optimal as
well for the subproblem with keys k i ; : : : ; k j and dummy keys d i 1 ; : : : ; d j . The
usual cut-and-paste argument applies. If there were a subtree T 00 whose expected
cost is lower than that of T 0 , then cutting T 0 out of T and pasting in T 00 would
result in a binary search tree of lower expected cost than T , thus contradicting the
optimality of T .

With the optimal substructure in hand, here is how to construct an optimal solu-
tion to the problem from optimal solutions to subproblems. Given keys k i ; : : : ; k j ,
one of these keys, say k r (i හ r හ j), is the root of an optimal subtree contain-
ing these keys. The left subtree of the root k r contains the keys k i ; : : : ; k r 1 (and
dummy keys d i 1 ; : : : ; d r 1), and the right subtree contains the keys k r C1 ; : : : ; k j
(and dummy keys d r ; : : : ; d j). As long as you examine all candidate roots k r ,

14.5 Optimal binary search trees 403

where i හ r හ j , and you determine all optimal binary search trees contain-
ing k i ; : : : ; k r 1 and those containing k r C1 ; : : : ; k j , you are guaranteed to ûnd an
optimal binary search tree.

There is one technical detail worth understanding about <empty= subtrees. Sup-
pose that in a subtree with keys k i ; : : : ; k j , you select k i as the root. By the above
argument, k i ’s left subtree contains the keys k i ; : : : ; k i 1 : no keys at all. Bear in
mind, however, that subtrees also contain dummy keys. We adopt the convention
that a subtree containing keys k i ; : : : ; k i 1 has no actual keys but does contain the
single dummy key d i 1 . Symmetrically, if you select k j as the root, then k j ’s right
subtree contains the keys k j C1 ; : : : ; k j . This right subtree contains no actual keys,
but it does contain the dummy key d j .

Step 2: A recursive solution

To deûne the value of an optimal solution recursively, the subproblem domain is
ûnding an optimal binary search tree containing the keys k i ; : : : ; k j , where i 1,
j හ n, and j i 1. (When j D i 1, there is just the dummy key d i 1 ,
but no actual keys.) Let eŒi; j � denote the expected cost of searching an optimal
binary search tree containing the keys k i ; : : : ; k j . Your goal is to compute eŒ1; n�,
the expected cost of searching an optimal binary search tree for all the actual and
dummy keys.

The easy case occurs when j D i 1. Then the subproblem consists of just the
dummy key d i 1 . The expected search cost is eŒi; i 1� D q i 1 .

When j i , you need to select a root k r from among k i ; : : : ; k j and then
make an optimal binary search tree with keys k i ; : : : ; k r 1 as its left subtree and
an optimal binary search tree with keys k r C1 ; : : : ; k j as its right subtree. What
happens to the expected search cost of a subtree when it becomes a subtree of a
node? The depth of each node in the subtree increases by 1. By equation (14.11),
the expected search cost of this subtree increases by the sum of all the probabilities
in the subtree. For a subtree with keys k i ; : : : ; k j , denote this sum of probabilities
as

w.i; j / D
j X

l Di

p l C
j X

l Di 1

q l : (14.12)

Thus, if k r is the root of an optimal subtree containing keys k i ; : : : ; k j , we have
eŒi; j � D p r C .eŒi; r 1� C w.i; r 1// C .eŒr C 1; j � C w.r C 1; j // :

Noting that
w.i; j / D w.i; r 1/ C p r C w.r C 1; j / ;

we rewrite eŒi; j � as

404 Chapter 14 Dynamic Programming

eŒi; j � D eŒi; r 1� C eŒr C 1; j � C w.i; j / : (14.13)
The recursive equation (14.13) assumes that you know which node k r to use as

the root. Of course, you choose the root that gives the lowest expected search cost,
giving the ûnal recursive formulation:

eŒi; j � D

(
q i 1 if j D i 1 ;
min feŒi; r 1� C eŒr C 1; j � C w.i; j / W i හ r හ j g if i හ j :

(14.14)
The eŒi; j � values give the expected search costs in optimal binary search trees.

To help keep track of the structure of optimal binary search trees, deûne root Œi; j �,
for 1 හ i හ j හ n, to be the index r for which k r is the root of an optimal binary
search tree containing keys k i ; : : : ; k j . Although we’ll see how to compute the
values of root Œi; j �, the construction of an optimal binary search tree from these
values is left as Exercise 14.5-1.

Step 3: Computing the expected search cost of an optimal binary search tree
At this point, you may have noticed some similarities between our characterizations
of optimal binary search trees and matrix-chain multiplication. For both problem
domains, the subproblems consist of contiguous index subranges. A direct, recur-
sive implementation of equation (14.14) would be just as inefûcient as a direct,
recursive matrix-chain multiplication algorithm. Instead, you can store the eŒi; j �
values in a table eŒ1 W n C 1; 0 W n�. The ûrst index needs to run to n C 1 rather than n
because in order to have a subtree containing only the dummy key d n , you need to
compute and store eŒn C 1; n�. The second index needs to start from 0 because in
order to have a subtree containing only the dummy key d 0 , you need to compute
and store eŒ1; 0�. Only the entries eŒi; j � for which j i 1 are ûlled in. The
table root Œi; j � records the root of the subtree containing keys k i ; : : : ; k j and uses
only the entries for which 1 හ i හ j හ n.
One other table makes the dynamic-programming algorithm a little faster. In-

stead of computing the value of w.i; j / from scratch every time you compute
eŒi; j �, which would take ‚.j i/ additions, store these values in a table
wŒ1 W n C 1; 0 W n�. For the base case, compute wŒi; i 1� D q i 1 for 1 හ i හ n C 1.
For j i , compute
wŒi; j � D wŒi; j 1� C p j C q j : (14.15)
Thus, you can compute the ‚.n 2 / values of wŒi; j � in ‚.1/ time each.
The OPTIMAL-BST procedure on the next page takes as inputs the probabilities

p 1 ; : : : ; p n and q 0 ; : : : ; q n and the size n, and it returns the tables e and root . From
the description above and the similarity to the MATRIX-CHAIN-ORDER procedure

14.5 Optimal binary search trees 405

in Section 14.2, you should ûnd the operation of this procedure to be fairly straight-
forward. The for loop of lines 234 initializes the values of eŒi; i 1� and wŒi; i 1�.
Then the for loop of lines 5314 uses the recurrences (14.14) and (14.15) to com-
pute eŒi; j � and wŒi; j � for all 1 හ i හ j හ n. In the ûrst iteration, when l D 1,
the loop computes eŒi; i � and wŒi; i � for i D 1; 2; : : : ; n. The second iteration, with
l D 2, computes eŒi; i C 1� and wŒi; i C 1� for i D 1; 2; : : : ; n 1, and so on. The
innermost for loop, in lines 10314, tries each candidate index r to determine which
key k r to use as the root of an optimal binary search tree containing keys k i ; : : : ; k j .
This for loop saves the current value of the index r in root Œi; j � whenever it ûnds a
better key to use as the root.

OPTIMAL-BST .p; q; n/
1 let eŒ1 W n C 1; 0 W n�, wŒ1 W n C 1; 0 W n�,

and root Œ1 W n; 1 W n� be new tables
2 for i D 1 to n C 1 // base cases
3 eŒi; i 1� D q i 1 // equation (14.14)
4 wŒi; i 1� D q i 1
5 for l D 1 to n
6 for i D 1 to n l C 1
7 j D i C l 1
8 eŒi; j � D 1
9 wŒi; j � D wŒi; j 1� C p j C q j // equation (14.15)
10 for r D i to j // try all possible roots r
11 t D eŒi; r 1� C eŒr C 1; j � C wŒi; j � // equation (14.14)
12 if t < eŒi; j � // new minimum?
13 eŒi; j � D t
14 root Œi; j � D r
15 return e and root

Figure 14.10 shows the tables eŒi; j �, wŒi; j �, and root Œi; j � computed by the
procedure OPTIMAL-BST on the key distribution shown in Figure 14.9. As in the
matrix-chain multiplication example of Figure 14.5, the tables are rotated to make
the diagonals run horizontally. OPTIMAL-BST computes the rows from bottom to
top and from left to right within each row.
The OPTIMAL-BST procedure takes ‚.n 3 / time, just like MATRIX-CHAIN-

ORDER. Its running time is O.n 3 /, since its for loops are nested three deep and
each loop index takes on at most n values. The loop indices in OPTIMAL-BST do
not have exactly the same bounds as those in MATRIX-CHAIN-ORDER, but they
are within at most 1 in all directions. Thus, like MATRIX-CHAIN-ORDER, the
OPTIMAL-BST procedure takes �.n 3 / time.

406 Chapter 14 Dynamic Programming

2.75
1.75

1.25
0.90

0.45
0.05

2.00
1.20

0.70
0.40

0.10

1.30
0.60

0.25
0.05

0.90
0.30

0.05
0.50

0.05 0.10

e

0
1

2
3

4
5

6
5

4
3

2
1

j i 1.00
0.70

0.55
0.45

0.30
0.05

0.80
0.50

0.35
0.25

0.10

0.60
0.30

0.15
0.05

0.50
0.20

0.05
0.35

0.05 0.10

w

0
1

2
3

4
5

6
5

4
3

2
1

j i

2
2

2
1

1

4
2

2
2

5
4

3
5

4 5

root

1
2

3
4

5

5
4

3
2

1
j i

Figure 14.10 The tables eŒi; j �, wŒi; j �, and rootŒi; j � computed by OPTIMAL-BST on the key
distribution shown in Figure 14.9. The tables are rotated so that the diagonals run horizontally.

Exercises
14.5-1
Write pseudocode for the procedure CONSTRUCT-OPTIMAL-BST .root ; n/ which,
given the table root Œ1 W n; 1 W n�, outputs the structure of an optimal binary search
tree. For the example in Figure 14.10, your procedure should print out the structure
k 2 is the root
k 1 is the left child of k 2
d 0 is the left child of k 1
d 1 is the right child of k 1
k 5 is the right child of k 2
k 4 is the left child of k 5
k 3 is the left child of k 4
d 2 is the left child of k 3
d 3 is the right child of k 3
d 4 is the right child of k 4
d 5 is the right child of k 5

corresponding to the optimal binary search tree shown in Figure 14.9(b).

Problems for Chapter 14 407

14.5-2
Determine the cost and structure of an optimal binary search tree for a set of n D 7
keys with the following probabilities:
i 0 1 2 3 4 5 6 7
p i 0.04 0.06 0.08 0.02 0.10 0.12 0.14
q i 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05

14.5-3
Suppose that instead of maintaining the table wŒi; j �, you computed the value
of w.i; j / directly from equation (14.12) in line 9 of OPTIMAL-BST and used this
computed value in line 11. How would this change affect the asymptotic running
time of OPTIMAL-BST?

? 14.5-4
Knuth [264] has shown that there are always roots of optimal subtrees such that
root Œi; j 1� හ root Œi; j � හ root Œi C 1; j � for all 1 හ i < j හ n. Use this fact to
modify the OPTIMAL-BST procedure to run in ‚.n 2 / time.

Problems

14-1 Longest simple path in a directed acyclic graph
You are given a directed acyclic graph G D .V;E/ with real-valued edge weights
and two distinguished vertices s and t . The weight of a path is the sum of the
weights of the edges in the path. Describe a dynamic-programming approach for
ûnding a longest weighted simple path from s to t . What is the running time of
your algorithm?

14-2 Longest palindrome subsequence
A palindrome is a nonempty string over some alphabet that reads the same for-
ward and backward. Examples of palindromes are all strings of length 1, civic,
racecar, and aibohphobia (fear of palindromes).
Give an efûcient algorithm to ûnd the longest palindrome that is a subsequence

of a given input string. For example, given the input character, your algorithm
should return carac. What is the running time of your algorithm?

14-3 Bitonic euclidean traveling-salesperson problem
In the euclidean traveling-salesperson problem, you are given a set of n points in
the plane, and your goal is to ûnd the shortest closed tour that connects all n points.

408 Chapter 14 Dynamic Programming

(a) (b)

Figure 14.11 Seven points in the plane, shown on a unit grid. (a) The shortest closed tour, with
length approximately 24:89. This tour is not bitonic. (b) The shortest bitonic tour for the same set of
points. Its length is approximately 25:58.

Figure 14.11(a) shows the solution to a 7-point problem. The general problem is
NP-hard, and its solution is therefore believed to require more than polynomial
time (see Chapter 34).
J. L. Bentley has suggested simplifying the problem by considering only bitonic

tours, that is, tours that start at the leftmost point, go strictly rightward to the right-
most point, and then go strictly leftward back to the starting point. Figure 14.11(b)
shows the shortest bitonic tour of the same 7 points. In this case, a polynomial-time
algorithm is possible.

Describe an O.n 2 /-time algorithm for determining an optimal bitonic tour. You
may assume that no two points have the same x -coordinate and that all operations
on real numbers take unit time. (Hint: Scan left to right, maintaining optimal pos-
sibilities for the two parts of the tour.)

14-4 Printing neatly
Consider the problem of neatly printing a paragraph with a monospaced font (all
characters having the same width). The input text is a sequence of n words of
lengths l 1 ; l 2 ; : : : ; l n , measured in characters, which are to be printed neatly on a
number of lines that hold a maximum of M characters each. No word exceeds
the line length, so that l i හ M for i D 1; 2; : : : ; n. The criterion of <neatness= is
as follows. If a given line contains words i through j , where i හ j , and exactly
one space appears between words, then the number of extra space characters at the
end of the line is M j C i

P j
kDi l k , which must be nonnegative so that the

words ût on the line. The goal is to minimize the sum, over all lines except the last,
of the cubes of the numbers of extra space characters at the ends of lines. Give a
dynamic-programming algorithm to print a paragraph of n words neatly. Analyze
the running time and space requirements of your algorithm.

Problems for Chapter 14 409

14-5 Edit distance
In order to transform a source string of text xŒ1 W m� to a target string yŒ1 W n�, you
can perform various transformation operations. The goal is, given x and y , to
produce a series of transformations that changes x to y . An array ´4assumed
to be large enough to hold all the characters it needs4holds the intermediate re-
sults. Initially, ´ is empty, and at termination, you should have ´Œj � D yŒj � for
j D 1; 2; : : : ; n. The procedure for solving this problem maintains current indices
i into x and j into ´, and the operations are allowed to alter ´ and these indices.
Initially, i D j D 1. Every character in x must be examined during the transfor-
mation, which means that at the end of the sequence of transformation operations,
i D m C 1.

You may choose from among six transformation operations, each of which has
a constant cost that depends on the operation:
Copy a character from x to ´ by setting ´Œj � D xŒi � and then incrementing both i

and j . This operation examines xŒi � and has cost Q C .
Replace a character from x by another character c , by setting ´Œj � D c , and then

incrementing both i and j . This operation examines xŒi � and has cost Q R .
Delete a character from x by incrementing i but leaving j alone. This operation

examines xŒi � and has cost Q D .
Insert the character c into ´ by setting ´Œj � D c and then incrementing j , but

leaving i alone. This operation examines no characters of x and has cost Q I .
Twiddle (i.e., exchange) the next two characters by copying them from x to ´ but

in the opposite order: setting ´Œj � D xŒi C 1� and ´Œj C 1� D xŒi �, and then
setting i D i C 2 and j D j C 2. This operation examines xŒi � and xŒi C 1�
and has cost Q T .

Kill the remainder of x by setting i D m C 1. This operation examines all char-
acters in x that have not yet been examined. This operation, if performed, must
be the ûnal operation. It has cost Q K .
Figure 14.12 gives one way to transform the source string algorithm to the

target string altruistic. Several other sequences of transformation operations
can transform algorithm to altruistic.

Assume that Q C < Q D C Q I and Q R < Q D C Q I , since otherwise, the
copy and replace operations would not be used. The cost of a given sequence of
transformation operations is the sum of the costs of the individual operations in
the sequence. For the sequence above, the cost of transforming algorithm to
altruistic is 3Q C C Q R C Q D C 4Q I C Q T C Q K .
a. Given two sequences xŒ1 W m� and yŒ1 W n� and the costs of the transformation

operations, the edit distance from x to y is the cost of the least expensive op-

410 Chapter 14 Dynamic Programming

Operation x ´
initial strings a lgorithm
copy al gorithm a
copy alg orithm al
replace by t algo rithm alt
delete algor ithm alt
copy algori thm altr
insert u algori thm altru
insert i algori thm altrui
insert s algori thm altruis
twiddle algorith m altruisti
insert c algorith m altruistic
kill algorithm altruistic

Figure 14.12 A sequence of operations that transforms the source algorithm to the target string
altruistic. The underlined characters are xŒi� and ´Œj � after the operation.

eration sequence that transforms x to y . Describe a dynamic-programming
algorithm that ûnds the edit distance from xŒ1 W m� to yŒ1 W n� and prints an op-
timal operation sequence. Analyze the running time and space requirements of
your algorithm.

The edit-distance problem generalizes the problem of aligning two DNA sequences
(see, for example, Setubal and Meidanis [405, Section 3.2]). There are several
methods for measuring the similarity of two DNA sequences by aligning them.
One such method to align two sequences x and y consists of inserting spaces at
arbitrary locations in the two sequences (including at either end) so that the result-
ing sequences x 0 and y 0 have the same length but do not have a space in the same
position (i.e., for no position j are both x 0 Œj � and y 0 Œj � a space). Then we assign a
<score= to each position. Position j receives a score as follows:
 C1 if x 0 Œj � D y 0 Œj � and neither is a space,
 1 if x 0 Œj � ¤ y 0 Œj � and neither is a space,
 2 if either x 0 Œj � or y 0 Œj � is a space.
The score for the alignment is the sum of the scores of the individual positions. For
example, given the sequences x D GATCGGCAT and y D CAATGTGAATC, one
alignment is
G ATCG GCAT
CAAT GTGAATC
- * ++ * + * +-++ *

Problems for Chapter 14 411

A + under a position indicates a score of C1 for that position, a - indicates a score
of 1, and a * indicates a score of 2, so that this alignment has a total score of
6 1 2 1 4 2 D 4.
b. Explain how to cast the problem of ûnding an optimal alignment as an edit-

distance problem using a subset of the transformation operations copy, replace,
delete, insert, twiddle, and kill.

14-6 Planning a company party
Professor Blutarsky is consulting for the president of a corporation that is planning
a company party. The company has a hierarchical structure, that is, the supervisor
relation forms a tree rooted at the president. The human resources department has
ranked each employee with a conviviality rating, which is a real number. In order to
make the party fun for all attendees, the president does not want both an employee
and his or her immediate supervisor to attend.

Professor Blutarsky is given the tree that describes the structure of the corpo-
ration, using the left-child, right-sibling representation described in Section 10.3.
Each node of the tree holds, in addition to the pointers, the name of an employee
and that employee’s conviviality ranking. Describe an algorithm to make up a guest
list that maximizes the sum of the conviviality ratings of the guests. Analyze the
running time of your algorithm.

14-7 Viterbi algorithm
Dynamic programming on a directed graph can play a part in speech recogni-
tion. A directed graph G D .V;E/ with labeled edges forms a formal model
of a person speaking a restricted language. Each edge .u; v/ 2 E is labeled with
a sound �.u; v/ from a ûnite set † of sounds. Each directed path in the graph
starting from a distinguished vertex v 0 2 V corresponds to a possible sequence of
sounds produced by the model, with the label of a path being the concatenation of
the labels of the edges on that path.
a. Describe an efûcient algorithm that, given an edge-labeled directed graph G

with distinguished vertex v 0 and a sequence s D h� 1 ; � 2 ; : : : ; � k i of sounds
from †, returns a path in G that begins at v 0 and has s as its label, if any such
path exists. Otherwise, the algorithm should return NO- SUCH- PATH. Analyze
the running time of your algorithm. (Hint: You may ûnd concepts from Chap-
ter 20 useful.)

Now suppose that every edge .u; v/ 2 E has an associated nonnegative probabil-
ity p.u; v/ of being traversed, so that the corresponding sound is produced. The
sum of the probabilities of the edges leaving any vertex equals 1. The probability
of a path is deûned to be the product of the probabilities of its edges. Think of

412 Chapter 14 Dynamic Programming

the probability of a path beginning at vertex v 0 as the probability that a <random
walk= beginning at v 0 follows the speciûed path, where the edge leaving a vertex u
is taken randomly, according to the probabilities of the available edges leaving u.
b. Extend your answer to part (a) so that if a path is returned, it is a most probable

path starting at vertex v 0 and having label s . Analyze the running time of your
algorithm.

14-8 Image compression by seam carving
Suppose that you are given a color picture consisting of an mn array AŒ1 W m; 1 W n�
of pixels, where each pixel speciûes a triple of red, green, and blue (RGB) intensi-
ties. You want to compress this picture slightly, by removing one pixel from each
of the m rows, so that the whole picture becomes one pixel narrower. To avoid
incongruous visual effects, however, the pixels removed in two adjacent rows must
lie in either the same column or adjacent columns. In this way, the pixels removed
form a <seam= from the top row to the bottom row, where successive pixels in the
seam are adjacent vertically or diagonally.
a. Show that the number of such possible seams grows at least exponentially in m,

assuming that n > 1.

b. Suppose now that along with each pixel AŒi; j �, you are given a real-valued
disruption measure dŒi; j �, indicating how disruptive it would be to remove
pixel AŒi; j �. Intuitively, the lower a pixel’s disruption measure, the more sim-
ilar the pixel is to its neighbors. Deûne the disruption measure of a seam as the
sum of the disruption measures of its pixels.
Give an algorithm to ûnd a seam with the lowest disruption measure. How
efûcient is your algorithm?

14-9 Breaking a string
A certain string-processing programming language allows you to break a string
into two pieces. Because this operation copies the string, it costs n time units to
break a string of n characters into two pieces. Suppose that you want to break a
string into many pieces. The order in which the breaks occur can affect the total
amount of time used. For example, suppose that you want to break a 20-character
string after characters 2, 8, and 10 (numbering the characters in ascending order
from the left-hand end, starting from 1). If you program the breaks to occur in
left-to-right order, then the ûrst break costs 20 time units, the second break costs
18 time units (breaking the string from characters 3 to 20 at character 8), and the
third break costs 12 time units, totaling 50 time units. If you program the breaks
to occur in right-to-left order, however, then the ûrst break costs 20 time units, the

Problems for Chapter 14 413

second break costs 10 time units, and the third break costs 8 time units, totaling 38
time units. In yet another order, you could break ûrst at 8 (costing 20), then break
the left piece at 2 (costing another 8), and ûnally the right piece at 10 (costing 12),
for a total cost of 40.

Design an algorithm that, given the numbers of characters after which to break,
determines a least-cost way to sequence those breaks. More formally, given an
array LŒ1 W m� containing the break points for a string of n characters, compute the
lowest cost for a sequence of breaks, along with a sequence of breaks that achieves
this cost.

14-10 Planning an investment strategy
Your knowledge of algorithms helps you obtain an exciting job with a hot startup,
along with a $10,000 signing bonus. You decide to invest this money with the
goal of maximizing your return at the end of 10 years. You decide to use your
investment manager, G. I. Luvcache, to manage your signing bonus. The company
that Luvcache works with requires you to observe the following rules. It offers n
different investments, numbered 1 through n. In each year j , investment i provides
a return rate of r ij . In other words, if you invest d dollars in investment i in year j ,
then at the end of year j , you have dr ij dollars. The return rates are guaranteed,
that is, you are given all the return rates for the next 10 years for each investment.
You make investment decisions only once per year. At the end of each year, you can
leave the money made in the previous year in the same investments, or you can shift
money to other investments, by either shifting money between existing investments
or moving money to a new investment. If you do not move your money between
two consecutive years, you pay a fee of f 1 dollars, whereas if you switch your
money, you pay a fee of f 2 dollars, where f 2 > f 1 . You pay the fee once per year
at the end of the year, and it is the same amount, f 2 , whether you move money in
and out of only one investment, or in and out of many investments.
a. The problem, as stated, allows you to invest your money in multiple investments

in each year. Prove that there exists an optimal investment strategy that, in
each year, puts all the money into a single investment. (Recall that an optimal
investment strategy maximizes the amount of money after 10 years and is not
concerned with any other objectives, such as minimizing risk.)

b. Prove that the problem of planning your optimal investment strategy exhibits
optimal substructure.

c. Design an algorithm that plans your optimal investment strategy. What is the
running time of your algorithm?

414 Chapter 14 Dynamic Programming

d. Suppose that Luvcache’s company imposes the additional restriction that, at
any point, you can have no more than $15,000 in any one investment. Show
that the problem of maximizing your income at the end of 10 years no longer
exhibits optimal substructure.

14-11 Inventory planning
The Rinky Dink Company makes machines that resurface ice rinks. The demand
for such products varies from month to month, and so the company needs to de-
velop a strategy to plan its manufacturing given the üuctuating, but predictable,
demand. The company wishes to design a plan for the next n months. For each
month i , the company knows the demand d i , that is, the number of machines that it
will sell. Let D D

P n
i D1 d i be the total demand over the next n months. The com-

pany keeps a full-time staff who provide labor to manufacture up to m machines
per month. If the company needs to make more than m machines in a given month,
it can hire additional, part-time labor, at a cost that works out to c dollars per ma-
chine. Furthermore, if the company is holding any unsold machines at the end of a
month, it must pay inventory costs. The company can hold up to D machines, with
the cost for holding j machines given as a function h.j / for j D 1; 2; : : : ;D that
monotonically increases with j .
Give an algorithm that calculates a plan for the company that minimizes its costs

while fulûlling all the demand. The running time should be polynomial in n and D.

14-12 Signing free-agent baseball players
Suppose that you are the general manager for a major-league baseball team. During
the off-season, you need to sign some free-agent players for your team. The team
owner has given you a budget of $X to spend on free agents. You are allowed to
spend less than $X , but the owner will ûre you if you spend any more than $X .

You are considering N different positions, and for each position, P free-agent
players who play that position are available. 10 Because you do not want to overload
your roster with too many players at any position, for each position you may sign
at most one free agent who plays that position. (If you do not sign any players at a
particular position, then you plan to stick with the players you already have at that
position.)

10 Although there are nine positions on a baseball team, N is not necessarily equal to 9 because some
general managers have particular ways of thinking about positions. For example, a general manager
might consider right-handed pitchers and left-handed pitchers to be separate <positions,= as well as
starting pitchers, long relief pitchers (relief pitchers who can pitch several innings), and short relief
pitchers (relief pitchers who normally pitch at most only one inning).

Notes for Chapter 14 415

To determine how valuable a player is going to be, you decide to use a saber-
metric statistic 11 known as <WAR,= or <wins above replacement.= A player with a
higher WAR is more valuable than a player with a lower WAR. It is not necessarily
more expensive to sign a player with a higher WAR than a player with a lower
WAR, because factors other than a player’s value determine how much it costs to
sign them.
For each available free-agent player p, you have three pieces of information:

 the player’s position,
 p: cost , the amount of money it costs to sign the player, and
 p: war, the player’s WAR.

Devise an algorithm that maximizes the total WAR of the players you sign while
spending no more than $X . You may assume that each player signs for a multiple
of $100,000. Your algorithm should output the total WAR of the players you sign,
the total amount of money you spend, and a list of which players you sign. Analyze
the running time and space requirement of your algorithm.

Chapter notes

Bellman [44] began the systematic study of dynamic programming in 1955, pub-
lishing a book about it in 1957. The word <programming,= both here and in linear
programming, refers to using a tabular solution method. Although optimization
techniques incorporating elements of dynamic programming were known earlier,
Bellman provided the area with a solid mathematical basis.
Galil and Park [172] classify dynamic-programming algorithms according to the

size of the table and the number of other table entries each entry depends on. They
call a dynamic-programming algorithm tD=eD if its table size is O.n t / and each
entry depends on O.n e / other entries. For example, the matrix-chain multiplica-
tion algorithm in Section 14.2 is 2D=1D, and the longest-common-subsequence
algorithm in Section 14.4 is 2D=0D.

The MATRIX-CHAIN-ORDER algorithm on page 378 is by Muraoka and Kuck
[339]. Hu and Shing [230, 231] give an O.n lg n/-time algorithm for the matrix-
chain multiplication problem.

The O.mn/-time algorithm for the longest-common-subsequence problem ap-
pears to be a folk algorithm. Knuth [95] posed the question of whether subquadratic

11 Sabermetrics is the application of statistical analysis to baseball records. It provides several ways
to compare the relative values of individual players.

416 Chapter 14 Dynamic Programming

algorithms for the LCS problem exist. Masek and Paterson [316] answered this
question in the afûrmative by giving an algorithm that runs in O.mn= lg n/ time,
where n හ m and the sequences are drawn from a set of bounded size. For the
special case in which no element appears more than once in an input sequence,
Szymanski [425] shows how to solve the problem in O..n C m/ lg.n C m// time.
Many of these results extend to the problem of computing string edit distances
(Problem 14-5).
An early paper on variable-length binary encodings by Gilbert and Moore [181],

which had applications to constructing optimal binary search trees for the case in
which all probabilities p i are 0, contains an O.n 3 /-time algorithm. Aho, Hopcroft,
and Ullman [5] present the algorithm from Section 14.5. Splay trees [418], which
modify the tree in response to the search queries, come within a constant factor of
the optimal bounds without being initialized with the frequencies. Exercise 14.5-4
is due to Knuth [264]. Hu and Tucker [232] devised an algorithm for the case
in which all probabilities p i are 0 that uses O.n 2 / time and O.n/ space. Subse-
quently, Knuth [261] reduced the time to O.n lg n/.
Problem 14-8 is due to Avidan and Shamir [30], who have posted on the web a

wonderful video illustrating this image-compression technique.

15 Greedy Algorithms

Algorithms for optimization problems typically go through a sequence of steps,
with a set of choices at each step. For many optimization problems, using dy-
namic programming to determine the best choices is overkill, and simpler, more
efûcient algorithms will do. A greedy algorithm always makes the choice that
looks best at the moment. That is, it makes a locally optimal choice in the hope
that this choice leads to a globally optimal solution. This chapter explores opti-
mization problems for which greedy algorithms provide optimal solutions. Before
reading this chapter, you should read about dynamic programming in Chapter 14,
particularly Section 14.3.
Greedy algorithms do not always yield optimal solutions, but for many prob-

lems they do. We ûrst examine, in Section 15.1, a simple but nontrivial problem,
the activity-selection problem, for which a greedy algorithm efûciently computes
an optimal solution. We’ll arrive at the greedy algorithm by ûrst considering a
dynamic-programming approach and then showing that an optimal solution can re-
sult from always making greedy choices. Section 15.2 reviews the basic elements
of the greedy approach, giving a direct approach for proving greedy algorithms cor-
rect. Section 15.3 presents an important application of greedy techniques: design-
ing data-compression (Huffman) codes. Finally, Section 15.4 shows that in order
to decide which blocks to replace when a miss occurs in a cache, the <furthest-in-
future= strategy is optimal if the sequence of block accesses is known in advance.

The greedy method is quite powerful and works well for a wide range of prob-
lems. Later chapters will present many algorithms that you can view as applications
of the greedy method, including minimum-spanning-tree algorithms (Chapter 21),
Dijkstra’s algorithm for shortest paths from a single source (Section 22.3), and a
greedy set-covering heuristic (Section 35.3). Minimum-spanning-tree algorithms
furnish a classic example of the greedy method. Although you can read this chapter
and Chapter 21 independently of each other, you might ûnd it useful to read them
together.

418 Chapter 15 Greedy Algorithms

15.1 An activity-selection problem

Our ûrst example is the problem of scheduling several competing activities that re-
quire exclusive use of a common resource, with a goal of selecting a maximum-size
set of mutually compatible activities. Imagine that you are in charge of scheduling
a conference room. You are presented with a set S D fa 1 ; a 2 ; : : : ; a n g of n pro-
posed activities that wish to reserve the conference room, and the room can serve
only one activity at a time. Each activity a i has a start time s i and a ûnish time f i ,
where 0 හ s i < f i < 1. If selected, activity a i takes place during the half-open
time interval Œs i ; f i /. Activities a i and a j are compatible if the intervals Œs i ; f i /
and Œs j ; f j / do not overlap. That is, a i and a j are compatible if s i f j or s j f i .
(Assume that if your staff needs time to change over the room from one activity to
the next, the changeover time is built into the intervals.) In the activity-selection
problem, your goal is to select a maximum-size subset of mutually compatible ac-
tivities. Assume that the activities are sorted in monotonically increasing order of
ûnish time:
f 1 හ f 2 හ f 3 හ හ f n1 හ f n : (15.1)
(We’ll see later the advantage that this assumption provides.) For example, con-
sider the set of activities in Figure 15.1. The subset fa 3 ; a 9 ; a 11 g consists of mutu-
ally compatible activities. It is not a maximum subset, however, since the subset
fa 1 ; a 4 ; a 8 ; a 11 g is larger. In fact, fa 1 ; a 4 ; a 8 ; a 11 g is a largest subset of mutually
compatible activities, and another largest subset is fa 2 ; a 4 ; a 9 ; a 11 g.
We’ll see how to solve this problem, proceeding in several steps. First we’ll

explore a dynamic-programming solution, in which you consider several choices
when determining which subproblems to use in an optimal solution. We’ll then
observe that you need to consider only one choice4the greedy choice4and that
when you make the greedy choice, only one subproblem remains. Based on these
observations, we’ll develop a recursive greedy algorithm to solve the activity-
selection problem. Finally, we’ll complete the process of developing a greedy
solution by converting the recursive algorithm to an iterative one. Although the
steps we go through in this section are slightly more involved than is typical when
developing a greedy algorithm, they illustrate the relationship between greedy al-
gorithms and dynamic programming.

i 1 2 3 4 5 6 7 8 9 10 11
s i 1 3 0 5 3 5 6 7 8 2 12
f i 4 5 6 7 9 9 10 11 12 14 16

Figure 15.1 A set fa 1 ; a 2 ; : : : ; a 11 g of activities. Activity a i has start time s i and ûnish time f i .

15.1 An activity-selection problem 419

The optimal substructure of the activity-selection problem

Let’s verify that the activity-selection problem exhibits optimal substructure. De-
note by S ij the set of activities that start after activity a i ûnishes and that ûnish
before activity a j starts. Suppose that you want to ûnd a maximum set of mutually
compatible activities in S ij , and suppose further that such a maximum set is A ij ,
which includes some activity a k . By including a k in an optimal solution, you are
left with two subproblems: ûnding mutually compatible activities in the set S ik
(activities that start after activity a i ûnishes and that ûnish before activity a k starts)
and ûnding mutually compatible activities in the set S kj (activities that start after
activity a k ûnishes and that ûnish before activity a j starts). Let A ik D A ij \ S ik
and A kj D A ij \ S kj , so that A ik contains the activities in A ij that ûnish before a k
starts and A kj contains the activities in A ij that start after a k ûnishes. Thus, we
have A ij D A ik [fa k g [A kj , and so the maximum-size set A ij of mutually com-
patible activities in S ij consists of jA ij j D jA ik j C jA kj j C 1 activities.
The usual cut-and-paste argument shows that an optimal solution A ij must also

include optimal solutions to the two subproblems for S ik and S kj . If you could
ûnd a set A 0

kj of mutually compatible activities in S kj where jA 0
kj j > jA kj j, then

you could use A 0
kj , rather than A kj , in a solution to the subproblem for S ij . You

would have constructed a set of jA ik j C jA 0
kj j C 1 > jA ik j C jA kj j C 1 D jA ij j

mutually compatible activities, which contradicts the assumption that A ij is an
optimal solution. A symmetric argument applies to the activities in S ik .

This way of characterizing optimal substructure suggests that you can solve the
activity-selection problem by dynamic programming. Let’s denote the size of an
optimal solution for the set S ij by cŒi; j �. Then, the dynamic-programming ap-
proach gives the recurrence
cŒi; j � D cŒi; k� C cŒk; j � C 1 :

Of course, if you do not know that an optimal solution for the set S ij includes
activity a k , you must examine all activities in S ij to ûnd which one to choose, so
that

cŒi; j � D

(
0 if S ij D ; ;
max fcŒi; k� C cŒk; j � C 1 W a k 2 S ij g if S ij ¤ ; :

(15.2)

You can then develop a recursive algorithm and memoize it, or you can work
bottom-up and ûll in table entries as you go along. But you would be overlooking
another important characteristic of the activity-selection problem that you can use
to great advantage.

420 Chapter 15 Greedy Algorithms

Making the greedy choice
What if you could choose an activity to add to an optimal solution without having
to ûrst solve all the subproblems? That could save you from having to consider all
the choices inherent in recurrence (15.2). In fact, for the activity-selection problem,
you need to consider only one choice: the greedy choice.
What is the greedy choice for the activity-selection problem? Intuition suggests

that you should choose an activity that leaves the resource available for as many
other activities as possible. Of the activities you end up choosing, one of them
must be the ûrst one to ûnish. Intuition says, therefore, choose the activity in S
with the earliest ûnish time, since that leaves the resource available for as many
of the activities that follow it as possible. (If more than one activity in S has
the earliest ûnish time, then choose any such activity.) In other words, since the
activities are sorted in monotonically increasing order by ûnish time, the greedy
choice is activity a 1 . Choosing the ûrst activity to ûnish is not the only way to
think of making a greedy choice for this problem. Exercise 15.1-3 asks you to
explore other possibilities.
Once you make the greedy choice, you have only one remaining subproblem to

solve: ûnding activities that start after a 1 ûnishes. Why don’t you have to consider
activities that ûnish before a 1 starts? Because s 1 < f 1 , and because f 1 is the
earliest ûnish time of any activity, no activity can have a ûnish time less than or
equal to s 1 . Thus, all activities that are compatible with activity a 1 must start
after a 1 ûnishes.

Furthermore, we have already established that the activity-selection problem ex-
hibits optimal substructure. Let S k D fa i 2 S W s i f k g be the set of activities that
start after activity a k ûnishes. If you make the greedy choice of activity a 1 , then
S 1 remains as the only subproblem to solve. 1 Optimal substructure says that if a 1
belongs to an optimal solution, then an optimal solution to the original problem
consists of activity a 1 and all the activities in an optimal solution to the subprob-
lem S 1 .
One big question remains: Is this intuition correct? Is the greedy choice4in

which you choose the ûrst activity to ûnish4always part of some optimal solution?
The following theorem shows that it is.

1 We sometimes refer to the sets S k as subproblems rather than as just sets of activities. The context
will make it clear whether we are referring to S k as a set of activities or as a subproblem whose input
is that set.

15.1 An activity-selection problem 421

Theorem 15.1
Consider any nonempty subproblem S k , and let a m be an activity in S k with the
earliest ûnish time. Then a m is included in some maximum-size subset of mutually
compatible activities of S k .

Proof Let A k be a maximum-size subset of mutually compatible activities in S k ,
and let a j be the activity in A k with the earliest ûnish time. If a j D a m , we are
done, since we have shown that a m belongs to some maximum-size subset of mutu-
ally compatible activities of S k . If a j ¤ a m , let the set A 0

k D .A k fa j g/ [fa m g
be A k but substituting a m for a j . The activities in A 0

k are compatible, which fol-
lows because the activities in A k are compatible, a j is the ûrst activity in A k to
ûnish, and f m හ f j . Since jA 0

k j D jA k j, we conclude that A 0
k is a maximum-size

subset of mutually compatible activities of S k , and it includes a m .

Although you might be able to solve the activity-selection problem with dynamic
programming, Theorem 15.1 says that you don’t need to. Instead, you can repeat-
edly choose the activity that ûnishes ûrst, keep only the activities compatible with
this activity, and repeat until no activities remain. Moreover, because you always
choose the activity with the earliest ûnish time, the ûnish times of the activities that
you choose must strictly increase. You can consider each activity just once overall,
in monotonically increasing order of ûnish times.
An algorithm to solve the activity-selection problem does not need to work

bottom-up, like a table-based dynamic-programming algorithm. Instead, it can
work top-down, choosing an activity to put into the optimal solution that it con-
structs and then solving the subproblem of choosing activities from those that are
compatible with those already chosen. Greedy algorithms typically have this top-
down design: make a choice and then solve a subproblem, rather than the bottom-
up technique of solving subproblems before making a choice.

A recursive greedy algorithm

Now that you know you can bypass the dynamic-programming approach and in-
stead use a top-down, greedy algorithm, let’s see a straightforward, recursive
procedure to solve the activity-selection problem. The procedure RECURSIVE-
ACTIVITY-SELECTOR on the following page takes the start and ûnish times of the
activities, represented as arrays s and f , 2 the index k that deûnes the subprob-
lem S k it is to solve, and the size n of the original problem. It returns a maximum-

2 Because the pseudocode takes s and f as arrays, it indexes into them with square brackets rather
than with subscripts.

422 Chapter 15 Greedy Algorithms

size set of mutually compatible activities in S k . The procedure assumes that the
n input activities are already ordered by monotonically increasing ûnish time, ac-
cording to equation (15.1). If not, you can ûrst sort them into this order in O.n lg n/
time, breaking ties arbitrarily. In order to start, add the ûctitious activity a 0 with
f 0 D 0, so that subproblem S 0 is the entire set of activities S . The initial call,
which solves the entire problem, is RECURSIVE-ACTIVITY-SELECTOR .s; f; 0; n/.

RECURSIVE-ACTIVITY-SELECTOR .s; f; k; n/
1 m D k C 1
2 while m හ n and sŒm� < f Œk� // ûnd the ûrst activity in S k to ûnish
3 m D m C 1
4 if m හ n
5 return fa m g [RECURSIVE-ACTIVITY-SELECTOR .s; f;m; n/
6 else return ;

Figure 15.2 shows how the algorithm operates on the activities in Figure 15.1.
In a given recursive call RECURSIVE-ACTIVITY-SELECTOR .s; f; k; n/, the while
loop of lines 233 looks for the ûrst activity in S k to ûnish. The loop examines
a kC1 ; a kC2 ; : : : ; a n , until it ûnds the ûrst activity a m that is compatible with a k ,
which means that s m f k . If the loop terminates because it ûnds such an activity,
line 5 returns the union of fa m g and the maximum-size subset of S m returned by the
recursive call RECURSIVE-ACTIVITY-SELECTOR .s; f;m; n/. Alternatively, the
loop may terminate because m > n, in which case the procedure has examined
all activities in S k without ûnding one that is compatible with a k . In this case,
S k D ;, and so line 6 returns ;.
Assuming that the activities have already been sorted by ûnish times, the run-

ning time of the call RECURSIVE-ACTIVITY-SELECTOR .s; f; 0; n/ is ‚.n/. To
see why, observe that over all recursive calls, each activity is examined exactly
once in the while loop test of line 2. In particular, activity a i is examined in the
last call made in which k < i .

An iterative greedy algorithm

The recursive procedure can be converted to an iterative one because the procedure
RECURSIVE-ACTIVITY-SELECTOR is almost <tail recursive= (see Problem 7-5):
it ends with a recursive call to itself followed by a union operation. It is usually
a straightforward task to transform a tail-recursive procedure to an iterative form.
In fact, some compilers for certain programming languages perform this task auto-
matically.

15.1 An activity-selection problem 423

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
time

2 3 5

3 0 6

4 5 7

5 3 9

6 5 9

7 6 10

8 7 11

9 8 12

10 2 14

11 12 16

1 1 4

i s i f i

a 1

a 2

a 1

a 3

a 1

a 4

a 1 a 4

a 5

a 1 a 4

a 6

a 1 a 4

a 7

a 1 a 4

a 8

a 1 a 4 a 8

a 9

a 1 a 4 a 8

a 10

a 1 a 4 a 8

a 11

a 1 a 4 a 8 a 11

0 – 0

a 1

a 0

a 0

RECURSIVE-ACTIVITY-SELECTOR(s, f, 0, 11)

RECURSIVE-ACTIVITY-SELECTOR(s, f, 1, 11)

RECURSIVE-ACTIVITY-SELECTOR(s, f, 4, 11)

RECURSIVE-ACTIVITY-SELECTOR(s, f, 8, 11)

m = 1

m = 4

m = 8

m = 11

RECURSIVE-ACTIVITY-SELECTOR(s, f, 11, 11)

15 16

Figure 15.2 The operation of RECURSIVE-ACTIVITY-SELECTOR on the 11 activities from Fig-
ure 15.1. Activities considered in each recursive call appear between horizontal lines. The ûctitious
activity a 0 ûnishes at time 0, and the initial call RECURSIVE-ACTIVITY-SELECTOR.s; f; 0; 11/,
selects activity a 1 . In each recursive call, the activities that have already been selected are blue,
and the activity shown in tan is being considered. If the starting time of an activity occurs before
the ûnish time of the most recently added activity (the arrow between them points left), it is re-
jected. Otherwise (the arrow points directly up or to the right), it is selected. The last recursive call,
RECURSIVE-ACTIVITY-SELECTOR.s; f; 11; 11/, returns ;. The resulting set of selected activities is
fa 1 ; a 4 ; a 8 ; a 11 g.

424 Chapter 15 Greedy Algorithms

The procedure GREEDY-ACTIVITY-S ELECTOR is an iterative version of the pro-
cedure RECURSIVE-ACTIVITY-SELECTOR. It, too, assumes that the input activi-
ties are ordered by monotonically increasing ûnish time. It collects selected activ-
ities into a set A and returns this set when it is done.

GREEDY-ACTIVITY-SELECTOR .s; f; n/
1 A D fa 1 g
2 k D 1
3 for m D 2 to n
4 if sŒm� f Œk� // is a m in S k ?
5 A D A [fa m g // yes, so choose it
6 k D m // and continue from there
7 return A

The procedure works as follows. The variable k indexes the most recent ad-
dition to A, corresponding to the activity a k in the recursive version. Since the
procedure considers the activities in order of monotonically increasing ûnish time,
f k is always the maximum ûnish time of any activity in A. That is,
f k D max ff i W a i 2 Ag : (15.3)
Lines 132 select activity a 1 , initialize A to contain just this activity, and initialize k
to index this activity. The for loop of lines 336 ûnds the earliest activity in S k to
ûnish. The loop considers each activity a m in turn and adds a m to A if it is compat-
ible with all previously selected activities. Such an activity is the earliest in S k to
ûnish. To see whether activity a m is compatible with every activity currently in A,
it sufûces by equation (15.3) to check (in line 4) that its start time s m is not earlier
than the ûnish time f k of the activity most recently added to A. If activity a m is
compatible, then lines 536 add activity a m to A and set k to m. The set A returned
by the call GREEDY-ACTIVITY-SELECTOR .s; f / is precisely the set returned by
the initial call RECURSIVE-ACTIVITY-SELECTOR .s; f; 0; n/.
Like the recursive version, GREEDY-ACTIVITY-SELECTOR schedules a set of n

activities in ‚.n/ time, assuming that the activities were already sorted initially by
their ûnish times.

Exercises
15.1-1
Give a dynamic-programming algorithm for the activity-selection problem, based
on recurrence (15.2). Have your algorithm compute the sizes cŒi; j � as deûned
above and also produce the maximum-size subset of mutually compatible activities.

15.1 An activity-selection problem 425

Assume that the inputs have been sorted as in equation (15.1). Compare the running
time of your solution to the running time of GREEDY-ACTIVITY-SELECTOR.
15.1-2
Suppose that instead of always selecting the ûrst activity to ûnish, you instead
select the last activity to start that is compatible with all previously selected activi-
ties. Describe how this approach is a greedy algorithm, and prove that it yields an
optimal solution.
15.1-3
Not just any greedy approach to the activity-selection problem produces a max-
imum-size set of mutually compatible activities. Give an example to show that
the approach of selecting the activity of least duration from among those that are
compatible with previously selected activities does not work. Do the same for
the approaches of always selecting the compatible activity that overlaps the fewest
other remaining activities and always selecting the compatible remaining activity
with the earliest start time.
15.1-4
You are given a set of activities to schedule among a large number of lecture halls,
where any activity can take place in any lecture hall. You wish to schedule all the
activities using as few lecture halls as possible. Give an efûcient greedy algorithm
to determine which activity should use which lecture hall.

(This problem is also known as the interval-graph coloring problem. It is mod-
eled by an interval graph whose vertices are the given activities and whose edges
connect incompatible activities. The smallest number of colors required to color
every vertex so that no two adjacent vertices have the same color corresponds to
ûnding the fewest lecture halls needed to schedule all of the given activities.)
15.1-5
Consider a modiûcation to the activity-selection problem in which each activity a i
has, in addition to a start and ûnish time, a value v i . The objective is no longer
to maximize the number of activities scheduled, but instead to maximize the total
value of the activities scheduled. That is, the goal is to choose a set A of compatible
activities such that P

a k 2A v k is maximized. Give a polynomial-time algorithm for
this problem.

426 Chapter 15 Greedy Algorithms

15.2 Elements of the greedy strategy

A greedy algorithm obtains an optimal solution to a problem by making a sequence
of choices. At each decision point, the algorithm makes the choice that seems best
at the moment. This heuristic strategy does not always produce an optimal solution,
but as in the activity-selection problem, sometimes it does. This section discusses
some of the general properties of greedy methods.
The process that we followed in Section 15.1 to develop a greedy algorithm was

a bit more involved than is typical. It consisted of the following steps:
1. Determine the optimal substructure of the problem.
2. Develop a recursive solution. (For the activity-selection problem, we formu-

lated recurrence (15.2), but bypassed developing a recursive algorithm based
solely on this recurrence.)

3. Show that if you make the greedy choice, then only one subproblem remains.
4. Prove that it is always safe to make the greedy choice. (Steps 3 and 4 can occur

in either order.)
5. Develop a recursive algorithm that implements the greedy strategy.
6. Convert the recursive algorithm to an iterative algorithm.
These steps highlighted in great detail the dynamic-programming underpinnings
of a greedy algorithm. For example, the ûrst cut at the activity-selection problem
deûned the subproblems S ij , where both i and j varied. We then found that if
you always make the greedy choice, you can restrict the subproblems to be of the
form S k .

An alternative approach is to fashion optimal substructure with a greedy choice
in mind, so that the choice leaves just one subproblem to solve. In the activity-
selection problem, start by dropping the second subscript and deûning subproblems
of the form S k . Then prove that a greedy choice (the ûrst activity a m to ûnish
in S k), combined with an optimal solution to the remaining set S m of compatible
activities, yields an optimal solution to S k . More generally, you can design greedy
algorithms according to the following sequence of steps:
1. Cast the optimization problem as one in which you make a choice and are left

with one subproblem to solve.
2. Prove that there is always an optimal solution to the original problem that makes

the greedy choice, so that the greedy choice is always safe.
3. Demonstrate optimal substructure by showing that, having made the greedy

choice, what remains is a subproblem with the property that if you combine an

15.2 Elements of the greedy strategy 427

optimal solution to the subproblem with the greedy choice you have made, you
arrive at an optimal solution to the original problem.

Later sections of this chapter will use this more direct process. Nevertheless, be-
neath every greedy algorithm, there is almost always a more cumbersome dynamic-
programming solution.

How can you tell whether a greedy algorithm will solve a particular optimization
problem? No way works all the time, but the greedy-choice property and optimal
substructure are the two key ingredients. If you can demonstrate that the problem
has these properties, then you are well on the way to developing a greedy algorithm
for it.

Greedy-choice property
The ûrst key ingredient is the greedy-choice property: you can assemble a globally
optimal solution by making locally optimal (greedy) choices. In other words, when
you are considering which choice to make, you make the choice that looks best in
the current problem, without considering results from subproblems.

Here is where greedy algorithms differ from dynamic programming. In dynamic
programming, you make a choice at each step, but the choice usually depends
on the solutions to subproblems. Consequently, you typically solve dynamic-
programming problems in a bottom-up manner, progressing from smaller sub-
problems to larger subproblems. (Alternatively, you can solve them top down,
but memoizing. Of course, even though the code works top down, you still must
solve the subproblems before making a choice.) In a greedy algorithm, you make
whatever choice seems best at the moment and then solve the subproblem that re-
mains. The choice made by a greedy algorithm may depend on choices so far, but it
cannot depend on any future choices or on the solutions to subproblems. Thus, un-
like dynamic programming, which solves the subproblems before making the ûrst
choice, a greedy algorithm makes its ûrst choice before solving any subproblems.
A dynamic-programming algorithm proceeds bottom up, whereas a greedy strat-
egy usually progresses top down, making one greedy choice after another, reducing
each given problem instance to a smaller one.
Of course, you need to prove that a greedy choice at each step yields a globally

optimal solution. Typically, as in the case of Theorem 15.1, the proof examines
a globally optimal solution to some subproblem. It then shows how to modify
the solution to substitute the greedy choice for some other choice, resulting in one
similar, but smaller, subproblem.
You can usually make the greedy choice more efûciently than when you have

to consider a wider set of choices. For example, in the activity-selection problem,
assuming that the activities were already sorted in monotonically increasing order
by ûnish times, each activity needed to be examined just once. By preprocessing

428 Chapter 15 Greedy Algorithms

the input or by using an appropriate data structure (often a priority queue), you
often can make greedy choices quickly, thus yielding an efûcient algorithm.

Optimal substructure
As we saw in Chapter 14, a problem exhibits optimal substructure if an optimal
solution to the problem contains within it optimal solutions to subproblems. This
property is a key ingredient of assessing whether dynamic programming applies,
and it’s also essential for greedy algorithms. As an example of optimal substruc-
ture, recall how Section 15.1 demonstrated that if an optimal solution to subprob-
lem S ij includes an activity a k , then it must also contain optimal solutions to the
subproblems S ik and S kj . Given this optimal substructure, we argued that if you
know which activity to use as a k , you can construct an optimal solution to S ij by
selecting a k along with all activities in optimal solutions to the subproblems S ik
and S kj . This observation of optimal substructure gave rise to the recurrence (15.2)
that describes the value of an optimal solution.

You will usually use a more direct approach regarding optimal substructure when
applying it to greedy algorithms. As mentioned above, you have the luxury of
assuming that you arrived at a subproblem by having made the greedy choice in
the original problem. All you really need to do is argue that an optimal solution to
the subproblem, combined with the greedy choice already made, yields an optimal
solution to the original problem. This scheme implicitly uses induction on the
subproblems to prove that making the greedy choice at every step produces an
optimal solution.

Greedy versus dynamic programming
Because both the greedy and dynamic-programming strategies exploit optimal sub-
structure, you might be tempted to generate a dynamic-programming solution to
a problem when a greedy solution sufûces or, conversely, you might mistakenly
think that a greedy solution works when in fact a dynamic-programming solution
is required. To illustrate the subtle differences between the two techniques, let’s
investigate two variants of a classical optimization problem.

The 0-1 knapsack problem is the following. A thief robbing a store wants to
take the most valuable load that can be carried in a knapsack capable of carrying
at most W pounds of loot. The thief can choose to take any subset of n items in
the store. The i th item is worth v i dollars and weighs w i pounds, where v i and w i
are integers. Which items should the thief take? (We call this the 0-1 knapsack
problem because for each item, the thief must either take it or leave it behind. The
thief cannot take a fractional amount of an item or take an item more than once.)

15.2 Elements of the greedy strategy 429

In the fractional knapsack problem, the setup is the same, but the thief can take
fractions of items, rather than having to make a binary (0-1) choice for each item.
You can think of an item in the 0-1 knapsack problem as being like a gold ingot
and an item in the fractional knapsack problem as more like gold dust.
Both knapsack problems exhibit the optimal-substructure property. For the 0-1

problem, if the most valuable load weighing at most W pounds includes item j ,
then the remaining load must be the most valuable load weighing at most W w j
pounds that the thief can take from the n 1 original items excluding item j . For
the comparable fractional problem, if if the most valuable load weighing at most
W pounds includes weight w of item j , then the remaining load must be the most
valuable load weighing at most W w pounds that the thief can take from the n 1
original items plus w j w pounds of item j .

Although the problems are similar, a greedy strategy works to solve the frac-
tional knapsack problem, but not the 0-1 problem. To solve the fractional problem,
ûrst compute the value per pound v i =w i for each item. Obeying a greedy strategy,
the thief begins by taking as much as possible of the item with the greatest value
per pound. If the supply of that item is exhausted and the thief can still carry more,
then the thief takes as much as possible of the item with the next greatest value per
pound, and so forth, until reaching the weight limit W . Thus, by sorting the items
by value per pound, the greedy algorithm runs in O.n lg n/ time. You are asked
to prove that the fractional knapsack problem has the greedy-choice property in
Exercise 15.2-1.
To see that this greedy strategy does not work for the 0-1 knapsack problem,

consider the problem instance illustrated in Figure 15.3(a). This example has three
items and a knapsack that can hold 50 pounds. Item 1 weighs 10 pounds and is
worth $60. Item 2 weighs 20 pounds and is worth $100. Item 3 weighs 30 pounds
and is worth $120. Thus, the value per pound of item 1 is $6 per pound, which is
greater than the value per pound of either item 2 ($5 per pound) or item 3 ($4 per
pound). The greedy strategy, therefore, would take item 1 ûrst. As you can see
from the case analysis in Figure 15.3(b), however, the optimal solution takes items
2 and 3, leaving item 1 behind. The two possible solutions that take item 1 are both
suboptimal.

For the comparable fractional problem, however, the greedy strategy, which
takes item 1 ûrst, does yield an optimal solution, as shown in Figure 15.3(c). Tak-
ing item 1 doesn’t work in the 0-1 problem, because the thief is unable to ûll the
knapsack to capacity, and the empty space lowers the effective value per pound of
the load. In the 0-1 problem, when you consider whether to include an item in the
knapsack, you must compare the solution to the subproblem that includes the item
with the solution to the subproblem that excludes the item before you can make the
choice. The problem formulated in this way gives rise to many overlapping sub-

430 Chapter 15 Greedy Algorithms

10

$60

item 1 20

$100

item 2
30

$120

item 3
50

knapsack
(a)

+

$120

$100

= $220

+
$60

$100

= $160

+

$60

$120

= $180
(b)

+

$60

$100

= $240

$80

+

(c)

20

30

10

20

10

30

10

20

20
30

Figure 15.3 An example showing that the greedy strategy does not work for the 0-1 knapsack
problem. (a) The thief must select a subset of the three items shown whose weight must not exceed
50 pounds. (b) The optimal subset includes items 2 and 3. Any solution with item 1 is suboptimal,
even though item 1 has the greatest value per pound. (c) For the fractional knapsack problem, taking
the items in order of greatest value per pound yields an optimal solution.

problems4a hallmark of dynamic programming, and indeed, as Exercise 15.2-2
asks you to show, you can use dynamic programming to solve the 0-1 problem.

Exercises
15.2-1
Prove that the fractional knapsack problem has the greedy-choice property.
15.2-2
Give a dynamic-programming solution to the 0-1 knapsack problem that runs in
O.nW / time, where n is the number of items and W is the maximum weight of
items that the thief can put in the knapsack.
15.2-3
Suppose that in a 0-1 knapsack problem, the order of the items when sorted by
increasing weight is the same as their order when sorted by decreasing value. Give
an efûcient algorithm to ûnd an optimal solution to this variant of the knapsack
problem, and argue that your algorithm is correct.
15.2-4
Professor Gekko has always dreamed of inline skating across North Dakota. The
professor plans to cross the state on highway U.S. 2, which runs from Grand Forks,
on the eastern border with Minnesota, to Williston, near the western border with
Montana. The professor can carry two liters of water and can skate m miles before

15.3 Huffman codes 431

running out of water. (Because North Dakota is relatively üat, the professor does
not have to worry about drinking water at a greater rate on uphill sections than on
üat or downhill sections.) The professor will start in Grand Forks with two full
liters of water. The professor has an ofûcial North Dakota state map, which shows
all the places along U.S. 2 to reûll water and the distances between these locations.
The professor’s goal is to minimize the number of water stops along the route

across the state. Give an efûcient method by which the professor can determine
which water stops to make. Prove that your strategy yields an optimal solution,
and give its running time.
15.2-5
Describe an efûcient algorithm that, given a set fx 1 ; x 2 ; : : : ; x n g of points on the
real line, determines the smallest set of unit-length closed intervals that contains
all of the given points. Argue that your algorithm is correct.

? 15.2-6
Show how to solve the fractional knapsack problem in O.n/ time.
15.2-7
You are given two sets A and B , each containing n positive integers. You can
choose to reorder each set however you like. After reordering, let a i be the i th
element of set A, and let b i be the i th element of set B . You then receive a payoff
of Q n

i D1 a i b i . Give an algorithm that maximizes your payoff. Prove that your
algorithm maximizes the payoff, and state its running time, omitting the time for
reordering the sets.

15.3 Huffman codes

Huffman codes compress data well: savings of 20% to 90% are typical, depending
on the characteristics of the data being compressed. The data arrive as a sequence
of characters. Huffman’s greedy algorithm uses a table giving how often each
character occurs (its frequency) to build up an optimal way of representing each
character as a binary string.
Suppose that you have a 100,000-character data ûle that you wish to store com-

pactly and you know that the 6 distinct characters in the ûle occur with the frequen-
cies given by Figure 15.4. The character a occurs 45,000 times, the character b
occurs 13,000 times, and so on.
You have many options for how to represent such a ûle of information. Here,

we consider the problem of designing a binary character code (or code for short)

432 Chapter 15 Greedy Algorithms

a b c d e f
Frequency (in thousands) 45 13 12 16 9 5
Fixed-length codeword 000 001 010 011 100 101
Variable-length codeword 0 101 100 111 1101 1100

Figure 15.4 A character-coding problem. A data ûle of 100,000 characters contains only the char-
acters a–f, with the frequencies indicated. With each character represented by a 3-bit codeword,
encoding the ûle requires 300,000 bits. With the variable-length code shown, the encoding requires
only 224,000 bits.

in which each character is represented by a unique binary string, which we call a
codeword. If you use a ûxed-length code, you need dlg ne bits to represent n 2
characters. For 6 characters, therefore, you need 3 bits: a = 000, b = 001, c = 010,
d = 011, e = 100, and f = 101. This method requires 300,000 bits to encode the
entire ûle. Can you do better?

A variable-length code can do considerably better than a ûxed-length code. The
idea is simple: give frequent characters short codewords and infrequent characters
long codewords. Figure 15.4 shows such a code. Here, the 1-bit string 0 represents
a, and the 4-bit string 1100 represents f. This code requires
.45 1 C 13 3 C 12 3 C 16 3 C 9 4 C 5 4/ 1,000 D 224,000 bits
to represent the ûle, a savings of approximately 25%. In fact, this is an optimal
character code for this ûle, as we shall see.

Preûx-free codes
We consider here only codes in which no codeword is also a preûx of some other
codeword. Such codes are called preûx-free codes. Although we won’t prove it
here, a preûx-free code can always achieve the optimal data compression among
any character code, and so we suffer no loss of generality by restricting our atten-
tion to preûx-free codes.

Encoding is always simple for any binary character code: just concatenate the
codewords representing each character of the ûle. For example, with the variable-
length preûx-free code of Figure 15.4, the 4-character ûle face has the encoding
1100 0 100 1101 D 110001001101, where <= denotes concatenation.
Preûx-free codes are desirable because they simplify decoding. Since no code-

word is a preûx of any other, the codeword that begins an encoded ûle is unambigu-
ous. You can simply identify the initial codeword, translate it back to the original
character, and repeat the decoding process on the remainder of the encoded ûle.
In our example, the string 100011001101 parses uniquely as 100 0 1100 1101,
which decodes to cafe.

15.3 Huffman codes 433

a:45 b:13 c:12 d:16 e:9 f:5

58 28 14

86 14

100

0 1 0 1 0 1

0 1 0

0 1

e:9 f:5

14

0 1
c:12 b:13

25

0 1
d:16

30

0 1

55
0 1

a:45

100
0 1

(a) (b)

Figure 15.5 Trees corresponding to the coding schemes in Figure 15.4. Each leaf is labeled with a
character and its frequency of occurrence. Each internal node is labeled with the sum of the frequen-
cies of the leaves in its subtree. All frequencies are in thousands. (a) The tree corresponding to the
ûxed-length code a = 000, b = 001, c = 010, d = 011, e = 100, f = 101. (b) The tree corresponding
to the optimal preûx-free code a = 0, b = 101, c = 100, d = 111, e = 1101, f = 1100.

The decoding process needs a convenient representation for the preûx-free code
so that you can easily pick off the initial codeword. A binary tree whose leaves
are the given characters provides one such representation. Interpret the binary
codeword for a character as the simple path from the root to that character, where 0
means <go to the left child= and 1 means <go to the right child.= Figure 15.5 shows
the trees for the two codes of our example. Note that these are not binary search
trees, since the leaves need not appear in sorted order and internal nodes do not
contain character keys.
An optimal code for a ûle is always represented by a full binary tree, in which

every nonleaf node has two children (see Exercise 15.3-2). The ûxed-length code
in our example is not optimal since its tree, shown in Figure 15.5(a), is not a full
binary tree: it contains codewords beginning with 10, but none beginning with 11.
Since we can now restrict our attention to full binary trees, we can say that if C is
the alphabet from which the characters are drawn and all character frequencies are
positive, then the tree for an optimal preûx-free code has exactly jC j leaves, one for
each letter of the alphabet, and exactly jC j 1 internal nodes (see Exercise B.5-3
on page 1175).
Given a tree T corresponding to a preûx-free code, we can compute the number

of bits required to encode a ûle. For each character c in the alphabet C , let the
attribute c: freq denote the frequency of c in the ûle and let d T .c/ denote the depth
of c ’s leaf in the tree. Note that d T .c/ is also the length of the codeword for
character c . The number of bits required to encode a ûle is thus

434 Chapter 15 Greedy Algorithms

B.T / D
X

c2C

c: freq d T .c/ ; (15.4)

which we deûne as the cost of the tree T .

Constructing a Huffman code
Huffman invented a greedy algorithm that constructs an optimal preûx-free code,
called a Huffman code in his honor. In line with our observations in Section 15.2,
its proof of correctness relies on the greedy-choice property and optimal substruc-
ture. Rather than demonstrating that these properties hold and then developing
pseudocode, we present the pseudocode ûrst. Doing so will help clarify how the
algorithm makes greedy choices.

The procedure HUFFMAN assumes that C is a set of n characters and that each
character c 2 C is an object with an attribute c: freq giving its frequency. The algo-
rithm builds the tree T corresponding to an optimal code in a bottom-up manner. It
begins with a set of jC j leaves and performs a sequence of jC j 1 <merging= op-
erations to create the ûnal tree. The algorithm uses a min-priority queue Q, keyed
on the freq attribute, to identify the two least-frequent objects to merge together.
The result of merging two objects is a new object whose frequency is the sum of
the frequencies of the two objects that were merged.

HUFFMAN.C /
1 n D jC j
2 Q D C
3 for i D 1 to n 1
4 allocate a new node ´
5 x D EXTRACT-MIN .Q/
6 y D EXTRACT-MIN .Q/
7 ´: left D x
8 ´: right D y
9 ´: freq D x: freq C y: freq
10 I NSERT.Q; ´/
11 return EXTRACT-MIN.Q/ // the root of the tree is the only node left

For our example, Huffman’s algorithm proceeds as shown in Figure 15.6. Since
the alphabet contains 6 letters, the initial queue size is n D 6, and 5 merge steps
build the tree. The ûnal tree represents the optimal preûx-free code. The codeword
for a letter is the sequence of edge labels on the simple path from the root to the
letter.

15.3 Huffman codes 435

e:9 f:5

14

0 1
c:12 b:13

25

0 1
d:16

30

0 1

55
0 1

a:45

100
0 1

e:9 f:5

14

0 1
c:12 b:13

25

0 1
d:16

30

0 1

55
0 1

a:45

e:9 f:5

14

0 1
c:12 b:13

25

0 1
d:16

30

0 1
a:45

e:9 f:5

14

0 1
c:12 b:13

25

0 1
d:16 a:45

e:9 f:5

14

0 1
c:12 b:13 d:16 a:45 e:9 f:5 c:12 b:13 d:16 a:45 (a)

(c)

(e)

(b)

(d)

(f)

Figure 15.6 The steps of Huffman’s algorithm for the frequencies given in Figure 15.4. Each part
shows the contents of the queue sorted into increasing order by frequency. Each step merges the
two trees with the lowest frequencies. Leaves are shown as rectangles containing a character and
its frequency. Internal nodes are shown as circles containing the sum of the frequencies of their
children. An edge connecting an internal node with its children is labeled 0 if it is an edge to a left
child and 1 if it is an edge to a right child. The codeword for a letter is the sequence of labels on the
edges connecting the root to the leaf for that letter. (a) The initial set of n D 6 nodes, one for each
letter. (b)–(e) Intermediate stages. (f) The ûnal tree.

The HUFFMAN procedure works as follows. Line 2 initializes the min-priority
queue Q with the characters in C . The for loop in lines 3310 repeatedly extracts
the two nodes x and y of lowest frequency from the queue and replaces them in
the queue with a new node ´ representing their merger. The frequency of ´ is
computed as the sum of the frequencies of x and y in line 9. The node ´ has x
as its left child and y as its right child. (This order is arbitrary. Switching the left
and right child of any node yields a different code of the same cost.) After n 1
mergers, line 11 returns the one node left in the queue, which is the root of the code
tree.

436 Chapter 15 Greedy Algorithms

The algorithm produces the same result without the variables x and y , assigning
the values returned by the EXTRACT-MIN calls directly to ´: left and ´: right in
lines 7 and 8, and changing line 9 to ´: freq D ´: left : freq C ́ : right : freq. We’ll use
the node names x and y in the proof of correctness, however, so we leave them in.
The running time of Huffman’s algorithm depends on how the min-priority

queue Q is implemented. Let’s assume that it’s implemented as a binary min-heap
(see Chapter 6). For a set C of n characters, the BUILD-MIN-HEAP procedure dis-
cussed in Section 6.3 can initialize Q in line 2 in O.n/ time. The for loop in lines
3310 executes exactly n 1 times, and since each heap operation runs in O.lg n/
time, the loop contributes O.n lg n/ to the running time. Thus, the total running
time of HUFFMAN on a set of n characters is O.n lg n/.

Correctness of Huffman’s algorithm

To prove that the greedy algorithm HUFFMAN is correct, we’ll show that the prob-
lem of determining an optimal preûx-free code exhibits the greedy-choice and
optimal-substructure properties. The next lemma shows that the greedy-choice
property holds.

Lemma 15.2 (Optimal preûx-free codes have the greedy-choice property)
Let C be an alphabet in which each character c 2 C has frequency c: freq. Let x
and y be two characters in C having the lowest frequencies. Then there exists an
optimal preûx-free code for C in which the codewords for x and y have the same
length and differ only in the last bit.

Proof The idea of the proof is to take the tree T representing an arbitrary optimal
preûx-free code and modify it to make a tree representing another optimal preûx-
free code such that the characters x and y appear as sibling leaves of maximum
depth in the new tree. In such a tree, the codewords for x and y have the same
length and differ only in the last bit.

Let a and b be any two characters that are sibling leaves of maximum depth
in T . Without loss of generality, assume that a: freq හ b: freq and x: freq හ y: freq.
Since x: freq and y: freq are the two lowest leaf frequencies, in order, and a: freq
and b: freq are two arbitrary frequencies, in order, we have x: freq හ a: freq and
y: freq හ b: freq.

In the remainder of the proof, it is possible that we could have x: freq D a: freq
or y: freq D b: freq, but x: freq D b: freq implies that a: freq D b: freq D x: freq D
y: freq (see Exercise 15.3-1), and the lemma would be trivially true. Therefore,
assume that x: freq ¤ b: freq, which means that x ¤ b.
As Figure 15.7 shows, imagine exchanging the positions in T of a and x to

produce a tree T 0 , and then exchanging the positions in T 0 of b and y to produce a

15.3 Huffman codes 437

x
y

a b x
y

a

b x y

a
b

T T 0 T 00

Figure 15.7 An illustration of the key step in the proof of Lemma 15.2. In the optimal tree T ,
leaves a and b are two siblings of maximum depth. Leaves x and y are the two characters with the
lowest frequencies. They appear in arbitrary positions in T . Assuming that x ¤ b, swapping leaves
a and x produces tree T 0 , and then swapping leaves b and y produces tree T 00 . Since each swap does
not increase the cost, the resulting tree T 00 is also an optimal tree.

tree T 00 in which x and y are sibling leaves of maximum depth. (Note that if x D b
but y ¤ a, then tree T 00 does not have x and y as sibling leaves of maximum depth.
Because we assume that x ¤ b, this situation cannot occur.) By equation (15.4),
the difference in cost between T and T 0 is
B.T / B.T 0 /

D
X

c2C

c: freq d T .c/
X

c2C

c: freq d T 0 .c/

D x: freq d T .x/ C a: freq d T .a/ x: freq d T 0 .x/ a: freq d T 0 .a/
D x: freq d T .x/ C a: freq d T .a/ x: freq d T .a/ a: freq d T .x/
D .a: freq x: freq/.d T .a/ d T .x//
 0 ;

because both a: freq x: freq and d T .a/ d T .x/ are nonnegative. More speciû-
cally, a: freq x: freq is nonnegative because x is a minimum-frequency leaf, and
d T .a/ d T .x/ is nonnegative because a is a leaf of maximum depth in T . Sim-
ilarly, exchanging y and b does not increase the cost, and so B.T 0 / B.T 00 / is
nonnegative. Therefore, B.T 00 / හ B.T 0 / හ B.T /, and since T is optimal, we
have B.T / හ B.T 00 /, which implies B.T 00 / D B.T /. Thus, T 00 is an optimal
tree in which x and y appear as sibling leaves of maximum depth, from which the
lemma follows.

Lemma 15.2 implies that the process of building up an optimal tree by mergers
can, without loss of generality, begin with the greedy choice of merging together
those two characters of lowest frequency. Why is this a greedy choice? We can
view the cost of a single merger as being the sum of the frequencies of the two items
being merged. Exercise 15.3-4 shows that the total cost of the tree constructed
equals the sum of the costs of its mergers. Of all possible mergers at each step,
HUFFMAN chooses the one that incurs the least cost.

438 Chapter 15 Greedy Algorithms

The next lemma shows that the problem of constructing optimal preûx-free
codes has the optimal-substructure property.

Lemma 15.3 (Optimal preûx-free codes have the optimal-substructure property)
Let C be a given alphabet with frequency c: freq deûned for each character c 2 C .
Let x and y be two characters in C with minimum frequency. Let C 0 be the alpha-
bet C with the characters x and y removed and a new character ´ added, so that
C 0 D .C fx; y g/ [f´g. Deûne freq for all characters in C 0 with the same values
as in C , along with ´: freq D x: freq C y: freq. Let T 0 be any tree representing
an optimal preûx-free code for alphabet C 0 . Then the tree T , obtained from T 0
by replacing the leaf node for ´ with an internal node having x and y as children,
represents an optimal preûx-free code for the alphabet C .

Proof We ûrst show how to express the cost B.T / of tree T in terms of the
cost B.T 0 / of tree T 0 , by considering the component costs in equation (15.4).
For each character c 2 C fx; y g, we have that d T .c/ D d T 0 .c/, and hence
c: freq d T .c/ D c: freq d T 0 .c/. Since d T .x/ D d T .y/ D d T 0 .´/ C 1, we have
x: freq d T .x/ C y: freq d T .y/ D .x: freq C y: freq/.d T 0 .´/ C 1/

D ´: freq d T 0 .´/ C .x: freq C y: freq/ ;
from which we conclude that
B.T / D B.T 0 / C x: freq C y: freq
or, equivalently,
B.T 0 / D B.T / x: freq y: freq :

We now prove the lemma by contradiction. Suppose that T does not represent
an optimal preûx-free code for C . Then there exists an optimal tree T 00 such that
B.T 00 / < B.T /. Without loss of generality (by Lemma 15.2), T 00 has x and y as
siblings. Let T 000 be the tree T 00 with the common parent of x and y replaced by a
leaf ´ with frequency ´: freq D x: freq C y: freq. Then
B.T 000 / D B.T 00 / x: freq y: freq

< B.T / x: freq y: freq
D B.T 0 / ;

yielding a contradiction to the assumption that T 0 represents an optimal preûx-free
code for C 0 . Thus, T must represent an optimal preûx-free code for the alpha-
bet C .

Theorem 15.4
Procedure HUFFMAN produces an optimal preûx-free code.

15.3 Huffman codes 439

Proof Immediate from Lemmas 15.2 and 15.3.

Exercises
15.3-1
Explain why, in the proof of Lemma 15.2, if x: freq D b: freq, then we must have
a: freq D b: freq D x: freq D y: freq.
15.3-2
Prove that a non-full binary tree cannot correspond to an optimal preûx-free code.
15.3-3
What is an optimal Huffman code for the following set of frequencies, based on
the ûrst 8 Fibonacci numbers?
a:1 b:1 c:2 d:3 e:5 f:8 g:13 h:21
Can you generalize your answer to ûnd the optimal code when the frequencies are
the ûrst n Fibonacci numbers?
15.3-4
Prove that the total cost B.T / of a full binary tree T for a code equals the sum, over
all internal nodes, of the combined frequencies of the two children of the node.
15.3-5
Given an optimal preûx-free code on a set C of n characters, you wish to transmit
the code itself using as few bits as possible. Show how to represent any optimal
preûx-free code on C using only 2n 1 C n dlg ne bits. (Hint: Use 2n 1 bits to
specify the structure of the tree, as discovered by a walk of the tree.)
15.3-6
Generalize Huffman’s algorithm to ternary codewords (i.e., codewords using the
symbols 0, 1, and 2), and prove that it yields optimal ternary codes.
15.3-7
A data ûle contains a sequence of 8-bit characters such that all 256 characters are
about equally common: the maximum character frequency is less than twice the
minimum character frequency. Prove that Huffman coding in this case is no more
efûcient than using an ordinary 8-bit ûxed-length code.
15.3-8
Show that no lossless (invertible) compression scheme can guarantee that for every
input ûle, the corresponding output ûle is shorter. (Hint: Compare the number of
possible ûles with the number of possible encoded ûles.)

440 Chapter 15 Greedy Algorithms

15.4 Ofüine caching

Computer systems can decrease the time to access data by storing a subset of the
main memory in the cache: a small but faster memory. A cache organizes data into
cache blocks typically comprising 32, 64, or 128 bytes. You can also think of main
memory as a cache for disk-resident data in a virtual-memory system. Here, the
blocks are called pages, and 4096 bytes is a typical size.

As a computer program executes, it makes a sequence of memory requests. Say
that there are n memory requests, to data in blocks b 1 ; b 2 ; : : : ; b n , in that order. The
blocks in the access sequence might not be distinct, and indeed, any given block is
usually accessed multiple times. For example, a program that accesses four distinct
blocks p; q; r; s might make a sequence of requests to blocks s; q; s; q; q; s; p; p; r;
s; s; q; p; r; q. The cache can hold up to some ûxed number k of cache blocks. It
starts out empty before the ûrst request. Each request causes at most one block to
enter the cache and at most one block to be evicted from the cache. Upon a request
for block b i , any one of three scenarios may occur:
1. Block b i is already in the cache, due to a previous request for the same block.

The cache remains unchanged. This situation is known as a cache hit.
2. Block b i is not in the cache at that time, but the cache contains fewer than k

blocks. In this case, block b i is placed into the cache, so that the cache contains
one more block than it did before the request.

3. Block b i is not in the cache at that time and the cache is full: it contains k
blocks. Block b i is placed into the cache, but before that happens, some other
block in the cache must be evicted from the cache in order to make room.

The latter two situations, in which the requested block is not already in the cache,
are called cache misses. The goal is to minimize the number of cache misses or,
equivalently, to maximize the number of cache hits, over the entire sequence of n
requests. A cache miss that occurs while the cache holds fewer than k blocks4
that is, as the cache is ûrst being ûlled up4is known as a compulsory miss, since
no prior decision could have kept the requested block in the cache. When a cache
miss occurs and the cache is full, ideally the choice of which block to evict should
allow for the smallest possible number of cache misses over the entire sequence of
future requests.

Typically, caching is an online problem. That is, the computer has to decide
which blocks to keep in the cache without knowing the future requests. Here,
however, let’s consider the ofüine version of this problem, in which the computer
knows in advance the entire sequence of n requests and the cache size k, with a
goal of minimizing the total number of cache misses.

15.4 Offline caching 441

To solve this ofüine problem, you can use a greedy strategy called furthest-in-
future, which chooses to evict the block in the cache whose next access in the re-
quest sequence comes furthest in the future. Intuitively, this strategy makes sense:
if you’re not going to need something for a while, why keep it around? We’ll show
that the furthest-in-future strategy is indeed optimal by showing that the ofüine
caching problem exhibits optimal substructure and that furthest-in-future has the
greedy-choice property.

Now, you might be thinking that since the computer usually doesn’t know the
sequence of requests in advance, there is no point in studying the ofüine problem.
Actually, there is. In some situations, you do know the sequence of requests in
advance. For example, if you view the main memory as the cache and the full set
of data as residing on disk (or a solid-state drive), there are algorithms that plan out
the entire set of reads and writes in advance. Furthermore, we can use the number
of cache misses produced by an optimal algorithm as a baseline for comparing how
well online algorithms perform. We’ll do just that in Section 27.3.
Ofüine caching can even model real-world problems. For example, consider a

scenario where you know in advance a ûxed schedule of n events at known loca-
tions. Events may occur at a location multiple times, not necessarily consecutively.
You are managing a group of k agents, you need to ensure that you have one agent
at each location when an event occurs, and you want to minimize the number of
times that agents have to move. Here, the agents are like the blocks, the events are
like the requests, and moving an agent is akin to a cache miss.

Optimal substructure of ofüine caching

To show that the ofüine problem exhibits optimal substructure, let’s deûne the
subproblem .C; i/ as processing requests for blocks b i ; b i C1 ; : : : ; b n with cache
conûguration C at the time that the request for block b i occurs, that is, C is a
subset of the set of blocks such that jC j හ k. A solution to subproblem .C; i/ is a
sequence of decisions that speciûes which block to evict (if any) upon each request
for blocks b i ; b i C1 ; : : : ; b n . An optimal solution to subproblem .C; i/ minimizes
the number of cache misses.

Consider an optimal solution S to subproblem .C; i/, and let C 0 be the contents
of the cache after processing the request for block b i in solution S . Let S 0 be the
subsolution of S for the resulting subproblem .C 0 ; i C 1/. If the request for b i
results in a cache hit, then the cache remains unchanged, so that C 0 D C . If the
request for block b i results in a cache miss, then the contents of the cache change,
so that C 0 ¤ C . We claim that in either case, S 0 is an optimal solution to subprob-
lem .C 0 ; i C 1/. Why? If S 0 is not an optimal solution to subproblem .C 0 ; i C 1/,
then there exists another solution S 00 to subproblem .C 0 ; i C 1/ that makes fewer
cache misses than S 0 . Combining S 00 with the decision of S at the request for

442 Chapter 15 Greedy Algorithms

block b i yields another solution that makes fewer cache misses than S , which con-
tradicts the assumption that S is an optimal solution to subproblem .C; i/.

To quantify a recursive solution, we need a little more notation. Let R C;i be the
set of all cache conûgurations that can immediately follow conûguration C after
processing a request for block b i . If the request results in a cache hit, then the
cache remains unchanged, so that R C;i D fC g. If the request for b i results in a
cache miss, then there are two possibilities. If the cache is not full (jC j < k), then
the cache is ûlling up and the only choice is to insert b i into the cache, so that
R C;i D fC [fb i gg. If the cache is full (jC j D k) upon a cache miss, then R C;i
contains k potential conûgurations: one for each candidate block in C that could be
evicted and replaced by block b i . In this case, R C;i D f.C fx g/ [fb i g W x 2 C g.
For example, if C D fp; q; r g, k D 3, and block s is requested, then R C;i D
ffp; q; s g ; fp; r; s g ; fq; r; s gg.

Let miss.C; i/ denote the minimum number of cache misses in a solution for
subproblem .C; i/. Here is a recurrence for miss.C; i/:

miss.C; i/ D

„
0 if i D n and b n 2 C ;
1 if i D n and b n 62 C ;
miss.C; i C 1/ if i < n and b i 2 C ;
1 C min fmiss.C 0 ; i C 1/ W C 0 2 R C;i g if i < n and b i 62 C :

Greedy-choice property
To prove that the furthest-in-future strategy yields an optimal solution, we need to
show that optimal ofüine caching exhibits the greedy-choice property. Combined
with the optimal-substructure property, the greedy-choice property will prove that
furthest-in-future produces the minimum possible number of cache misses.

Theorem 15.5 (Optimal ofüine caching has the greedy-choice property)
Consider a subproblem .C; i/ when the cache C contains k blocks, so that it is
full, and a cache miss occurs. When block b i is requested, let ´ D b m be the block
in C whose next access is furthest in the future. (If some block in the cache will
never again be referenced, then consider any such block to be block ´, and add a
dummy request for block ´ D b m D b nC1 .) Then evicting block ´ upon a request
for block b i is included in some optimal solution for the subproblem .C; i/.

Proof Let S be an optimal solution to subproblem .C; i/. If S evicts block ´
upon the request for block b i , then we are done, since we have shown that some
optimal solution includes evicting ´.

So now suppose that optimal solution S evicts some other block x when block b i
is requested. We’ll construct another solution S 0 to subproblem .C; i/ which, upon

15.4 Offline caching 443

the request for b i , evicts block ´ instead of x and induces no more cache misses
than S does, so that S 0 is also optimal. Because different solutions may yield
different cache conûgurations, denote by C S;j the conûguration of the cache under
solution S just before the request for some block b j , and likewise for solution S 0
and C S 0 ;j . We’ll show how to construct S 0 with the following properties:
1. For j D i C 1; : : : ;m, let D j D C S;j \ C S 0 ;j . Then, jD j j k 1, so that the

cache conûgurations C S;j and C S 0 ;j differ by at most one block. If they differ,
then C S;j D D j [f´g and C S 0 ;j D D j [fy g for some block y ¤ ´.

2. For each request of blocks b i ; : : : ; b m1 , if solution S has a cache hit, then
solution S 0 also has a cache hit.

3. For all j > m, the cache conûgurations C S;j and C S 0 ;j are identical.
4. Over the sequence of requests for blocks b i ; : : : ; b m , the number of cache misses

produced by solution S 0 is at most the number of cache misses produced by so-
lution S .
We’ll prove inductively that these properties hold for each request.

1. We proceed by induction on j , for j D i C 1; : : : ;m. For the base case, the ini-
tial caches C S;i and C S 0 ;i are identical. Upon the request for block b i , solution S
evicts x and solution S 0 evicts ´. Thus, cache conûgurations C S;i C1 and C S 0 ;i C1
differ by just one block, C S;i C1 D D i C1 [f´g, C S 0 ;i C1 D D i C1 [fx g, and
x ¤ ´.
The inductive step deûnes how solution S 0 behaves upon a request for block b j
for i C 1 හ j හ m 1. The inductive hypothesis is that property 1 holds when
b j is requested. Because ´ D b m is the block in C S;i whose next reference is
furthest in the future, we know that b j ¤ ´. We consider several scenarios:
 If C S;j D C S 0 ;j (so that jD j j D k), then solution S 0 makes the same decision

upon the request for b j as S makes, so that C S;j C1 D C S 0 ;j C1 .
 If jD j j D k 1 and b j 2 D j , then both caches already contain block b j ,

and both solutions S and S 0 have cache hits. Therefore, C S;j C1 D C S;j and
C S 0 ;j C1 D C S 0 ;j .

 If jD j j D k 1 and b j … D j , then because C S;j D D j [f´g and b j ¤ ´,
solution S has a cache miss. It evicts either block ´ or some block w 2 D j .
B If solution S evicts block ´, then C S;j C1 D D j [fb j g. There are two

cases, depending on whether b j D y :
˘ If b j D y , then solution S 0 has a cache hit, so that C S 0 ;j C1 D
C S 0 ;j D D j [fb j g. Thus, C S;j C1 D C S 0 ;j C1 .

˘ If b j ¤ y , then solution S 0 has a cache miss. It evicts block y , so
that C S 0 ;j C1 D D j [fb j g, and again C S;j C1 D C S 0 ;j C1 .

444 Chapter 15 Greedy Algorithms

B If solution S evicts some block w 2 D j , then C S;j C1 D .D j fwg/ [
fb j ; ´g. Once again, there are two cases, depending on whether b j D y :

˘ If b j D y , then solution S 0 has a cache hit, so that C S 0 ;j C1 D
C S 0 ;j D D j [fb j g. Since w 2 D j and w was not evicted by solu-
tion S 0 , we have w 2 C S 0 ;j C1 . Therefore, w … D j C1 and b j 2 D j C1 ,
so that D j C1 D .D j fwg/ [fb j g. Thus, C S;j C1 D D j C1 [f´g,
C S 0 ;j C1 D D j C1 [fwg, and because w ¤ ´, property 1 holds when
block b j C1 is requested. (In other words, block w replaces block y
in property 1.)

˘ If b j ¤ y , then solution S 0 has a cache miss. It evicts block w,
so that C S 0 ;j C1 D .D j fwg/ [fb j ; y g. Therefore, we have that
D j C1 D .D j fwg/ [fb j g and so C S;j C1 D D j C1 [f´g and
C S 0 ;j C1 D D j C1 [fy g.

2. In the above discussion about maintaining property 1, solution S may have a
cache hit in only the ûrst two cases, and solution S 0 has a cache hit in these
cases if and only if S does.

3. If C S;m D C S 0 ;m , then solution S 0 makes the same decision upon the request for
block ´ D b m as S makes, so that C S;mC1 D C S 0 ;mC1 . If C S;m ¤ C S 0 ;m , then by
property 1, C S;m D D m [f´g and C S 0 ;m D D m [fy g, where y ¤ ´. In this case,
solution S has a cache hit, so that C S;mC1 D C S;m D D m [f´g. Solution S 0
evicts block y and brings in block ´, so that C S 0 ;mC1 D D m [f´g D C S;mC1 .
Thus, regardless of whether or not C S;m D C S 0 ;m , we have C S;mC1 D C S 0 ;mC1 ,
and starting with the request for block b mC1 , solution S 0 simply makes the same
decisions as S .

4. By property 2, upon the requests for blocks b i ; : : : ; b m1 , whenever solution S
has a cache hit, so does S 0 . Only the request for block b m D ´ remains to be
considered. If S has a cache miss upon the request for b m , then regardless of
whether S 0 has a cache hit or a cache miss, we are done: S 0 has at most the
same number of cache misses as S .
So now suppose that S has a cache hit and S 0 has a cache miss upon the re-
quest for b m . We’ll show that there exists a request for at least one of blocks
b i C1 ; : : : ; b m1 in which the request results in a cache miss for S and a cache hit
for S 0 , thereby compensating for what happens upon the request for block b m .
The proof is by contradiction. Assume that no request for blocks b i C1 ; : : : ; b m1
results in a cache miss for S and a cache hit for S 0 .
We start by observing that once the caches C S;j and C S 0 j are equal for some
j > i , they remain equal thereafter. Observe also that if b m 2 C S;m and
b m … C S 0 ;m , then C S;m ¤ C S 0 ;m . Therefore, solution S cannot have evicted
block ´ upon the requests for blocks b i ; : : : ; b m1 , for if it had, then these two

15.4 Offline caching 445

cache conûgurations would be equal. The remaining possibility is that upon
each of these requests, we had C S;j D D j [f´g, C S 0 ;j D D j [fy g for some
block y ¤ ´, and solution S evicted some block w 2 D j . Moreover, since none
of these requests resulted in a cache miss for S and a cache hit for S 0 , the case of
b j D y never occurred. That is, for every request of blocks b i C1 ; : : : ; b m1 , the
requested block b j was never the block y 2 C S 0 ;j C S;j . In these cases, after
processing the request, we had C S 0 ;j C1 D D j C1 [fy g: the difference between
the two caches did not change. Now, let’s go back to the request for block b i ,
where afterward, we had C S 0 ;i C1 D D i C1 [fx g. Because every succeeding
request until requesting block b m did not change the difference between the
caches, we had C S 0 ;j D D j [fx g for j D i C 1; : : : ;m.
By deûnition, block ´ D b m is requested after block x . That means at least
one of blocks b i C1 ; : : : ; b m1 is block x . But for j D i C 1; : : : ;m, we have
x 2 C S 0 ;j and x … C S;j , so that at least one of these requests had a cache hit
for S 0 and a cache miss for S , a contradiction. We conclude that if solution S
has a cache hit and solution S 0 has a cache miss upon the request for block b m ,
then some earlier request had the opposite result, and so solution S 0 produces
no more cache misses than solution S . Since S is assumed to be optimal, S 0 is
optimal as well.

Along with the optimal-substructure property, Theorem 15.5 tells us that the
furthest-in-future strategy yields the minimum number of cache misses.

Exercises
15.4-1
Write pseudocode for a cache manager that uses the furthest-in-future strategy. It
should take as input a set C of blocks in the cache, the number of blocks k that the
cache can hold, a sequence b 1 ; b 2 ; : : : ; b n of requested blocks, and the index i into
the sequence for the block b i being requested. For each request, it should print out
whether a cache hit or cache miss occurs, and for each cache miss, it should also
print out which block, if any, is evicted.
15.4-2
Real cache managers do not know the future requests, and so they often use the
past to decide which block to evict. The least-recently-used, or LRU, strategy
evicts the block that, of all blocks currently in the cache, was the least recently
requested. (You can think of LRU as <furthest-in-past.=) Give an example of a
request sequence in which the LRU strategy is not optimal, by showing that it
induces more cache misses than the furthest-in-future strategy does on the same
request sequence.

446 Chapter 15 Greedy Algorithms

15.4-3
Professor Croesus suggests that in the proof of Theorem 15.5, the last clause in
property 1 can change to C S 0 ;j D D j [fx g or, equivalently, require the block y
given in property 1 to always be the block x evicted by solution S upon the request
for block b i . Show where the proof breaks down with this requirement.
15.4-4
This section has assumed that at most one block is placed into the cache whenever a
block is requested. You can imagine, however, a strategy in which multiple blocks
may enter the cache upon a single request. Show that for every solution that allows
multiple blocks to enter the cache upon each request, there is another solution that
brings in only one block upon each request and is at least as good.

Problems

15-1 Coin changing
Consider the problem of making change for n cents using the smallest number of
coins. Assume that each coin’s value is an integer.
a. Describe a greedy algorithm to make change consisting of quarters, dimes,

nickels, and pennies. Prove that your algorithm yields an optimal solution.

b. Suppose that the available coins are in denominations that are powers of c : the
denominations are c 0 ; c 1 ; : : : ; c k for some integers c > 1 and k 1. Show that
the greedy algorithm always yields an optimal solution.

c. Give a set of coin denominations for which the greedy algorithm does not yield
an optimal solution. Your set should include a penny so that there is a solution
for every value of n.

d. Give an O.nk/-time algorithm that makes change for any set of k different
coin denominations using the smallest number of coins, assuming that one of
the coins is a penny.

15-2 Scheduling to minimize average completion time
You are given a set S D fa 1 ; a 2 ; : : : ; a n g of tasks, where task a i requires p i units of
processing time to complete. Let C i be the completion time of task a i , that is, the
time at which task a i completes processing. Your goal is to minimize the average
completion time, that is, to minimize .1=n/ P n

i D1 C i . For example, suppose that
there are two tasks a 1 and a 2 with p 1 D 3 and p 2 D 5, and consider the schedule

Notes for Chapter 15 447

in which a 2 runs ûrst, followed by a 1 . Then we have C 2 D 5, C 1 D 8, and the
average completion time is .5 C 8/=2 D 6:5. If task a 1 runs ûrst, however, then we
have C 1 D 3, C 2 D 8, and the average completion time is .3 C 8/=2 D 5:5.
a. Give an algorithm that schedules the tasks so as to minimize the average com-

pletion time. Each task must run nonpreemptively, that is, once task a i starts, it
must run continuously for p i units of time until it is done. Prove that your al-
gorithm minimizes the average completion time, and analyze the running time
of your algorithm.

b. Suppose now that the tasks are not all available at once. That is, each task
cannot start until its release time b i . Suppose also that tasks may be preempted,
so that a task can be suspended and restarted at a later time. For example, a
task a i with processing time p i D 6 and release time b i D 1 might start running
at time 1 and be preempted at time 4. It might then resume at time 10 but be
preempted at time 11, and it might ûnally resume at time 13 and complete at
time 15. Task a i has run for a total of 6 time units, but its running time has
been divided into three pieces. Give an algorithm that schedules the tasks so as
to minimize the average completion time in this new scenario. Prove that your
algorithm minimizes the average completion time, and analyze the running time
of your algorithm.

Chapter notes

Much more material on greedy algorithms can be found in Lawler [276] and Pa-
padimitriou and Steiglitz [353]. The greedy algorithm ûrst appeared in the combi-
natorial optimization literature in a 1971 article by Edmonds [131].

The proof of correctness of the greedy algorithm for the activity-selection prob-
lem is based on that of Gavril [179].
Huffman codes were invented in 1952 [233]. Lelewer and Hirschberg [294]

surveys data-compression techniques known as of 1987.
The furthest-in-future strategy was proposed by Belady [41], who suggested it

for virtual-memory systems. Alternative proofs that furthest-in-future is optimal
appear in articles by Lee et al. [284] and Van Roy [443].

16 Amortized Analysis

Imagine that you join Buff’s Gym. Buff charges a membership fee of $60 per
month, plus $3 for every time you use the gym. Because you are disciplined,
you visit Buff’s Gym every day during the month of November. On top of the
$60 monthly charge for November, you pay another 3 $30 D $90 that month.
Although you can think of your fees as a üat fee of $60 and another $90 in daily
fees, you can think about it in another way. All together, you pay $150 over 30
days, or an average of $5 per day. When you look at your fees in this way, you are
amortizing the monthly fee over the 30 days of the month, spreading it out at $2
per day.

You can do the same thing when you analyze running times. In an amortized
analysis, you average the time required to perform a sequence of data-structure
operations over all the operations performed. With amortized analysis, you show
that if you average over a sequence of operations, then the average cost of an oper-
ation is small, even though a single operation within the sequence might be expen-
sive. Amortized analysis differs from average-case analysis in that probability is
not involved. An amortized analysis guarantees the average performance of each
operation in the worst case.
The ûrst three sections of this chapter cover the three most common techniques

used in amortized analysis. Section 16.1 starts with aggregate analysis, in which
you determine an upper bound T .n/ on the total cost of a sequence of n operations.
The average cost per operation is then T .n/=n. You take the average cost as the
amortized cost of each operation, so that all operations have the same amortized
cost.
Section 16.2 covers the accounting method, in which you determine an amor-

tized cost of each operation. When there is more than one type of operation, each
type of operation may have a different amortized cost. The accounting method
overcharges some operations early in the sequence, storing the overcharge as <pre-

16.1 Aggregate analysis 449

paid credit= on speciûc objects in the data structure. Later in the sequence, the
credit pays for operations that are charged less than they actually cost.
Section 16.3 discusses the potential method, which is like the accounting method

in that you determine the amortized cost of each operation and may overcharge op-
erations early on to compensate for undercharges later. The potential method main-
tains the credit as the <potential energy= of the data structure as a whole instead of
associating the credit with individual objects within the data structure.
We’ll use use two examples in this chapter to examine each of these three meth-

ods. One is a stack with the additional operation MULTIPOP, which pops several
objects at once. The other is a binary counter that counts up from 0 by means of
the single operation I NCREMENT.

While reading this chapter, bear in mind that the charges assigned during an
amortized analysis are for analysis purposes only. They need not4and should not
4appear in the code. If, for example, you assign a credit to an object x when using
the accounting method, you have no need to assign an appropriate amount to some
attribute, such as x: credit , in the code.

When you perform an amortized analysis, you often gain insight into a particular
data structure, and this insight can help you optimize the design. For example,
Section 16.4 will use the potential method to analyze a dynamically expanding and
contracting table.

16.1 Aggregate analysis

In aggregate analysis, you show that for all n, a sequence of n operations takes
T .n/ worst-case time in total. In the worst case, the average cost, or amortized cost,
per operation is therefore T .n/=n. This amortized cost applies to each operation,
even when there are several types of operations in the sequence. The other two
methods we shall study in this chapter, the accounting method and the potential
method, may assign different amortized costs to different types of operations.

Stack operations
As the ûrst example of aggregate analysis, let’s analyze stacks that have been aug-
mented with a new operation. Section 10.1.3 presented the two fundamental stack
operations, each of which takes O.1/ time:
PUSH.S; x/ pushes object x onto stack S .
POP.S/ pops the top of stack S and returns the popped object. Calling POP on an

empty stack generates an error.

450 Chapter 16 Amortized Analysis

23
17
6
39
10
47

(a)

top

10
47

(b)

top

(c)

Figure 16.1 The action of MULTIPOP on a stack S , shown initially in (a). The top 4 objects are
popped by MULTIPOP.S; 4/, whose result is shown in (b). The next operation is MULTIPOP.S; 7/,
which empties the stack4shown in (c)4since fewer than 7 objects remained.

Since each of these operations runs in O.1/ time, let us consider the cost of each
to be 1. The total cost of a sequence of n PUSH and POP operations is therefore n,
and the actual running time for n operations is therefore ‚.n/.
Now let’s add the stack operation MULTIPOP .S; k/, which removes the k top ob-

jects of stack S , popping the entire stack if the stack contains fewer than k objects.
Of course, the procedure assumes that k is positive, and otherwise, the MULTIPOP
operation leaves the stack unchanged. In the pseudocode for MULTIPOP, the op-
eration STAC K-EMPTY returns TRUE if there are no objects currently on the stack,
and FALSE otherwise. Figure 16.1 shows an example of MULTIPOP.

MULTIPOP .S; k/
1 while not STAC K-EMPTY .S/ and k > 0
2 POP.S/
3 k D k 1

What is the running time of MULTIPOP .S; k/ on a stack of s objects? The
actual running time is linear in the number of POP operations actually executed,
and thus we can analyze MULTIPOP in terms of the abstract costs of 1 each for
PUSH and POP. The number of iterations of the while loop is the number min fs; kg
of objects popped off the stack. Each iteration of the loop makes one call to POP in
line 2. Thus, the total cost of MULTIPOP is min fs; kg, and the actual running time
is a linear function of this cost.
Now let’s analyze a sequence of n PUSH, POP, and MULTIPOP operations on

an initially empty stack. The worst-case cost of a MULTIPOP operation in the
sequence is O.n/, since the stack size is at most n. The worst-case time of any stack
operation is therefore O.n/, and hence a sequence of n operations costs O.n 2 /,
since the sequence contains at most n MULTIPOP operations costing O.n/ each.

16.1 Aggregate analysis 451

Although this analysis is correct, the O.n 2 / result, which came from considering
the worst-case cost of each operation individually, is not tight.

Yes, a single MULTIPOP might be expensive, but an aggregate analysis shows
that any sequence of n PUSH, POP, and MULTIPOP operations on an initially empty
stack has an upper bound on its cost of O.n/. Why? An object cannot be popped
from the stack unless it was ûrst pushed. Therefore, the number of times that POP
can be called on a nonempty stack, including calls within MULTIPOP, is at most the
number of PUSH operations, which is at most n. For any value of n, any sequence
of n PUSH, POP, and MULTIPOP operations takes a total of O.n/ time. Averaging
over the n operations gives an average cost per operation of O.n/=n D O.1/.
Aggregate analysis assigns the amortized cost of each operation to be the average
cost. In this example, therefore, all three stack operations have an amortized cost
of O.1/.

To recap: although the average cost, and hence the running time, of a stack
operation is O.1/, the analysis did not rely on probabilistic reasoning. Instead,
the analysis yielded a worst-case bound of O.n/ on a sequence of n operations.
Dividing this total cost by n yielded that the average cost per operation4that is,
the amortized cost4is O.1/.

Incrementing a binary counter
As another example of aggregate analysis, consider the problem of implementing
a k-bit binary counter that counts upward from 0. An array AŒ0 W k 1� of bits rep-
resents the counter. A binary number x that is stored in the counter has its lowest-
order bit in AŒ0� and its highest-order bit in AŒk 1�, so that x D

P k1
i D0 AŒi� 2 i .

Initially, x D 0, and thus AŒi� D 0 for i D 0; 1; : : : ; k 1. To add 1 (modulo 2 k)
to the value in the counter, call the I NCREMENT procedure.

I NCREMENT.A; k/
1 i D 0
2 while i < k and AŒi� == 1
3 AŒi� D 0
4 i D i C 1
5 if i < k
6 AŒi� D 1

Figure 16.2 shows what happens to a binary counter when I NCREMENT is called
16 times, starting with the initial value 0 and ending with the value 16. Each
iteration of the while loop in lines 234 adds a 1 into position i . If AŒi� D 1, then
adding 1 üips the bit to 0 in position i and yields a carry of 1, to be added into

452 Chapter 16 Amortized Analysis

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 2
0 0 0 0 0 0 1 1 3
0 0 0 0 0 1 0 0 4
0 0 0 0 0 1 0 1 5
0 0 0 0 0 1 1 0 6
0 0 0 0 0 1 1 1 7
0 0 0 0 1 0 0 0 8
0 0 0 0 1 0 0 1 9
0 0 0 0 1 0 1 0 10
0 0 0 0 1 0 1 1 11
0 0 0 0 1 1 0 0 12
0 0 0 0 1 1 0 1 13
0 0 0 0 1 1 1 0 14
0 0 0 0 1 1 1 1 15
0 0 0 1 0 0 0 0 16

A[0] A[1
]

A[2] A[3
]

A[4
]

A[5
]

A[6
]

A[7
] Counter

value
Total
cost

1
3
4
7
8
10
11
15
16
18
19
22
23
25
26
31

0

Figure 16.2 An 8-bit binary counter as its value goes from 0 to 16 by a sequence of 16 I NCREMENT
operations. Bits that üip to achieve the next value are shaded in blue. The running cost for üipping
bits is shown at the right. The total cost is always less than twice the total number of I NCREMENT
operations.

position i C 1 during the next iteration of the loop. Otherwise, the loop ends, and
then, if i < k, AŒi� must be 0, so that line 6 adds a 1 into position i , üipping the 0
to a 1. If the loop ends with i D k, then the call of I NCREMENT üipped all k bits
from 1 to 0. The cost of each I NCREMENT operation is linear in the number of bits
üipped.

As with the stack example, a cursory analysis yields a bound that is correct but
not tight. A single execution of I NCREMENT takes ‚.k/ time in the worst case, in
which all the bits in array A are 1. Thus, a sequence of n I NCREMENT operations
on an initially zero counter takes O.nk/ time in the worst case.

Although a single call of I NCREMENT might üip all k bits, not all bits üip upon
each call. (Note the similarity to MULTIPOP, where a single call might pop many
objects, but not every call pops many objects.) As Figure 16.2 shows, AŒ0� does üip
each time I NCREMENT is called. The next bit up, AŒ1�, üips only every other time:
a sequence of n I NCREMENT operations on an initially zero counter causes AŒ1� to
üip bn=2c times. Similarly, bit AŒ2� üips only every fourth time, or bn=4c times in a
sequence of n I NCREMENT operations. In general, for i D 0; 1; : : : ; k 1, bit AŒi�
üips bn=2 i c times in a sequence of n I NCREMENT operations on an initially zero
counter. For i k, bit AŒi� does not exist, and so it cannot üip. The total number

16.2 The accounting method 453

of üips in the sequence is thus
k1 X

i D0

j n
2 i
k
< n

1 X

i D0

1
2 i

D 2n ;

by equation (A.7) on page 1142. Thus, a sequence of n I NCREMENT operations
on an initially zero counter takes O.n/ time in the worst case. The average cost of
each operation, and therefore the amortized cost per operation, is O.n/=n D O.1/.

Exercises
16.1-1
If the set of stack operations includes a MULTIPUSH operation, which pushes k
items onto the stack, does the O.1/ bound on the amortized cost of stack operations
continue to hold?
16.1-2
Show that if a DECREMENT operation is included in the k-bit counter example, n
operations can cost as much as ‚.nk/ time.
16.1-3
Use aggregate analysis to determine the amortized cost per operation for a sequence
of n operations on a data structure in which the i th operation costs i if i is an exact
power of 2, and 1 otherwise.

16.2 The accounting method

In the accounting method of amortized analysis, you assign differing charges to
different operations, with some operations charged more or less than they actu-
ally cost. The amount that you charge an operation is its amortized cost. When
an operation’s amortized cost exceeds its actual cost, you assign the difference to
speciûc objects in the data structure as credit. Credit can help pay for later oper-
ations whose amortized cost is less than their actual cost. Thus, you can view the
amortized cost of an operation as being split between its actual cost and credit that
is either deposited or used up. Different operations may have different amortized
costs. This method differs from aggregate analysis, in which all operations have
the same amortized cost.

You must choose the amortized costs of operations carefully. If you want to use
amortized costs to show that in the worst case the average cost per operation is

454 Chapter 16 Amortized Analysis

small, you must ensure that the total amortized cost of a sequence of operations
provides an upper bound on the total actual cost of the sequence. Moreover, as
in aggregate analysis, the upper bound must apply to all sequences of operations.
Let’s denote the actual cost of the i th operation by c i and the amortized cost of the
i th operation by y c i . Then you need to have
n X

i D1

y c i
n X

i D1

c i (16.1)

for all sequences of n operations. The total credit stored in the data structure
is the difference between the total amortized cost and the total actual cost, or P n

i D1 y c i
P n

i D1 c i . By inequality (16.1), the total credit associated with the data
structure must be nonnegative at all times. If you ever allowed the total credit to
become negative (the result of undercharging early operations with the promise of
repaying the account later on), then the total amortized costs incurred at that time
would be below the total actual costs incurred. In that case, for the sequence of
operations up to that time, the total amortized cost would not be an upper bound
on the total actual cost. Thus, you must take care that the total credit in the data
structure never becomes negative.

Stack operations
To illustrate the accounting method of amortized analysis, we return to the stack
example. Recall that the actual costs of the operations were
PUSH 1 ,
POP 1 ,
MULTIPOP min fs; kg ,
where k is the argument supplied to MULTIPOP and s is the stack size when it is
called. Let us assign the following amortized costs:
PUSH 2 ,
POP 0 ,
MULTIPOP 0 .
The amortized cost of MULTIPOP is a constant (0), whereas the actual cost is vari-
able, and thus all three amortized costs are constant. In general, the amortized
costs of the operations under consideration may differ from each other, and they
may even differ asymptotically.
Now let’s see how to pay for any sequence of stack operations by charging the

amortized costs. Let $1 represent each unit of cost. At ûrst, the stack is empty.
Recall the analogy of Section 10.1.3 between the stack data structure and a stack
of plates in a cafeteria. Upon pushing a plate onto the stack, use $1 to pay the

16.2 The accounting method 455

actual cost of the push, leaving a credit of $1 (out of the $2 charged). Place that $1
of credit on top of the plate. At any point in time, every plate on the stack has $1
of credit on it.

The $1 stored on the plate serves to prepay the cost of popping the plate from
the stack. A POP operation incurs no charge: pay the actual cost of popping a plate
by taking the $1 of credit off the plate. Thus, by charging the PUSH operation a
little bit more, we can view the POP operation as free.

Moreover, the MULTIPOP operation also incurs no charge, since it’s just repeated
POP operations, each of which is free. If a MULTIPOP operation pops k plates, then
the actual cost is paid by the k dollars stored on the k plates. Because each plate
on the stack has $1 of credit on it, and the stack always has a nonnegative number
of plates, the amount of credit is always nonnegative. Thus, for any sequence of n
PUSH, POP, and MULTIPOP operations, the total amortized cost is an upper bound
on the total actual cost. Since the total amortized cost is O.n/, so is the total actual
cost.

Incrementing a binary counter
As another illustration of the accounting method, let’s analyze the I NCREMENT
operation on a binary counter that starts at 0. Recall that the running time of this
operation is proportional to the number of bits üipped, which serves as the cost for
this example. Again, we’ll use $1 to represent each unit of cost (the üipping of a
bit in this example).

For the amortized analysis, the amortized cost to set a 0-bit to 1 is $2. When a
bit is set to 1, $1 of the $2 pays to actually set the bit. The second $1 resides on the
bit as credit to be used later if and when the bit is reset to 0. At any point in time,
every 1-bit in the counter has $1 of credit on it, and thus resetting a bit to 0 can be
viewed as costing nothing, and the $1 on the bit prepays for the reset.

Here is how to determine the amortized cost of I NCREMENT. The cost of reset-
ting the bits to 0 within the while loop is paid for by the dollars on the bits that are
reset. The I NCREMENT procedure sets at most one bit to 1, in line 6, and there-
fore the amortized cost of an I NCREMENT operation is at most $2. The number of
1-bits in the counter never becomes negative, and thus the amount of credit stays
nonnegative at all times. Thus, for n I NCREMENT operations, the total amortized
cost is O.n/, which bounds the total actual cost.

Exercises
16.2-1
You perform a sequence of PUSH and POP operations on a stack whose size never
exceeds k. After every k operations, a copy of the entire stack is made automat-

456 Chapter 16 Amortized Analysis

ically, for backup purposes. Show that the cost of n stack operations, including
copying the stack, is O.n/ by assigning suitable amortized costs to the various
stack operations.
16.2-2
Redo Exercise 16.1-3 using an accounting method of analysis.
16.2-3
You wish not only to increment a counter but also to reset it to 0 (i.e., make all
bits in it 0). Counting the time to examine or modify a bit as ‚.1/, show how
to implement a counter as an array of bits so that any sequence of n I NCREMENT
and RESET operations takes O.n/ time on an initially zero counter. (Hint: Keep a
pointer to the high-order 1.)

16.3 The potential method

Instead of representing prepaid work as credit stored with speciûc objects in the
data structure, the potential method of amortized analysis represents the prepaid
work as <potential energy,= or just <potential,= which can be released to pay for
future operations. The potential applies to the data structure as a whole rather than
to speciûc objects within the data structure.

The potential method works as follows. Starting with an initial data structure D 0 ,
a sequence of n operations occurs. For each i D 1; 2; : : : ; n, let c i be the actual
cost of the i th operation and D i be the data structure that results after applying
the i th operation to data structure D i 1 . A potential function ˆ maps each data
structure D i to a real number ˆ.D i /, which is the potential associated with D i .
The amortized cost y c i of the i th operation with respect to potential function ˆ is
deûned by

y c i D c i C ˆ.D i / ˆ.D i 1 / : (16.2)
The amortized cost of each operation is therefore its actual cost plus the change in
potential due to the operation. By equation (16.2), the total amortized cost of the n
operations is
n X

i D1

y c i D
n X

i D1

.c i C ˆ.D i / ˆ.D i 1 //

D
n X

i D1

c i C ˆ.D n / ˆ.D 0 / : (16.3)

16.3 The potential method 457

The second equation follows from equation (A.12) on page 1143 because the
ˆ.D i / terms telescope.
If you can deûne a potential function ˆ so that ˆ.D n / ˆ.D 0 /, then the total

amortized cost P n
i D1 y c i gives an upper bound on the total actual cost P n

i D1 c i .
In practice, you don’t always know how many operations might be performed.
Therefore, if you require that ˆ.D i / ˆ.D 0 / for all i , then you guarantee, as in
the accounting method, that you’ve paid in advance. It’s usually simplest to just
deûne ˆ.D 0 / to be 0 and then show that ˆ.D i / 0 for all i . (See Exercise 16.3-1
for an easy way to handle cases in which ˆ.D 0 / ¤ 0.)

Intuitively, if the potential difference ˆ.D i / ˆ.D i 1 / of the i th operation is
positive, then the amortized cost y c i represents an overcharge to the i th operation,
and the potential of the data structure increases. If the potential difference is neg-
ative, then the amortized cost represents an undercharge to the i th operation, and
the decrease in the potential pays for the actual cost of the operation.
The amortized costs deûned by equations (16.2) and (16.3) depend on the choice

of the potential function ˆ. Different potential functions may yield different amor-
tized costs, yet still be upper bounds on the actual costs. You will often ûnd trade-
offs that you can make in choosing a potential function. The best potential function
to use depends on the desired time bounds.

Stack operations
To illustrate the potential method, we return once again to the example of the stack
operations PUSH, POP, and MULTIPOP. We deûne the potential function ˆ on a
stack to be the number of objects in the stack. The potential of the empty initial
stack D 0 is ˆ.D 0 / D 0. Since the number of objects in the stack is never negative,
the stack D i that results after the i th operation has nonnegative potential, and thus
ˆ.D i / 0

D ˆ.D 0 / :

The total amortized cost of n operations with respect to ˆ therefore represents an
upper bound on the actual cost.
Now let’s compute the amortized costs of the various stack operations. If the i th

operation on a stack containing s objects is a PUSH operation, then the potential
difference is
ˆ.D i / ˆ.D i 1 / D .s C 1/ s

D 1 :

By equation (16.2), the amortized cost of this PUSH operation is

458 Chapter 16 Amortized Analysis

y c i D c i C ˆ.D i / ˆ.D i 1 /
D 1 C 1
D 2 :

Suppose that the i th operation on the stack of s objects is MULTIPOP .S; k/, which
causes k 0 D min fs; kg objects to be popped off the stack. The actual cost of the
operation is k 0 , and the potential difference is
ˆ.D i / ˆ.D i 1 / D k 0 :

Thus, the amortized cost of the MULTIPOP operation is
y c i D c i C ˆ.D i / ˆ.D i 1 /

D k 0 k 0

D 0 :

Similarly, the amortized cost of an ordinary POP operation is 0.
The amortized cost of each of the three operations is O.1/, and thus the total

amortized cost of a sequence of n operations is O.n/. Since ˆ.D i / ˆ.D 0 /, the
total amortized cost of n operations is an upper bound on the total actual cost. The
worst-case cost of n operations is therefore O.n/.

Incrementing a binary counter
As another example of the potential method, we revisit incrementing a k-bit binary
counter. This time, the potential of the counter after the i th I NCREMENT operation
is deûned to be the number of 1-bits in the counter after the i th operation, which
we’ll denote by b i .

Here is how to compute the amortized cost of an I NCREMENT operation. Sup-
pose that the i th I NCREMENT operation resets t i bits to 0. The actual cost c i of the
operation is therefore at most t i C 1, since in addition to resetting t i bits, it sets at
most one bit to 1. If b i D 0, then the i th operation had reset all k bits to 0, and so
b i 1 D t i D k. If b i > 0, then b i D b i 1 t i C 1. In either case, b i හ b i 1 t i C 1,
and the potential difference is
ˆ.D i / ˆ.D i 1 / හ .b i 1 t i C 1/ b i 1

D 1 t i :

The amortized cost is therefore
y c i D c i C ˆ.D i / ˆ.D i 1 /

හ .t i C 1/ C .1 t i /
D 2 :

16.3 The potential method 459

If the counter starts at 0, then ˆ.D 0 / D 0. Since ˆ.D i / 0 for all i , the total
amortized cost of a sequence of n I NCREMENT operations is an upper bound on the
total actual cost, and so the worst-case cost of n I NCREMENT operations is O.n/.

The potential method provides a simple and clever way to analyze the counter
even when it does not start at 0. The counter starts with b 0 1-bits, and after n
I NCREMENT operations it has b n 1-bits, where 0 හ b 0 ; b n හ k. Rewrite equa-
tion (16.3) as
n X

i D1

c i D
n X

i D1

y c i ˆ.D n / C ˆ.D 0 / :

Since ˆ.D 0 / D b 0 , ˆ.D n / D b n , and y c i හ 2 for all 1 හ i හ n, the total actual
cost of n I NCREMENT operations is
n X

i D1

c i හ
n X

i D1

2 b n C b 0

D 2n b n C b 0 :

In particular, b 0 හ k means that as long as k D O.n/, the total actual cost is O.n/.
In other words, if at least n D �.k/ I NCREMENT operations occur, the total actual
cost is O.n/, no matter what initial value the counter contains.

Exercises
16.3-1
Suppose you have a potential function ˆ such that ˆ.D i / ˆ.D 0 / for all i , but
ˆ.D 0 / ¤ 0. Show that there exists a potential function ˆ 0 such that ˆ 0 .D 0 / D 0,
ˆ 0 .D i / 0 for all i 1, and the amortized costs using ˆ 0 are the same as the
amortized costs using ˆ.
16.3-2
Redo Exercise 16.1-3 using a potential method of analysis.
16.3-3
Consider an ordinary binary min-heap data structure supporting the instructions
I NSERT and EXTRACT-MIN that, when there are n items in the heap, implements
each operation in O.lg n/ worst-case time. Give a potential function ˆ such that
the amortized cost of I NSERT is O.lg n/ and the amortized cost of EXTRACT-MIN
is O.1/, and show that your potential function yields these amortized time bounds.
Note that in the analysis, n is the number of items currently in the heap, and you
do not know a bound on the maximum number of items that can ever be stored in
the heap.

460 Chapter 16 Amortized Analysis

16.3-4
What is the total cost of executing n of the stack operations PUSH, POP, and
MULTIPOP , assuming that the stack begins with s 0 objects and ûnishes with s n
objects?
16.3-5
Show how to implement a queue with two ordinary stacks (Exercise 10.1-7) so that
the amortized cost of each ENQUEUE and each DEQUEUE operation is O.1/.
16.3-6
Design a data structure to support the following two operations for a dynamic
multiset S of integers, which allows duplicate values:
I NSERT.S; x/ inserts x into S .
DELETE-LARGER-HALF .S/ deletes the largest djS j =2e elements from S .
Explain how to implement this data structure so that any sequence of m I NSERT
and DELETE-LARGER-HALF operations runs in O.m/ time. Your implementation
should also include a way to output the elements of S in O.jS j/ time.

16.4 Dynamic tables

When you design an application that uses a table, you do not always know in
advance how many items the table will hold. You might allocate space for the
table, only to ûnd out later that it is not enough. The program must then reallocate
the table with a larger size and copy all items stored in the original table over into
the new, larger table. Similarly, if many items have been deleted from the table,
it might be worthwhile to reallocate the table with a smaller size. This section
studies this problem of dynamically expanding and contracting a table. Amortized
analyses will show that the amortized cost of insertion and deletion is only O.1/,
even though the actual cost of an operation is large when it triggers an expansion
or a contraction. Moreover, you’ll see how to guarantee that the unused space in a
dynamic table never exceeds a constant fraction of the total space.
Let’s assume that the dynamic table supports the operations TABLE-I NSERT and

TABLE-DELETE. TABLE-I NSERT inserts into the table an item that occupies a sin-
gle slot, that is, a space for one item. Likewise, TABLE-DELETE removes an item
from the table, thereby freeing a slot. The details of the data-structuring method
used to organize the table are unimportant: it could be a stack (Section 10.1.3), a
heap (Chapter 6), a hash table (Chapter 11), or something else.

16.4 Dynamic tables 461

It is convenient to use a concept introduced in Section 11.2, where we analyzed
hashing. The load factor ˛.T / of a nonempty table T is deûned as the number
of items stored in the table divided by the size (number of slots) of the table. An
empty table (one with no slots) has size 0, and its load factor is deûned to be 1. If
the load factor of a dynamic table is bounded below by a constant, the unused space
in the table is never more than a constant fraction of the total amount of space.

We start by analyzing a dynamic table that allows only insertion and then move
on to the more general case that supports both insertion and deletion.

16.4.1 Table expansion

Let’s assume that storage for a table is allocated as an array of slots. A table ûlls up
when all slots have been used or, equivalently, when its load factor is 1. 1 In some
software environments, upon an attempt to insert an item into a full table, the only
alternative is to abort with an error. The scenario in this section assumes, how-
ever, that the software environment, like many modern ones, provides a memory-
management system that can allocate and free blocks of storage on request. Thus,
upon inserting an item into a full table, the system can expand the table by allo-
cating a new table with more slots than the old table had. Because the table must
always reside in contiguous memory, the system must allocate a new array for the
larger table and then copy items from the old table into the new table.

A common heuristic allocates a new table with twice as many slots as the old
one. If the only table operations are insertions, then the load factor of the table is
always at least 1=2, and thus the amount of wasted space never exceeds half the
total space in the table.

The TABLE-I NSERT procedure on the following page assumes that T is an object
representing the table. The attribute T: table contains a pointer to the block of
storage representing the table, T: num contains the number of items in the table,
and T: size gives the total number of slots in the table. Initially, the table is empty:
T: num D T: size D 0.

There are two types of insertion here: the TABLE-I NSERT procedure itself and
the elementary insertion into a table in lines 6 and 10. We can analyze the running
time of TABLE-I NSERT in terms of the number of elementary insertions by assign-
ing a cost of 1 to each elementary insertion. In most computing environments, the
overhead for allocating an initial table in line 2 is constant and the overhead for
allocating and freeing storage in lines 5 and 7 is dominated by the cost of transfer-

1 In some situations, such as an open-address hash table, it’s better to consider a table to be full if its
load factor equals some constant strictly less than 1. (See Exercise 16.4-2.)

462 Chapter 16 Amortized Analysis

TABLE-I NSERT .T; x/
1 if T: size = = 0
2 allocate T: table with 1 slot
3 T: size D 1
4 if T: num == T: size
5 allocate new-table with 2 T: size slots
6 insert all items in T: table into new-table
7 free T: table
8 T: table D new-table
9 T: size D 2 T: size
10 insert x into T: table
11 T: num D T: num C 1

ring items in line 6. Thus, the actual running time of TABLE-I NSERT is linear in the
number of elementary insertions. An expansion occurs when lines 539 execute.
Now, we’ll use all three amortized analysis techniques to analyze a sequence of

n TABLE-I NSERT operations on an initially empty table. First, we need to deter-
mine the actual cost c i of the i th operation. If the current table has room for the
new item (or if this is the ûrst operation), then c i D 1, since the only elementary
insertion performed is the one in line 10. If the current table is full, however, and an
expansion occurs, then c i D i : the cost is 1 for the elementary insertion in line 10
plus i 1 for the items copied from the old table to the new table in line 6. For
n operations, the worst-case cost of an operation is O.n/, which leads to an upper
bound of O.n 2 / on the total running time for n operations.

This bound is not tight, because the table rarely expands in the course of n
TABLE-I NSERT operations. Speciûcally, the i th operation causes an expansion
only when i 1 is an exact power of 2. The amortized cost of an operation is in
fact O.1/, as an aggregate analysis shows. The cost of the i th operation is

c i D

(
i if i 1 is an exact power of 2 ;
1 otherwise :

The total cost of n TABLE-I NSERT operations is therefore
n X

i D1

c i හ n C
blg nc X

j D0

2 j

< n C 2n (by equation (A.6) on page 1142)
D 3n ;

16.4 Dynamic tables 463

(a)

(b) $1 $1

(c) $1 $1 $1 $1

(d) $1 $1 $1 $1 $1 $1

(e) $1 $1 $1 $1 $1 $1 $1 $1

(f)

Figure 16.3 Analysis of table expansion by the accounting method. Each call of TABLE-I NSERT
charges $3 as follows: $1 to pay for the elementary insertion, $1 on the item inserted as prepayment
for it to be reinserted later, and $1 on an item that was already in the table, also as prepayment for
reinsertion. (a) The table immediately after an expansion, with 8 slots, 4 items (tan slots), and no
stored credit. (b)–(e) After each of 4 calls to TABLE-I NSERT, the table has one more item, with $1
stored on the new item and $1 stored on one of the 4 items that were present immediately after the
expansion. Slots with these new items are blue. (f) Upon the next call to TABLE-I NSERT, the table
is full, and so it expands again. Each item had $1 to pay for it to be reinserted. Now the table looks
as it did in part (a), with no stored credit but 16 slots and 8 items.

because at most n operations cost 1 each and the costs of the remaining operations
form a geometric series. Since the total cost of n TABLE-I NSERT operations is
bounded by 3n, the amortized cost of a single operation is at most 3.

The accounting method can provide some intuition for why the amortized cost
of a TABLE-I NSERT operation should be 3. You can think of each item paying for
three elementary insertions: inserting itself into the current table, moving itself the
next time that the table expands, and moving some other item that was already in
the table the next time that the table expands. For example, suppose that the size of
the table is m immediately after an expansion, as shown in Figure 16.3 for m D 8.
Then the table holds m=2 items, and it contains no credit. Each call of TABLE-
I NSERT charges $3. The elementary insertion that occurs immediately costs $1.
Another $1 resides on the item inserted as credit. The third $1 resides as credit
on one of the m=2 items already in the table. The table will not ûll again until
another m=2 1 items have been inserted, and thus, by the time the table contains
m items and is full, each item has $1 on it to pay for it to be reinserted it during the
expansion.
Now, let’s see how to use the potential method. We’ll use it again in Sec-

tion 16.4.2 to design a TABLE-DELETE operation that has an O.1/ amortized cost

464 Chapter 16 Amortized Analysis

as well. Just as the accounting method had no stored credit immediately after an
expansion4that is, when T: num D T: size=24let’s deûne the potential to be 0
when T: num D T: size=2. As elementary insertions occur, the potential needs to
increase enough to pay for all the reinsertions that will happen when the table
next expands. The table ûlls after another T: size=2 calls of TABLE-I NSERT, when
T: num D T: size. The next call of TABLE-I NSERT after these T: size=2 calls trig-
gers an expansion with a cost of T: size to reinsert all the items. Therefore, over
the course of T: size=2 calls of TABLE-I NSERT, the potential must increase from 0
to T: size. To achieve this increase, let’s design the potential so that each call of
TABLE-I NSERT increases it by
T: size
T: size=2 D 2 ;

until the table expands. You can see that the potential function
ˆ.T / D 2.T: num T: size=2/ (16.4)
equals 0 immediately after the table expands, when T: num D T: size=2, and it
increases by 2 upon each insertion until the table ûlls. Once the table ûlls, that is,
when T: num D T: size, the potential ˆ.T / equals T: size. The initial value of the
potential is 0, and since the table is always at least half full, T: num T: size=2,
which implies that ˆ.T / is always nonnegative. Thus, the sum of the amortized
costs of n TABLE-I NSERT operations gives an upper bound on the sum of the actual
costs.

To analyze the amortized costs of table operations, it is convenient to think in
terms of the change in potential due to each operation. Letting ˆ i denote the
potential after the i th operation, we can rewrite equation (16.2) as
y c i D c i C ˆ i ˆ i 1

D c i C �ˆ i ;

where �ˆ i is the change in potential due to the i th operation. First, consider the
case when the i th insertion does not cause the table to expand. In this case, �ˆ i
is 2. Since the actual cost c i is 1, the amortized cost is
y c i D c i C �ˆ i

D 1 C 2
D 3 :

Now, consider the change in potential when the table does expand during the i th
insertion because it was full immediately before the insertion. Let num i denote
the number of items stored in the table after the i th operation and size i denote the
total size of the table after the i th operation, so that size i 1 D num i 1 D i 1

16.4 Dynamic tables 465

0 8 16 24 32
0

8

16

24

32

i

size i num i

ˆ i

Figure 16.4 The effect of a sequence of n TABLE-I NSERT operations on the number num i of items
in the table (the brown line), the number size i of slots in the table (the blue line), and the potential
ˆ i D 2.num i size i =2/ (the red line), each being measured after the i th operation. Immediately
before an expansion, the potential has built up to the number of items in the table, and therefore it can
pay for moving all the items to the new table. Afterward, the potential drops to 0, but it immediately
increases by 2 upon insertion of the item that caused the expansion.

and therefore ˆ i 1 D 2.size i 1 size i 1 =2/ D size i 1 D i 1. Immediately
after the expansion, the potential goes down to 0, and then the new item is inserted,
causing the potential to increase to ˆ i D 2. Thus, when the i th insertion triggers
an expansion, �ˆ i D 2 .i 1/ D 3 i . When the table expands in the i th
TABLE-I NSERT operation, the actual cost c i equals i (to reinsert i 1 items and
insert the i th item), giving an amortized cost of
y c i D c i C �ˆ i

D i C .3 i/
D 3 :

Figure 16.4 plots the values of num i , size i , and ˆ i against i . Notice how the
potential builds to pay for expanding the table.

16.4.2 Table expansion and contraction

To implement a TABLE-DELETE operation, it is simple enough to remove the spec-
iûed item from the table. In order to limit the amount of wasted space, however,
you might want to contract the table when the load factor becomes too small. Ta-

466 Chapter 16 Amortized Analysis

ble contraction is analogous to table expansion: when the number of items in the
table drops too low, allocate a new, smaller table and then copy the items from the
old table into the new one. You can then free the storage for the old table by return-
ing it to the memory-management system. In order to not waste space, yet keep
the amortized costs low, the insertion and deletion procedures should preserve two
properties:
 the load factor of the dynamic table is bounded below by a positive constant, as

well as above by 1, and
 the amortized cost of a table operation is bounded above by a constant.
The actual cost of each operation equals the number of elementary insertions or
deletions.

You might think that if you double the table size upon inserting an item into a
full table, then you should halve the size when deleting an item that would cause
the table to become less than half full. This strategy does indeed guarantee that the
load factor of the table never drops below 1=2. Unfortunately, it can also cause the
amortized cost of an operation to be quite large. Consider the following scenario.
Perform n operations on a table T of size n=2, where n is an exact power of 2.
The ûrst n=2 operations are insertions, which by our previous analysis cost a total
of ‚.n/. At the end of this sequence of insertions, T: num D T: size D n=2. For
the second n=2 operations, perform the following sequence:

insert, delete, delete, insert, insert, delete, delete, insert, insert,
The ûrst insertion causes the table to expand to size n. The two deletions that follow
cause the table to contract back to size n=2. Two further insertions cause another
expansion, and so forth. The cost of each expansion and contraction is ‚.n/, and
there are ‚.n/ of them. Thus, the total cost of the n operations is ‚.n 2 /, making
the amortized cost of an operation ‚.n/.

The problem with this strategy is that after the table expands, not enough dele-
tions occur to pay for a contraction. Likewise, after the table contracts, not enough
insertions take place to pay for an expansion.
How can we solve this problem? Allow the load factor of the table to drop

below 1=2. Speciûcally, continue to double the table size upon inserting an item
into a full table, but halve the table size when deleting an item causes the table to
become less than 1=4 full, rather than 1=2 full as before. The load factor of the
table is therefore bounded below by the constant 1=4, and the load factor is 1=2
immediately after a contraction.
An expansion or contraction should exhaust all the built-up potential, so that

immediately after expansion or contraction, when the load factor is 1=2, the table’s
potential is 0. Figure 16.5 shows the idea. As the load factor deviates from 1=2, the

16.4 Dynamic tables 467

0

1

1/2

1/4

0
31 per insertion
+1 per deletion

+2 per insertion
–2 per deletion

˛ ˆ �ˆ per operation T: num

T: size

T: size=2

T: size=4

T: size=2

T: size=4

T: size

T: size=4

Figure 16.5 How to think about the potential function ˆ for table insertion and deletion. When the
load factor ˛ is 1=2, the potential is 0. In order to accumulate sufûcient potential to pay for reinserting
all T: size items when the table ûlls, the potential needs to increase by 2 upon each insertion when
˛ 1=2. Correspondingly, the potential decreases by 2 upon each deletion that leaves ˛ 1=2.
In order to accrue enough potential to cover the cost of reinserting all T: size=4 items when the table
contracts, the potential needs to increase by 1 upon each deletion when ˛ < 1=2, and correspondingly
the potential decreases by 1 upon each insertion that leaves ˛ < 1=2 . The red area represents load
factors less than 1=4, which are not allowed.

potential increases so that by the time an expansion or contraction occurs, the table
has garnered sufûcient potential to pay for copying all the items into the newly
allocated table. Thus, the potential function should grow to T: num by the time that
the load factor has either increased to 1 or decreased to 1=4. Immediately after
either expanding or contracting the table, the load factor goes back to 1=2 and the
table’s potential reduces back to 0.

We omit the code for TABLE-DELETE, since it is analogous to TABLE-I NSERT.
We assume that if a contraction occurs during TABLE-DELETE, it occurs after the
item is deleted from the table. The analysis assumes that whenever the number of
items in the table drops to 0, the table occupies no storage. That is, if T: num D 0,
then T: size D 0.

How do we design a potential function that gives constant amortized time for
both insertion and deletion? When the load factor is at least 1=2, the same potential
function, ˆ.T / D 2.T: num T: size=2/, that we used for insertion still works.
When the table is at least half full, each insertion increases the potential by 2 if the
table does not expand, and each deletion reduces the potential by 2 if it does not
cause the load factor to drop below 1=2.

What about when the load factor is less than 1=2, that is, when 1=4 හ ˛.T / <
1=2? As before, when ˛.T / D 1=2, so that T: num D T: size=2, the potential ˆ.T /
should be 0. To get the load factor from 1=2 down to 1=4, T: size=4 deletions need

468 Chapter 16 Amortized Analysis

to occur, at which time T: num D T: size=4. To pay for all the reinsertions, the
potential must increase from 0 to T: size=4 over these T: size=4 deletions. There-
fore, for each call of TABLE-DELETE until the table contracts, the potential should
increase by
T: size=4
T: size=4 D 1 :

Likewise, when ˛ < 1=2, each call of TABLE-I NSERT should decrease the poten-
tial by 1. When 1=4 හ ˛.T / < 1=2, the potential function
ˆ.T / D T: size=2 T: num

produces this desired behavior.
Putting the two cases together, we get the potential function

ˆ.T / D

(
2.T: num T: size=2/ if ˛.T / 1=2 ;
T: size=2 T: num if ˛.T / < 1=2 : (16.5)

The potential of an empty table is 0 and the potential is never negative. Thus,
the total amortized cost of a sequence of operations with respect to ˆ provides an
upper bound on the actual cost of the sequence. Figure 16.6 illustrates how the
potential function behaves over a sequence of insertions and deletions.
Now, let’s determine the amortized costs of each operation. As before, let num i

denote the number of items stored in the table after the i th operation, size i denote
the total size of the table after the i th operation, ˛ i D num i =size i denote the load
factor after the i th operation, ˆ i denote the potential after the i th operation, and
�ˆ i denote the change in potential due to the i th operation. Initially, num 0 D 0,
size 0 D 0, and ˆ 0 D 0.

The cases in which the table does not expand or contract and the load factor does
not cross ˛ D 1=2 are straightforward. As we have seen, if ˛ i 1 1=2 and the
i th operation is an insertion that does not cause the table to expand, then �ˆ i D 2.
Likewise, if the i th operation is a deletion and ˛ i 1=2, then �ˆ i D 2. Fur-
thermore, if ˛ i 1 < 1=2 and the i th operation is a deletion that does not trigger a
contraction, then �ˆ i D 1, and if the i th operation is an insertion and ˛ i < 1=2 ,
then �ˆ i D 1. In other words, if no expansion or contraction occurs and the
load factor does not cross ˛ D 1=2, then
 if the load factor stays at or above 1=2, then the potential increases by 2 for an

insertion and decreases by 2 for a deletion, and
 if the load factor stays below 1=2, then the potential increases by 1 for a deletion

and decreases by 1 for an insertion.
In each of these cases, the actual cost c i of the i th operation is just 1, and so

16.4 Dynamic tables 469

0 8 16 24 32
0

8

16

24

32

40 48
i

size i

num i

ˆ i

Figure 16.6 The effect of a sequence of n TABLE-I NSERT and TABLE-DELETE operations on the
number num i of items in the table (the brown line), the number size i of slots in the table (the blue
line), and the potential (the red line)

ˆ i D

2.num i size i =2/ if ˛ i 1=2 ;
size i =2 num i if ˛ i < 1=2 ;

where ˛ i D num i =size i , each measured after the i th operation. Immediately before an expansion or
contraction, the potential has built up to the number of items in the table, and therefore it can pay for
moving all the items to the new table.

 if the i th operation is an insertion, its amortized cost y c i is c i C �ˆ i , which
is 1 C 2 D 3 if the load factor stays at or above 1=2, and 1 C .1/ D 0 if the
load factor stays below 1=2, and

 if the i th operation is a deletion, its amortized cost y c i is c i C �ˆ i , which
is 1 C .2/ D 1 if the load factor stays at or above 1=2, and 1 C 1 D 2
if the load factor stays below 1=2.

Four cases remain: an insertion that takes the load factor from below 1=2 to 1=2,
a deletion that takes the load factor from 1=2 to below 1=2, a deletion that causes
the table to contract, and an insertion that causes the table to expand. We analyzed
that last case at the end of Section 16.4.1 to show that its amortized cost is 3.

When the i th operation is a deletion that causes the table to contract, we have
num i 1 D size i 1 =4 before the contraction, then the item is deleted, and ûnally
num i D size i =2 1 after the contraction. Thus, by equation (16.5) we have

470 Chapter 16 Amortized Analysis

ˆ i 1 D size i 1 =2 num i 1

D size i 1 =2 size i 1 =4
D size i 1 =4 ;

which also equals the actual cost c i of deleting one item and copying size i 1 =4 1
items into the new, smaller table. Since num i D size i =2 1 after the operation has
completed, ˛ i < 1=2, and so
ˆ i D size i =2 num i

D 1 ;

giving �ˆ i D 1 size i 1 =4. Therefore, when the i th operation is a deletion that
triggers a contraction, its amortized cost is
y c i D c i C �ˆ i

D size i 1 =4 C .1 size i 1 =4/
D 1 :

Finally, we handle the cases where the load factor ûts one case of equation (16.5)
before the operation and the other case afterward. We start with deletion, where we
have num i 1 D size i 1 =2, so that ˛ i 1 D 1=2, beforehand, and num i D size i =21,
so that ˛ i < 1=2 afterward. Because ˛ i 1 D 1=2, we have ˆ i 1 D 0, and because
˛ i < 1=2, we have ˆ i D size i =2 num i D 1. Thus we get that �ˆ i D 1 0 D 1.
Since the i th operation is a deletion that does not cause a contraction, the actual
cost c i equals 1, and the amortized cost y c i is c i C �ˆ i D 1 C 1 D 2.

Conversely, if the i th operation is an insertion that takes the load factor from
below 1=2 to equaling 1=2, the change in potential �ˆ i equals 1. Again, the
actual cost c i is 1, and now the amortized cost y c i is c i C �ˆ i D 1 C .1/ D 0.

In summary, since the amortized cost of each operation is bounded above by
a constant, the actual time for any sequence of n operations on a dynamic table
is O.n/.

Exercises
16.4-1
Using the potential method, analyze the amortized cost of the ûrst table insertion.
16.4-2
You wish to implement a dynamic, open-address hash table. Why might you con-
sider the table to be full when its load factor reaches some value ˛ that is strictly
less than 1? Describe brieüy how to make insertion into a dynamic, open-address
hash table run in such a way that the expected value of the amortized cost per

Problems for Chapter 16 471

insertion is O.1/. Why is the expected value of the actual cost per insertion not
necessarily O.1/ for all insertions?
16.4-3
Discuss how to use the accounting method to analyze both the insertion and dele-
tion operations, assuming that the table doubles in size when its load factor ex-
ceeds 1 and the table halves in size when its load factor goes below 1=4.
16.4-4
Suppose that instead of contracting a table by halving its size when its load factor
drops below 1=4, you contract the table by multiplying its size by 2=3 when its
load factor drops below 1=3. Using the potential function
ˆ.T / D j2.T: num T: size=2/j ;
show that the amortized cost of a TABLE-DELETE that uses this strategy is bounded
above by a constant.

Problems

16-1 Binary reüected Gray code
A binary Gray code represents a sequence of nonnegative integers in binary such
that to go from one integer to the next, exactly one bit üips every time. The binary
reüected Gray code represents a sequence of the integers 0 to 2 k 1 for some
positive integer k according to the following recursive method:
 For k D 1, the binary reüected Gray code is h0; 1i.
 For k 2, ûrst form the binary reüected Gray code for k 1, giving the 2 k1

integers 0 to 2 k1 1. Then form the reüection of this sequence, which is just
the sequence in reverse. (That is, the j th integer in the sequence becomes the
.2 k1 j 1/st integer in the reüection). Next, add 2 k1 to each of the 2 k1

integers in the reüected sequence. Finally, concatenate the two sequences.
For example, for k D 2, ûrst form the binary reüected Gray code h0; 1i for

k D 1. Its reüection is the sequence h1; 0i. Adding 2 k1 D 2 to each integer in the
reüection gives the sequence h3; 2i. Concatenating the two sequences gives h0; 1;
3; 2i or, in binary, h00; 01; 11; 10i, so that each integer differs from its predecessor
by exactly one bit. For k D 3, the reüection of the binary reüected Gray code for
k D 2 is h2; 3; 1; 0i and adding 2 k1 D 4 gives h6; 7; 5; 4i. Concatenating produces
the sequence h0; 1; 3; 2; 6; 7; 5; 4i, which in binary is h000; 001; 011; 010; 110; 111;
101;100i. In the binary reüected Gray code, only one bit üips even when wrapping
around from the last integer to the ûrst.

472 Chapter 16 Amortized Analysis

a. Index the integers in a binary reüected Gray code from 0 to 2 k 1, and consider
the i th integer in the binary reüected Gray code. To go from the .i 1/st integer
to the i th integer in the binary reüected Gray code, exactly one bit üips. Show
how to determine which bit üips, given the index i .

b. Assuming that given a bit number j , you can üip bit j of an integer in constant
time, show how to compute the entire binary reüected Gray code sequence of
2 k numbers in ‚.2 k / time.

16-2 Making binary search dynamic
Binary search of a sorted array takes logarithmic search time, but the time to insert
a new element is linear in the size of the array. You can improve the time for
insertion by keeping several sorted arrays.
Speciûcally, suppose that you wish to support SEARCH and I NSERT on a set

of n elements. Let k D dlg.n C 1/e, and let the binary representation of n be
hn k1 ; n k2 ; : : : ; n 0 i. Maintain k sorted arrays A 0 ; A 1 ; : : : ; A k1 , where for i D
0; 1; : : : ; k 1, the length of array A i is 2 i . Each array is either full or empty, de-
pending on whether n i D 1 or n i D 0, respectively. The total number of elements
held in all k arrays is therefore P k1

i D0 n i 2 i D n. Although each individual array is
sorted, elements in different arrays bear no particular relationship to each other.
a. Describe how to perform the SEARCH operation for this data structure. Analyze

its worst-case running time.

b. Describe how to perform the I NSERT operation. Analyze its worst-case and
amortized running times, assuming that the only operations are I NSERT and
SEARCH.

c. Describe how to implement DELETE. Analyze its worst-case and amortized
running times, assuming that there can be DELETE, I NSERT, and SEARCH op-
erations.

16-3 Amortized weight-balanced trees
Consider an ordinary binary search tree augmented by adding to each node x the
attribute x: size, which gives the number of keys stored in the subtree rooted at x .
Let ˛ be a constant in the range 1=2 හ ˛ < 1. We say that a given node x is
˛-balanced if x: left: size හ ˛ x: size and x: right : size හ ˛ x: size. The tree
as a whole is ˛-balanced if every node in the tree is ˛-balanced. The follow-
ing amortized approach to maintaining weight-balanced trees was suggested by
G. Varghese.

Problems for Chapter 16 473

a. A 1=2-balanced tree is, in a sense, as balanced as it can be. Given a node x
in an arbitrary binary search tree, show how to rebuild the subtree rooted at x
so that it becomes 1=2-balanced. Your algorithm should run in ‚.x: size/ time,
and it can use O.x: size/ auxiliary storage.

b. Show that performing a search in an n-node ˛-balanced binary search tree takes
O.lg n/ worst-case time.

For the remainder of this problem, assume that the constant ˛ is strictly greater
than 1=2. Suppose that you implement I NSERT and DELETE as usual for an n-node
binary search tree, except that after every such operation, if any node in the tree
is no longer ˛-balanced, then you <rebuild= the subtree rooted at the highest such
node in the tree so that it becomes 1=2-balanced.
We’ll analyze this rebuilding scheme using the potential method. For a node x

in a binary search tree T , deûne
�.x/ D jx: left: size x: right : sizej :
Deûne the potential of T as
ˆ.T / D c

X

x2T Wĩ.x/2

�.x/ ;

where c is a sufûciently large constant that depends on ˛.
c. Argue that any binary search tree has nonnegative potential and also that a
1=2-balanced tree has potential 0.

d. Suppose that m units of potential can pay for rebuilding an m-node subtree.
How large must c be in terms of ˛ in order for it to take O.1/ amortized time
to rebuild a subtree that is not ˛-balanced?

e. Show that inserting a node into or deleting a node from an n-node ˛-balanced
tree costs O.lg n/ amortized time.

16-4 The cost of restructuring red-black trees
There are four basic operations on red-black trees that perform structural modi-
ûcations: node insertions, node deletions, rotations, and color changes. We have
seen that RB-I NSERT and RB-DELETE use only O.1/ rotations, node insertions,
and node deletions to maintain the red-black properties, but they may make many
more color changes.
a. Describe a legal red-black tree with n nodes such that calling RB-I NSERT to

add the .n C 1/st node causes �.lg n/ color changes. Then describe a legal

474 Chapter 16 Amortized Analysis

red-black tree with n nodes for which calling RB-DELETE on a particular node
causes �.lg n/ color changes.

Although the worst-case number of color changes per operation can be logarithmic,
you will prove that any sequence of m RB-I NSERT and RB-DELETE operations on
an initially empty red-black tree causes O.m/ structural modiûcations in the worst
case.
b. Some of the cases handled by the main loop of the code of both RB-I NSERT-

FIXUP and RB-DELETE-FIXUP are terminating: once encountered, they cause
the loop to terminate after a constant number of additional operations. For each
of the cases of RB-I NSERT-FIXUP and RB-DELETE-F IXUP, specify which are
terminating and which are not. (Hint: Look at Figures 13.5, 13.6, and 13.7 in
Sections 13.3 and 13.4.)

You will ûrst analyze the structural modiûcations when only insertions are per-
formed. Let T be a red-black tree, and deûne ˆ.T / to be the number of red nodes
in T . Assume that one unit of potential can pay for the structural modiûcations
performed by any of the three cases of RB-I NSERT-FIXUP.
c. Let T 0 be the result of applying Case 1 of RB-I NSERT-FIXUP to T . Argue that
ˆ.T 0 / D ˆ.T / 1.

d. We can break the operation of the RB-I NSERT procedure into three parts. List
the structural modiûcations and potential changes resulting from lines 1316
of RB-I NSERT, from nonterminating cases of RB-I NSERT-FIXUP, and from
terminating cases of RB-I NSERT-FIXUP.

e. Using part (d), argue that the amortized number of structural modiûcations per-
formed by any call of RB-I NSERT is O.1/.

Next you will prove that there are O.m/ structural modiûcations when both inser-
tions and deletions occur. Deûne, for each node x ,

w.x/ D

„
0 if x is red ;
1 if x is black and has no red children ;
0 if x is black and has one red child ;
2 if x is black and has two red children :

Now redeûne the potential of a red-black tree T as
ˆ.T / D

X

x2T

w.x/ ;

Notes for Chapter 16 475

and let T 0 be the tree that results from applying any nonterminating case of RB-
I NSERT-FIXUP or RB-DELETE-FIXUP to T .
f. Show that ˆ.T 0 / හ ˆ.T / 1 for all nonterminating cases of RB-I NSERT-

FIXUP. Argue that the amortized number of structural modiûcations performed
by any call of RB-I NSERT-FIXUP is O.1/.

g. Show that ˆ.T 0 / හ ˆ.T / 1 for all nonterminating cases of RB-DELETE-
FIXUP. Argue that the amortized number of structural modiûcations performed
by any call of RB-DELETE-FIXUP is O.1/.

h. Complete the proof that in the worst case, any sequence of m RB-I NSERT and
RB-DELETE operations performs O.m/ structural modiûcations.

Chapter notes

Aho, Hopcroft, and Ullman [5] used aggregate analysis to determine the running
time of operations on a disjoint-set forest. We’ll analyze this data structure using
the potential method in Chapter 19. Tarjan [430] surveys the accounting and poten-
tial methods of amortized analysis and presents several applications. He attributes
the accounting method to several authors, including M. R. Brown, R. E. Tarjan, S.
Huddleston, and K. Mehlhorn. He attributes the potential method to D. D. Sleator.
The term <amortized= is due to D. D. Sleator and R. E. Tarjan.

Potential functions are also useful for proving lower bounds for certain types
of problems. For each conûguration of the problem, deûne a potential function
that maps the conûguration to a real number. Then determine the potential ˆ init
of the initial conûguration, the potential ˆ ûnal of the ûnal conûguration, and the
maximum change in potential �ˆ max due to any step. The number of steps must
therefore be at least jˆ ûnal ˆ init j = j�ˆ max j. Examples of potential functions to
prove lower bounds in I/O complexity appear in works by Cormen, Sundquist, and
Wisniewski [105], Floyd [146], and Aggarwal and Vitter [3]. Krumme, Cybenko,
and Venkataraman [271] applied potential functions to prove lower bounds on gos-
siping: communicating a unique item from each vertex in a graph to every other
vertex.

Part V Advanced Data Structures

Introduction

This part returns to studying data structures that support operations on dynamic
sets, but at a more advanced level than Part III. One of the chapters, for example,
makes extensive use of the amortized analysis techniques from Chapter 16.
Chapter 17 shows how to augment red-black trees4adding additional informa-

tion in each node4to support dynamic-set operations in addition to those covered
in Chapters 12 and 13. The ûrst example augments red-black trees to dynamically
maintain order statistics for a set of keys. Another example augments them in a
different way to maintain intervals of real numbers. Chapter 17 includes a theo-
rem giving sufûcient conditions for when a red-black tree can be augmented while
maintaining the O.lg n/ running times for insertion and deletion.
Chapter 18 presents B-trees, which are balanced search trees speciûcally de-

signed to be stored on disks. Since disks operate much more slowly than random-
access memory, B-tree performance depends not only on how much computing
time the dynamic-set operations consume but also on how many disk accesses they
perform. For each B-tree operation, the number of disk accesses increases with the
height of the B-tree, but B-tree operations keep the height low.
Chapter 19 examines data structures for disjoint sets. Starting with a universe

of n elements, each initially in its own singleton set, the operation UNION unites
two sets. At all times, the n elements are partitioned into disjoint sets, even as
calls to the UNION operation change the members of a set dynamically. The query
FIND-SET identiûes the unique set that contains a given element at the moment.
Representing each set as a simple rooted tree yields surprisingly fast operations:
a sequence of m operations runs in O.m ˛.n// time, where ˛.n/ is an incredibly
slowly growing function4˛.n/ is at most 4 in any conceivable application. The
amortized analysis that proves this time bound is as complex as the data structure
is simple.

478 Part V Advanced Data Structures

The topics covered in this part are by no means the only examples of <advanced=
data structures. Other advanced data structures include the following:
 Fibonacci heaps [156] implement mergeable heaps (see Problem 10-2 on

page 268) with the operations I NSERT, MINIMUM, and UNION taking only
O.1/ actual and amortized time, and the operations EXTRACT-MIN and
DELETE taking O.lg n/ amortized time. The most signiûcant advantage of
these data structures, however, is that DECREASE-KEY takes only O.1/ amor-
tized time. Strict Fibonacci heaps [73], developed later, made all of these time
bounds actual. Because the DECREASE-KEY operation takes constant amor-
tized time, (strict) Fibonacci heaps constitute key components of some of the
asymptotically fastest algorithms to date for graph problems.

 Dynamic trees [415, 429] maintain a forest of disjoint rooted trees. Each edge
in each tree has a real-valued cost. Dynamic trees support queries to ûnd par-
ents, roots, edge costs, and the minimum edge cost on a simple path from a node
up to a root. Trees may be manipulated by cutting edges, updating all edge costs
on a simple path from a node up to a root, linking a root into another tree, and
making a node the root of the tree it appears in. One implementation of dynamic
trees gives an O.lg n/ amortized time bound for each operation, while a more
complicated implementation yields O.lg n/ worst-case time bounds. Dynamic
trees are used in some of the asymptotically fastest network-üow algorithms.

 Splay trees [418, 429] are a form of binary search tree on which the standard
search-tree operations run in O.lg n/ amortized time. One application of splay
trees simpliûes dynamic trees.

 Persistent data structures allow queries, and sometimes updates as well, on past
versions of a data structure. For example, linked data structures can be made
persistent with only a small time and space cost [126]. Problem 13-1 gives a
simple example of a persistent dynamic set.

 Several data structures allow a faster implementation of dictionary operations
(I NSERT, DELETE, and SEARCH) for a restricted universe of keys. By tak-
ing advantage of these restrictions, they are able to achieve better worst-case
asymptotic running times than comparison-based data structures. If the keys
are unique integers drawn from the set f0; 1; 2; : : : ; u 1g, where u is an ex-
act power of 2, then a recursive data structure known as a van Emde Boas
tree [440, 441] supports each of the operations SEARCH, I NSERT, DELETE,
MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR in O.lg lg u/ time.
Fusion trees [157] were the ûrst data structure to allow faster dictionary opera-
tions when the universe is restricted to integers, implementing these operations
in O.lg n= lg lg n/ time. Several subsequent data structures, including expo-
nential search trees [17], have also given improved bounds on some or all of

Part V Advanced Data Structures 479

the dictionary operations and are mentioned in the chapter notes throughout this
book.

 Dynamic graph data structures support various queries while allowing the
structure of a graph to change through operations that insert or delete vertices
or edges. Examples of the queries that they support include vertex connectivity
[214], edge connectivity, minimum spanning trees [213], biconnectivity, and
transitive closure [212].

Chapter notes throughout this book mention additional data structures.

