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Preface 

Not so long ago, anyone who had heard the word <algorithm= was almost certainly 
a computer scientist or mathematician. With computers having become prevalent in 
our modern lives, however, the term is no longer esoteric. If you look around your 
home, you’ll ûnd algorithms running in the most mundane places: your microwave 
oven, your washing machine, and, of course, your computer. You ask algorithms 
to make recommendations to you: what music you might like or what route to 
take when driving. Our society, for better or for worse, asks algorithms to suggest 
sentences for convicted criminals. You even rely on algorithms to keep you alive, 
or at least not to kill you: the control systems in your car or in medical equipment. 1 

The word <algorithm= appears somewhere in the news seemingly every day. 
Therefore, it behooves you to understand algorithms not just as a student or 

practitioner of computer science, but as a citizen of the world. Once you understand 
algorithms, you can educate others about what algorithms are, how they operate, 
and what their limitations are. 

This book provides a comprehensive introduction to the modern study of com- 
puter algorithms. It presents many algorithms and covers them in considerable 
depth, yet makes their design accessible to all levels of readers. All the analyses 
are laid out, some simple, some more involved. We have tried to keep explanations 
clear without sacriûcing depth of coverage or mathematical rigor. 

Each chapter presents an algorithm, a design technique, an application area, or a 
related topic. Algorithms are described in English and in a pseudocode designed to 
be readable by anyone who has done a little programming. The book contains 231 
ûgures4many with multiple parts4illustrating how the algorithms work. Since 
we emphasize efficiency as a design criterion, we include careful analyses of the 
running times of the algorithms. 

1 To understand many of the ways in which algorithms inüuence our daily lives, see the book by 
Fry [162]. 
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The text is intended primarily for use in undergraduate or graduate courses in 
algorithms or data structures. Because it discusses engineering issues in algorithm 
design, as well as mathematical aspects, it is equally well suited for self-study by 
technical professionals. 

In this, the fourth edition, we have once again updated the entire book. The 
changes cover a broad spectrum, including new chapters and sections, color illus- 
trations, and what we hope you’ll ûnd to be a more engaging writing style. 

To the teacher 
We have designed this book to be both versatile and complete. You should ûnd it 
useful for a variety of courses, from an undergraduate course in data structures up 
through a graduate course in algorithms. Because we have provided considerably 
more material than can ût in a typical one-term course, you can select the material 
that best supports the course you wish to teach. 
You should ûnd it easy to organize your course around just the chapters you 

need. We have made chapters relatively self-contained, so that you need not 
worry about an unexpected and unnecessary dependence of one chapter on an- 
other. Whereas in an undergraduate course, you might use only some sections 
from a chapter, in a graduate course, you might cover the entire chapter. 
We have included 931 exercises and 162 problems. Each section ends with exer- 

cises, and each chapter ends with problems. The exercises are generally short ques- 
tions that test basic mastery of the material. Some are simple self-check thought 
exercises, but many are substantial and suitable as assigned homework. The prob- 
lems include more elaborate case studies which often introduce new material. They 
often consist of several parts that lead the student through the steps required to ar- 
rive at a solution. 

As with the third edition of this book, we have made publicly available solutions 
to some, but by no means all, of the problems and exercises. You can ûnd these so- 
lutions on our website, http://mitpress.mit.edu/algorithms/. You will want to check 
this site to see whether it contains the solution to an exercise or problem that you 
plan to assign. Since the set of solutions that we post might grow over time, we 
recommend that you check the site each time you teach the course. 

We have starred (?) the sections and exercises that are more suitable for graduate 
students than for undergraduates. A starred section is not necessarily more difû- 
cult than an unstarred one, but it may require an understanding of more advanced 
mathematics. Likewise, starred exercises may require an advanced background or 
more than average creativity. 
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To the student 
We hope that this textbook provides you with an enjoyable introduction to the ûeld 
of algorithms. We have attempted to make every algorithm accessible and inter- 
esting. To help you when you encounter unfamiliar or difûcult algorithms, we 
describe each one in a step-by-step manner. We also provide careful explanations 
of the mathematics needed to understand the analysis of the algorithms and sup- 
porting ûgures to help you visualize what is going on. 

Since this book is large, your class will probably cover only a portion of its 
material. Although we hope that you will ûnd this book helpful to you as a course 
textbook now, we have also tried to make it comprehensive enough to warrant space 
on your future professional bookshelf. 
What are the prerequisites for reading this book? 

 You need some programming experience. In particular, you should understand 
recursive procedures and simple data structures, such as arrays and linked lists 
(although Section 10.2 covers linked lists and a variant that you may ûnd new). 

 You should have some facility with mathematical proofs, and especially proofs 
by mathematical induction. A few portions of the book rely on some knowledge 
of elementary calculus. Although this book uses mathematics throughout, Part I 
and Appendices A–D teach you all the mathematical techniques you will need. 
Our website, http://mitpress.mit.edu/algorithms/, links to solutions for some of 

the problems and exercises. Feel free to check your solutions against ours. We ask, 
however, that you not send your solutions to us. 

To the professional 
The wide range of topics in this book makes it an excellent handbook on algo- 
rithms. Because each chapter is relatively self-contained, you can focus on the 
topics most relevant to you. 

Since most of the algorithms we discuss have great practical utility, we address 
implementation concerns and other engineering issues. We often provide practical 
alternatives to the few algorithms that are primarily of theoretical interest. 
If you wish to implement any of the algorithms, you should ûnd the transla- 

tion of our pseudocode into your favorite programming language to be a fairly 
straightforward task. We have designed the pseudocode to present each algorithm 
clearly and succinctly. Consequently, we do not address error handling and other 
software-engineering issues that require speciûc assumptions about your program- 
ming environment. We attempt to present each algorithm simply and directly with- 
out allowing the idiosyncrasies of a particular programming language to obscure its 
essence. If you are used to 0-origin arrays, you might ûnd our frequent practice of 
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indexing arrays from 1 a minor stumbling block. You can always either subtract 1 
from our indices or just overallocate the array and leave position 0 unused. 

We understand that if you are using this book outside of a course, then you 
might be unable to check your solutions to problems and exercises against solutions 
provided by an instructor. Our website, http://mitpress.mit.edu/algorithms/, links 
to solutions for some of the problems and exercises so that you can check your 
work. Please do not send your solutions to us. 

To our colleagues 
We have supplied an extensive bibliography and pointers to the current literature. 
Each chapter ends with a set of chapter notes that give historical details and ref- 
erences. The chapter notes do not provide a complete reference to the whole ûeld 
of algorithms, however. Though it may be hard to believe for a book of this size, 
space constraints prevented us from including many interesting algorithms. 

Despite myriad requests from students for solutions to problems and exercises, 
we have adopted the policy of not citing references for them, removing the temp- 
tation for students to look up a solution rather than to discover it themselves. 

Changes for the fourth edition 

As we said about the changes for the second and third editions, depending on how 
you look at it, the book changed either not much or quite a bit. A quick look at the 
table of contents shows that most of the third-edition chapters and sections appear 
in the fourth edition. We removed three chapters and several sections, but we have 
added three new chapters and several new sections apart from these new chapters. 
We kept the hybrid organization from the ûrst three editions. Rather than 

organizing chapters only by problem domains or only according to techniques, 
this book incorporates elements of both. It contains technique-based chapters on 
divide-and-conquer, dynamic programming, greedy algorithms, amortized analy- 
sis, augmenting data structures, NP-completeness, and approximation algorithms. 
But it also has entire parts on sorting, on data structures for dynamic sets, and on 
algorithms for graph problems. We ûnd that although you need to know how to ap- 
ply techniques for designing and analyzing algorithms, problems seldom announce 
to you which techniques are most amenable to solving them. 

Some of the changes in the fourth edition apply generally across the book, and 
some are speciûc to particular chapters or sections. Here is a summary of the most 
signiûcant general changes: 
 We added 140 new exercises and 22 new problems. We also improved many of 

the old exercises and problems, often as the result of reader feedback. (Thanks 
to all readers who made suggestions.) 
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 We have color! With designers from the MIT Press, we selected a limited 
palette, devised to convey information and to be pleasing to the eye. (We are 
delighted to display red-black trees in4get this4red and black!) To enhance 
readability, deûned terms, pseudocode comments, and page numbers in the in- 
dex are in color. 

 Pseudocode procedures appear on a tan background to make them easier to spot, 
and they do not necessarily appear on the page of their ûrst reference. When 
they don’t, the text directs you to the relevant page. In the same vein, nonlocal 
references to numbered equations, theorems, lemmas, and corollaries include 
the page number. 

 We removed topics that were rarely taught. We dropped in their entirety the 
chapters on Fibonacci heaps, van Emde Boas trees, and computational geom- 
etry. In addition, the following material was excised: the maximum-subarray 
problem, implementing pointers and objects, perfect hashing, randomly built 
binary search trees, matroids, push-relabel algorithms for maximum üow, the 
iterative fast Fourier transform method, the details of the simplex algorithm for 
linear programming, and integer factorization. You can ûnd all the removed 
material on our website, http://mitpress.mit.edu/algorithms/. 

 We reviewed the entire book and rewrote sentences, paragraphs, and sections 
to make the writing clearer, more personal, and gender neutral. For example, 
the <traveling-salesman problem= in the previous editions is now called the 
<traveling-salesperson problem.= We believe that it is critically important for 
engineering and science, including our own ûeld of computer science, to be 
welcoming to everyone. (The one place that stumped us is in Chapter 13, which 
requires a term for a parent’s sibling. Because the English language has no such 
gender-neutral term, we regretfully stuck with <uncle.=) 

 The chapter notes, bibliography, and index were updated, reüecting the dra- 
matic growth of the ûeld of algorithms since the third edition. 

 We corrected errors, posting most corrections on our website of third-edition 
errata. Those that were reported while we were in full swing preparing this 
edition were not posted, but were corrected in this edition. (Thanks again to all 
readers who helped us identify issues.) 

The speciûc changes for the fourth edition include the following: 
 We renamed Chapter 3 and added a section giving an overview of asymptotic 

notation before delving into the formal deûnitions. 
 Chapter 4 underwent substantial changes to improve its mathematical founda- 

tion and make it more robust and intuitive. The notion of an algorithmic re- 
currence was introduced, and the topic of ignoring üoors and ceilings in recur- 
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rences was addressed more rigorously. The second case of the master theorem 
incorporates polylogarithmic factors, and a rigorous proof of a <continuous= 
version of the master theorem is now provided. We also present the powerful 
and general Akra-Bazzi method (without proof). 

 The deterministic order-statistic algorithm in Chapter 9 is slightly different, and 
the analyses of both the randomized and deterministic order-statistic algorithms 
have been revamped. 

 In addition to stacks and queues, Section 10.1 discusses ways to store arrays 
and matrices. 

 Chapter 11 on hash tables includes a modern treatment of hash functions. It 
also emphasizes linear probing as an efûcient method for resolving collisions 
when the underlying hardware implements caching to favor local searches. 

 To replace the sections on matroids in Chapter 15, we converted a problem in 
the third edition about ofüine caching into a full section. 

 Section 16.4 now contains a more intuitive explanation of the potential func- 
tions to analyze table doubling and halving. 

 Chapter 17 on augmenting data structures was relocated from Part III to Part V, 
reüecting our view that this technique goes beyond basic material. 

 Chapter 25 is a new chapter about matchings in bipartite graphs. It presents 
algorithms to ûnd a matching of maximum cardinality, to solve the stable- 
marriage problem, and to ûnd a maximum-weight matching (known as the <as- 
signment problem=). 

 Chapter 26, on task-parallel computing, has been updated with modern termi- 
nology, including the name of the chapter. 

 Chapter 27, which covers online algorithms, is another new chapter. In an 
online algorithm, the input arrives over time, rather than being available in its 
entirety at the start of the algorithm. The chapter describes several examples 
of online algorithms, including determining how long to wait for an elevator 
before taking the stairs, maintaining a linked list via the move-to-front heuristic, 
and evaluating replacement policies for caches. 

 In Chapter 29, we removed the detailed presentation of the simplex algorithm, 
as it was math heavy without really conveying many algorithmic ideas. The 
chapter now focuses on the key aspect of how to model problems as linear 
programs, along with the essential duality property of linear programming. 

 Section 32.5 adds to the chapter on string matching the simple, yet powerful, 
structure of sufûx arrays. 
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 Chapter 33, on machine learning, is the third new chapter. It introduces sev- 
eral basic methods used in machine learning: clustering to group similar items 
together, weighted-majority algorithms, and gradient descent to ûnd the mini- 
mizer of a function. 

 Section 34.5.6 summarizes strategies for polynomial-time reductions to show 
that problems are NP-hard. 

 The proof of the approximation algorithm for the set-covering problem in Sec- 
tion 35.3 has been revised. 

Website 
You can use our website, http://mitpress.mit.edu/algorithms/, to obtain supplemen- 
tary information and to communicate with us. The website links to a list of known 
errors, material from the third edition that is not included in the fourth edition, 
solutions to selected exercises and problems, Python implementations of many of 
the algorithms in this book, a list explaining the corny professor jokes (of course), 
as well as other content, which we may add to. The website also tells you how to 
report errors or make suggestions. 

How we produced this book 

Like the previous three editions, the fourth edition was produced in L A T E X 2 " . We 
used the Times font with mathematics typeset using the MathTime Professional II 
fonts. As in all previous editions, we compiled the index using Windex, a C pro- 
gram that we wrote, and produced the bibliography using B IBT E X. The PDF ûles 
for this book were created on a MacBook Pro running macOS 10.14. 
Our plea to Apple in the preface of the third edition to update MacDraw Pro for 

macOS 10 went for naught, and so we continued to draw illustrations on pre-Intel 
Macs running MacDraw Pro under the Classic environment of older versions of 
macOS 10. Many of the mathematical expressions appearing in illustrations were 
laid in with the psfrag package for L A T E X 2 " . 

Acknowledgments for the fourth edition 

We have been working with the MIT Press since we started writing the ûrst edi- 
tion in 1987, collaborating with several directors, editors, and production staff. 
Throughout our association with the MIT Press, their support has always been out- 
standing. Special thanks to our editors Marie Lee, who put up with us for far too 
long, and Elizabeth Swayze, who pushed us over the ûnish line. Thanks also to 
Director Amy Brand and to Alex Hoopes. 
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the fourth edition, working in the Dartmouth College Department of Computer 
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search, Department of Computer Science, and Data Science Institute. During the 
COVID-19 pandemic, we worked largely from home. We thank our respective 
universities and colleagues for providing such supportive and stimulating environ- 
ments. As we complete this book, those of us who are not retired are eager to return 
to our respective universities now that the pandemic seems to be abating. 
Julie Sussman, P.P.A., came to our rescue once again with her technical copy- 

editing under tremendous time pressure. If not for Julie, this book would be riddled 
with errors (or, let’s say, many more errors than it has) and would be far less read- 
able. Julie, we will be forever indebted to you. Errors that remain are the responsi- 
bility of the authors (and probably were inserted after Julie read the material). 

Dozens of errors in previous editions were corrected in the process of creating 
this edition. We thank our readers4too many to list them all4who have reported 
errors and suggested improvements over the years. 

We received considerable help in preparing some of the new material in this 
edition. Neville Campbell (unafûliated), Bill Kuszmaul of MIT, and Chee Yap of 
NYU provided valuable advice regarding the treatment of recurrences in Chapter 4. 
Yan Gu of the University of California, Riverside, provided feedback on parallel 
algorithms in Chapter 26. Rob Shapire of Microsoft Research altered our approach 
to the material on machine learning with his detailed comments on Chapter 33. Qi 
Qi of MIT helped with the analysis of the Monty Hall problem (Problem C-1). 

Molly Seaman and Mary Reilly of the MIT Press helped us select the color 
palette in the illustrations, and Wojciech Jarosz of Dartmouth College suggested 
design improvements to our newly colored ûgures. Yichen (Annie) Ke and Linda 
Xiao, who have since graduated from Dartmouth, aided in colorizing the illus- 
trations, and Linda also produced many of the Python implementations that are 
available on the book’s website. 
Finally, we thank our wives4Wendy Leiserson, Gail Rivest, Rebecca Ivry, and 

the late Nicole Cormen4and our families. The patience and encouragement of 
those who love us made this project possible. We affectionately dedicate this book 
to them. 
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Part I Foundations 



Introduction 

When you design and analyze algorithms, you need to be able to describe how they 
operate and how to design them. You also need some mathematical tools to show 
that your algorithms do the right thing and do it efûciently. This part will get you 
started. Later parts of this book will build upon this base. 
Chapter 1 provides an overview of algorithms and their place in modern com- 

puting systems. This chapter deûnes what an algorithm is and lists some examples. 
It also makes a case for considering algorithms as a technology, alongside tech- 
nologies such as fast hardware, graphical user interfaces, object-oriented systems, 
and networks. 
In Chapter 2, we see our ûrst algorithms, which solve the problem of sorting 

a sequence of n numbers. They are written in a pseudocode which, although not 
directly translatable to any conventional programming language, conveys the struc- 
ture of the algorithm clearly enough that you should be able to implement it in the 
language of your choice. The sorting algorithms we examine are insertion sort, 
which uses an incremental approach, and merge sort, which uses a recursive tech- 
nique known as <divide-and-conquer.= Although the time each requires increases 
with the value of n, the rate of increase differs between the two algorithms. We 
determine these running times in Chapter 2, and we develop a useful <asymptotic= 
notation to express them. 
Chapter 3 precisely deûnes asymptotic notation. We’ll use asymptotic notation 

to bound the growth of functions4most often, functions that describe the running 
time of algorithms4from above and below. The chapter starts by informally deûn- 
ing the most commonly used asymptotic notations and giving an example of how to 
apply them. It then formally deûnes ûve asymptotic notations and presents conven- 
tions for how to put them together. The rest of Chapter 3 is primarily a presentation 
of mathematical notation, more to ensure that your use of notation matches that in 
this book than to teach you new mathematical concepts. 
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Chapter 4 delves further into the divide-and-conquer method introduced in 
Chapter 2. It provides two additional examples of divide-and-conquer algorithms 
for multiplying square matrices, including Strassen’s surprising method. Chapter 4 
contains methods for solving recurrences, which are useful for describing the run- 
ning times of recursive algorithms. In the substitution method, you guess an answer 
and prove it correct. Recursion trees provide one way to generate a guess. Chap- 
ter 4 also presents the powerful technique of the <master method,= which you can 
often use to solve recurrences that arise from divide-and-conquer algorithms. Al- 
though the chapter provides a proof of a foundational theorem on which the master 
theorem depends, you should feel free to employ the master method without delv- 
ing into the proof. Chapter 4 concludes with some advanced topics. 
Chapter 5 introduces probabilistic analysis and randomized algorithms. You 

typically use probabilistic analysis to determine the running time of an algorithm 
in cases in which, due to the presence of an inherent probability distribution, the 
running time may differ on different inputs of the same size. In some cases, you 
might assume that the inputs conform to a known probability distribution, so that 
you are averaging the running time over all possible inputs. In other cases, the 
probability distribution comes not from the inputs but from random choices made 
during the course of the algorithm. An algorithm whose behavior is determined 
not only by its input but by the values produced by a random-number generator is a 
randomized algorithm. You can use randomized algorithms to enforce a probability 
distribution on the inputs4thereby ensuring that no particular input always causes 
poor performance4or even to bound the error rate of algorithms that are allowed 
to produce incorrect results on a limited basis. 

Appendices A–D contain other mathematical material that you will ûnd helpful 
as you read this book. You might have seen much of the material in the appendix 
chapters before having read this book (although the speciûc deûnitions and nota- 
tional conventions we use may differ in some cases from what you have seen in 
the past), and so you should think of the appendices as reference material. On the 
other hand, you probably have not already seen most of the material in Part I. All 
the chapters in Part I and the appendices are written with a tutorial üavor. 



1 The Role of Algorithms in Computing 

What are algorithms? Why is the study of algorithms worthwhile? What is the role 
of algorithms relative to other technologies used in computers? This chapter will 
answer these questions. 

1.1 Algorithms 

Informally, an algorithm is any well-deûned computational procedure that takes 
some value, or set of values, as input and produces some value, or set of values, as 
output in a ûnite amount of time. An algorithm is thus a sequence of computational 
steps that transform the input into the output. 
You can also view an algorithm as a tool for solving a well-speciûed computa- 

tional problem. The statement of the problem speciûes in general terms the desired 
input/output relationship for problem instances, typically of arbitrarily large size. 
The algorithm describes a speciûc computational procedure for achieving that in- 
put/output relationship for all problem instances. 

As an example, suppose that you need to sort a sequence of numbers into mono- 
tonically increasing order. This problem arises frequently in practice and provides 
fertile ground for introducing many standard design techniques and analysis tools. 
Here is how we formally deûne the sorting problem: 
Input: A sequence of n numbers ha 1 ; a 2 ; : : : ; a n i. 
Output: A permutation (reordering) ha 0 1 ; a 0 2 ; : : : ; a 0 n i of the input sequence such 

that a 0 1 හ a 0 2 හ    හ a 0 n . 
Thus, given the input sequence h31; 41; 59; 26; 41; 58i, a correct sorting algorithm 
returns as output the sequence h26; 31; 41; 41; 58; 59i. Such an input sequence is 
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called an instance of the sorting problem. In general, an instance of a problem 1 

consists of the input (satisfying whatever constraints are imposed in the problem 
statement) needed to compute a solution to the problem. 

Because many programs use it as an intermediate step, sorting is a fundamental 
operation in computer science. As a result, you have a large number of good sort- 
ing algorithms at your disposal. Which algorithm is best for a given application 
depends on4among other factors4the number of items to be sorted, the extent 
to which the items are already somewhat sorted, possible restrictions on the item 
values, the architecture of the computer, and the kind of storage devices to be used: 
main memory, disks, or even4archaically4tapes. 

An algorithm for a computational problem is correct if, for every problem in- 
stance provided as input, it halts4ûnishes its computing in ûnite time4and out- 
puts the correct solution to the problem instance. A correct algorithm solves the 
given computational problem. An incorrect algorithm might not halt at all on some 
input instances, or it might halt with an incorrect answer. Contrary to what you 
might expect, incorrect algorithms can sometimes be useful, if you can control 
their error rate. We’ll see an example of an algorithm with a controllable error rate 
in Chapter 31 when we study algorithms for ûnding large prime numbers. Ordi- 
narily, however, we’ll concern ourselves only with correct algorithms. 
An algorithm can be speciûed in English, as a computer program, or even as 

a hardware design. The only requirement is that the speciûcation must provide a 
precise description of the computational procedure to be followed. 

What kinds of problems are solved by algorithms? 

Sorting is by no means the only computational problem for which algorithms have 
been developed. (You probably suspected as much when you saw the size of this 
book.) Practical applications of algorithms are ubiquitous and include the follow- 
ing examples: 
 The Human Genome Project has made great progress toward the goals of iden- 

tifying all the roughly 30,000 genes in human DNA, determining the sequences 
of the roughly 3 billion chemical base pairs that make up human DNA, stor- 
ing this information in databases, and developing tools for data analysis. Each 
of these steps requires sophisticated algorithms. Although the solutions to the 
various problems involved are beyond the scope of this book, many methods to 
solve these biological problems use ideas presented here, enabling scientists to 
accomplish tasks while using resources efûciently. Dynamic programming, as 

1 Sometimes, when the problem context is known, problem instances are themselves simply called 
<problems.= 
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in Chapter 14, is an important technique for solving several of these biological 
problems, particularly ones that involve determining similarity between DNA 
sequences. The savings realized are in time, both human and machine, and in 
money, as more information can be extracted by laboratory techniques. 

 The internet enables people all around the world to quickly access and retrieve 
large amounts of information. With the aid of clever algorithms, sites on the 
internet are able to manage and manipulate this large volume of data. Exam- 
ples of problems that make essential use of algorithms include ûnding good 
routes on which the data travels (techniques for solving such problems appear 
in Chapter 22), and using a search engine to quickly ûnd pages on which par- 
ticular information resides (related techniques are in Chapters 11 and 32). 

 Electronic commerce enables goods and services to be negotiated and ex- 
changed electronically, and it depends on the privacy of personal informa- 
tion such as credit card numbers, passwords, and bank statements. The core 
technologies used in electronic commerce include public-key cryptography and 
digital signatures (covered in Chapter 31), which are based on numerical algo- 
rithms and number theory. 

 Manufacturing and other commercial enterprises often need to allocate scarce 
resources in the most beneûcial way. An oil company might wish to know 
where to place its wells in order to maximize its expected proût. A political 
candidate might want to determine where to spend money buying campaign ad- 
vertising in order to maximize the chances of winning an election. An airline 
might wish to assign crews to üights in the least expensive way possible, mak- 
ing sure that each üight is covered and that government regulations regarding 
crew scheduling are met. An internet service provider might wish to determine 
where to place additional resources in order to serve its customers more effec- 
tively. All of these are examples of problems that can be solved by modeling 
them as linear programs, which Chapter 29 explores. 

Although some of the details of these examples are beyond the scope of this 
book, we do give underlying techniques that apply to these problems and problem 
areas. We also show how to solve many speciûc problems, including the following: 
 You have a road map on which the distance between each pair of adjacent in- 

tersections is marked, and you wish to determine the shortest route from one 
intersection to another. The number of possible routes can be huge, even if you 
disallow routes that cross over themselves. How can you choose which of all 
possible routes is the shortest? You can start by modeling the road map (which 
is itself a model of the actual roads) as a graph (which we will meet in Part VI 
and Appendix B). In this graph, you wish to ûnd the shortest path from one 
vertex to another. Chapter 22 shows how to solve this problem efûciently. 
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 Given a mechanical design in terms of a library of parts, where each part may 
include instances of other parts, list the parts in order so that each part appears 
before any part that uses it. If the design comprises n parts, then there are nŠ 
possible orders, where nŠ denotes the factorial function. Because the factorial 
function grows faster than even an exponential function, you cannot feasibly 
generate each possible order and then verify that, within that order, each part 
appears before the parts using it (unless you have only a few parts). This prob- 
lem is an instance of topological sorting, and Chapter 20 shows how to solve 
this problem efûciently. 

 A doctor needs to determine whether an image represents a cancerous tumor or 
a benign one. The doctor has available images of many other tumors, some of 
which are known to be cancerous and some of which are known to be benign. 
A cancerous tumor is likely to be more similar to other cancerous tumors than 
to benign tumors, and a benign tumor is more likely to be similar to other be- 
nign tumors. By using a clustering algorithm, as in Chapter 33, the doctor can 
identify which outcome is more likely. 

 You need to compress a large ûle containing text so that it occupies less space. 
Many ways to do so are known, including <LZW compression,= which looks for 
repeating character sequences. Chapter 15 studies a different approach, <Huff- 
man coding,= which encodes characters by bit sequences of various lengths, 
with characters occurring more frequently encoded by shorter bit sequences. 

These lists are far from exhaustive (as you again have probably surmised from 
this book’s heft), but they exhibit two characteristics common to many interesting 
algorithmic problems: 
1. They have many candidate solutions, the overwhelming majority of which do 

not solve the problem at hand. Finding one that does, or one that is <best,= with- 
out explicitly examining each possible solution, can present quite a challenge. 

2. They have practical applications. Of the problems in the above list, ûnding the 
shortest path provides the easiest examples. A transportation ûrm, such as a 
trucking or railroad company, has a ûnancial interest in ûnding shortest paths 
through a road or rail network because taking shorter paths results in lower 
labor and fuel costs. Or a routing node on the internet might need to ûnd the 
shortest path through the network in order to route a message quickly. Or a 
person wishing to drive from New York to Boston might want to ûnd driving 
directions using a navigation app. 
Not every problem solved by algorithms has an easily identiûed set of candi- 

date solutions. For example, given a set of numerical values representing samples 
of a signal taken at regular time intervals, the discrete Fourier transform converts 
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the time domain to the frequency domain. That is, it approximates the signal as a 
weighted sum of sinusoids, producing the strength of various frequencies which, 
when summed, approximate the sampled signal. In addition to lying at the heart of 
signal processing, discrete Fourier transforms have applications in data compres- 
sion and multiplying large polynomials and integers. Chapter 30 gives an efûcient 
algorithm, the fast Fourier transform (commonly called the FFT), for this problem. 
The chapter also sketches out the design of a hardware FFT circuit. 

Data structures 
This book also presents several data structures. A data structure is a way to store 
and organize data in order to facilitate access and modiûcations. Using the appro- 
priate data structure or structures is an important part of algorithm design. No sin- 
gle data structure works well for all purposes, and so you should know the strengths 
and limitations of several of them. 

Technique 
Although you can use this book as a <cookbook= for algorithms, you might some- 
day encounter a problem for which you cannot readily ûnd a published algorithm 
(many of the exercises and problems in this book, for example). This book will 
teach you techniques of algorithm design and analysis so that you can develop al- 
gorithms on your own, show that they give the correct answer, and analyze their ef- 
ûciency. Different chapters address different aspects of algorithmic problem solv- 
ing. Some chapters address speciûc problems, such as ûnding medians and order 
statistics in Chapter 9, computing minimum spanning trees in Chapter 21, and de- 
termining a maximum üow in a network in Chapter 24. Other chapters introduce 
techniques, such as divide-and-conquer in Chapters 2 and 4, dynamic programming 
in Chapter 14, and amortized analysis in Chapter 16. 

Hard problems 
Most of this book is about efûcient algorithms. Our usual measure of efûciency 
is speed: how long does an algorithm take to produce its result? There are some 
problems, however, for which we know of no algorithm that runs in a reasonable 
amount of time. Chapter 34 studies an interesting subset of these problems, which 
are known as NP-complete. 
Why are NP-complete problems interesting? First, although no efûcient algo- 

rithm for an NP-complete problem has ever been found, nobody has ever proven 
that an efûcient algorithm for one cannot exist. In other words, no one knows 
whether efûcient algorithms exist for NP-complete problems. Second, the set of 
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NP-complete problems has the remarkable property that if an efûcient algorithm 
exists for any one of them, then efûcient algorithms exist for all of them. This re- 
lationship among the NP-complete problems makes the lack of efûcient solutions 
all the more tantalizing. Third, several NP-complete problems are similar, but not 
identical, to problems for which we do know of efûcient algorithms. Computer 
scientists are intrigued by how a small change to the problem statement can cause 
a big change to the efûciency of the best known algorithm. 
You should know about NP-complete problems because some of them arise sur- 

prisingly often in real applications. If you are called upon to produce an efûcient 
algorithm for an NP-complete problem, you are likely to spend a lot of time in a 
fruitless search. If, instead, you can show that the problem is NP-complete, you 
can spend your time developing an efûcient approximation algorithm, that is, an 
algorithm that gives a good, but not necessarily the best possible, solution. 

As a concrete example, consider a delivery company with a central depot. Each 
day, it loads up delivery trucks at the depot and sends them around to deliver goods 
to several addresses. At the end of the day, each truck must end up back at the depot 
so that it is ready to be loaded for the next day. To reduce costs, the company wants 
to select an order of delivery stops that yields the lowest overall distance traveled by 
each truck. This problem is the well-known <traveling-salesperson problem,= and it 
is NP-complete. 2 It has no known efûcient algorithm. Under certain assumptions, 
however, we know of efûcient algorithms that compute overall distances close to 
the smallest possible. Chapter 35 discusses such <approximation algorithms.= 

Alternative computing models 
For many years, we could count on processor clock speeds increasing at a steady 
rate. Physical limitations present a fundamental roadblock to ever-increasing clock 
speeds, however: because power density increases superlinearly with clock speed, 
chips run the risk of melting once their clock speeds become high enough. In or- 
der to perform more computations per second, therefore, chips are being designed 
to contain not just one but several processing <cores.= We can liken these multi- 
core computers to several sequential computers on a single chip. In other words, 
they are a type of <parallel computer.= In order to elicit the best performance 
from multicore computers, we need to design algorithms with parallelism in mind. 
Chapter 26 presents a model for =task-parallel= algorithms, which take advantage 
of multiple processing cores. This model has advantages from both theoretical and 

2 To be precise, only decision problems4those with a <yes/no= answer4can be NP-complete. The 
decision version of the traveling salesperson problem asks whether there exists an order of stops 
whose distance totals at most a given amount. 
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practical standpoints, and many modern parallel-programming platforms embrace 
something similar to this model of parallelism. 

Most of the examples in this book assume that all of the input data are available 
when an algorithm begins running. Much of the work in algorithm design makes 
the same assumption. For many important real-world examples, however, the input 
actually arrives over time, and the algorithm must decide how to proceed without 
knowing what data will arrive in the future. In a data center, jobs are constantly 
arriving and departing, and a scheduling algorithm must decide when and where to 
run a job, without knowing what jobs will be arriving in the future. Trafûc must 
be routed in the internet based on the current state, without knowing about where 
trafûc will arrive in the future. Hospital emergency rooms make triage decisions 
about which patients to treat ûrst without knowing when other patients will be 
arriving in the future and what treatments they will need. Algorithms that receive 
their input over time, rather than having all the input present at the start, are online 
algorithms, which Chapter 27 examines. 

Exercises 
1.1-1 
Describe your own real-world example that requires sorting. Describe one that 
requires ûnding the shortest distance between two points. 
1.1-2 
Other than speed, what other measures of efûciency might you need to consider in 
a real-world setting? 
1.1-3 
Select a data structure that you have seen, and discuss its strengths and limitations. 
1.1-4 
How are the shortest-path and traveling-salesperson problems given above similar? 
How are they different? 
1.1-5 
Suggest a real-world problem in which only the best solution will do. Then come 
up with one in which <approximately= the best solution is good enough. 
1.1-6 
Describe a real-world problem in which sometimes the entire input is available 
before you need to solve the problem, but other times the input is not entirely 
available in advance and arrives over time. 
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1.2 Algorithms as a technology 

If computers were inûnitely fast and computer memory were free, would you have 
any reason to study algorithms? The answer is yes, if for no other reason than that 
you would still like to be certain that your solution method terminates and does so 
with the correct answer. 
If computers were inûnitely fast, any correct method for solving a problem 

would do. You would probably want your implementation to be within the bounds 
of good software engineering practice (for example, your implementation should 
be well designed and documented), but you would most often use whichever 
method was the easiest to implement. 
Of course, computers may be fast, but they are not inûnitely fast. Computing 

time is therefore a bounded resource, which makes it precious. Although the saying 
goes, <Time is money,= time is even more valuable than money: you can get back 
money after you spend it, but once time is spent, you can never get it back. Memory 
may be inexpensive, but it is neither inûnite nor free. You should choose algorithms 
that use the resources of time and space efûciently. 

Efûciency 

Different algorithms devised to solve the same problem often differ dramatically in 
their efûciency. These differences can be much more signiûcant than differences 
due to hardware and software. 

As an example, Chapter 2 introduces two algorithms for sorting. The ûrst, 
known as insertion sort, takes time roughly equal to c 1 n 2 to sort n items, where c 1 
is a constant that does not depend on n. That is, it takes time roughly proportional 
to n 2 . The second, merge sort, takes time roughly equal to c 2 n lg n, where lg n 
stands for log 2 n and c 2 is another constant that also does not depend on n. Inser- 
tion sort typically has a smaller constant factor than merge sort, so that c 1 < c 2 . 
We’ll see that the constant factors can have far less of an impact on the running 
time than the dependence on the input size n. Let’s write insertion sort’s running 
time as c 1 n  n and merge sort’s running time as c 2 n  lg n. Then we see that where 
insertion sort has a factor of n in its running time, merge sort has a factor of lg n, 
which is much smaller. For example, when n is 1000, lg n is approximately 10, and 
when n is 1,000,000, lg n is approximately only 20. Although insertion sort usu- 
ally runs faster than merge sort for small input sizes, once the input size n becomes 
large enough, merge sort’s advantage of lg n versus n more than compensates for 
the difference in constant factors. No matter how much smaller c 1 is than c 2 , there 
is always a crossover point beyond which merge sort is faster. 
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For a concrete example, let us pit a faster computer (computer A) running inser- 
tion sort against a slower computer (computer B) running merge sort. They each 
must sort an array of 10 million numbers. (Although 10 million numbers might 
seem like a lot, if the numbers are eight-byte integers, then the input occupies 
about 80 megabytes, which ûts in the memory of even an inexpensive laptop com- 
puter many times over.) Suppose that computer A executes 10 billion instructions 
per second (faster than any single sequential computer at the time of this writing) 
and computer B executes only 10 million instructions per second (much slower 
than most contemporary computers), so that computer A is 1000 times faster than 
computer B in raw computing power. To make the difference even more dramatic, 
suppose that the world’s craftiest programmer codes insertion sort in machine lan- 
guage for computer A, and the resulting code requires 2n 2 instructions to sort n 
numbers. Suppose further that just an average programmer implements merge 
sort, using a high-level language with an inefûcient compiler, with the resulting 
code taking 50n lg n instructions. To sort 10 million numbers, computer A takes 
2  .10 7 / 2 instructions 
10 10 instructions/second D 20,000 seconds (more than 5:5 hours) ; 

while computer B takes 
50  10 7 lg 10 7 instructions 
10 7 instructions/second  1163 seconds (under 20 minutes) : 

By using an algorithm whose running time grows more slowly, even with a poor 
compiler, computer B runs more than 17 times faster than computer A! The ad- 
vantage of merge sort is even more pronounced when sorting 100 million numbers: 
where insertion sort takes more than 23 days, merge sort takes under four hours. 
Although 100 million might seem like a large number, there are more than 100 mil- 
lion web searches every half hour, more than 100 million emails sent every minute, 
and some of the smallest galaxies (known as ultra-compact dwarf galaxies) con- 
tain about 100 million stars. In general, as the problem size increases, so does the 
relative advantage of merge sort. 

Algorithms and other technologies 
The example above shows that you should consider algorithms, like computer hard- 
ware, as a technology. Total system performance depends on choosing efûcient 
algorithms as much as on choosing fast hardware. Just as rapid advances are being 
made in other computer technologies, they are being made in algorithms as well. 

You might wonder whether algorithms are truly that important on contemporary 
computers in light of other advanced technologies, such as 
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 advanced computer architectures and fabrication technologies, 
 easy-to-use, intuitive, graphical user interfaces (GUIs), 
 object-oriented systems, 
 integrated web technologies, 
 fast networking, both wired and wireless, 
 machine learning, 
 and mobile devices. 
The answer is yes. Although some applications do not explicitly require algorith- 
mic content at the application level (such as some simple, web-based applications), 
many do. For example, consider a web-based service that determines how to travel 
from one location to another. Its implementation would rely on fast hardware, a 
graphical user interface, wide-area networking, and also possibly on object ori- 
entation. It would also require algorithms for operations such as ûnding routes 
(probably using a shortest-path algorithm), rendering maps, and interpolating ad- 
dresses. 

Moreover, even an application that does not require algorithmic content at the 
application level relies heavily upon algorithms. Does the application rely on fast 
hardware? The hardware design used algorithms. Does the application rely on 
graphical user interfaces? The design of any GUI relies on algorithms. Does the 
application rely on networking? Routing in networks relies heavily on algorithms. 
Was the application written in a language other than machine code? Then it was 
processed by a compiler, interpreter, or assembler, all of which make extensive use 
of algorithms. Algorithms are at the core of most technologies used in contempo- 
rary computers. 

Machine learning can be thought of as a method for performing algorithmic tasks 
without explicitly designing an algorithm, but instead inferring patterns from data 
and thereby automatically learning a solution. At ûrst glance, machine learning, 
which automates the process of algorithmic design, may seem to make learning 
about algorithms obsolete. The opposite is true, however. Machine learning is 
itself a collection of algorithms, just under a different name. Furthermore, it cur- 
rently seems that the successes of machine learning are mainly for problems for 
which we, as humans, do not really understand what the right algorithm is. Promi- 
nent examples include computer vision and automatic language translation. For 
algorithmic problems that humans understand well, such as most of the problems 
in this book, efûcient algorithms designed to solve a speciûc problem are typically 
more successful than machine-learning approaches. 
Data science is an interdisciplinary ûeld with the goal of extracting knowledge 

and insights from structured and unstructured data. Data science uses methods 
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from statistics, computer science, and optimization. The design and analysis of 
algorithms is fundamental to the ûeld. The core techniques of data science, which 
overlap signiûcantly with those in machine learning, include many of the algo- 
rithms in this book. 
Furthermore, with the ever-increasing capacities of computers, we use them to 

solve larger problems than ever before. As we saw in the above comparison be- 
tween insertion sort and merge sort, it is at larger problem sizes that the differences 
in efûciency between algorithms become particularly prominent. 

Having a solid base of algorithmic knowledge and technique is one characteristic 
that deûnes the truly skilled programmer. With modern computing technology, you 
can accomplish some tasks without knowing much about algorithms, but with a 
good background in algorithms, you can do much, much more. 

Exercises 
1.2-1 
Give an example of an application that requires algorithmic content at the applica- 
tion level, and discuss the function of the algorithms involved. 
1.2-2 
Suppose that for inputs of size n on a particular computer, insertion sort runs in 8n 2 

steps and merge sort runs in 64n lg n steps. For which values of n does insertion 
sort beat merge sort? 
1.2-3 
What is the smallest value of n such that an algorithm whose running time is 100n 2 

runs faster than an algorithm whose running time is 2 n on the same machine? 

Problems 

1-1 Comparison of running times 
For each function f .n/ and time t in the following table, determine the largest 
size n of a problem that can be solved in time t , assuming that the algorithm to 
solve the problem takes f .n/ microseconds. 
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1 1 1 1 1 1 1 
second minute hour day month year century 
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Chapter notes 

There are many excellent texts on the general topic of algorithms, including those 
by Aho, Hopcroft, and Ullman [5, 6], Dasgupta, Papadimitriou, and Vazirani [107], 
Edmonds [133], Erickson [135], Goodrich and Tamassia [195, 196], Kleinberg 
and Tardos [257], Knuth [259, 260, 261, 262, 263], Levitin [298], Louridas [305], 
Mehlhorn and Sanders [325], Mitzenmacher and Upfal [331], Neapolitan [342], 
Roughgarden [385, 386, 387, 388], Sanders, Mehlhorn, Dietzfelbinger, and De- 
mentiev [393], Sedgewick and Wayne [402], Skiena [414], Soltys-Kulinicz [419], 
Wilf [455], and Williamson and Shmoys [459]. Some of the more practical as- 
pects of algorithm design are discussed by Bentley [49, 50, 51], Bhargava [54], 
Kochenderfer and Wheeler [268], and McGeoch [321]. Surveys of the ûeld of al- 
gorithms can also be found in books by Atallah and Blanton [27, 28] and Mehta and 
Sahhi [326]. For less technical material, see the books by Christian and Grifûths 
[92], Cormen [104], Erwig [136], MacCormick [307], and V¨ ocking et al. [448]. 
Overviews of the algorithms used in computational biology can be found in books 
by Jones and Pevzner [240], Elloumi and Zomaya [134], and Marchisio [315]. 



2 Getting Started 

This chapter will familiarize you with the framework we’ll use throughout the book 
to think about the design and analysis of algorithms. It is self-contained, but it does 
include several references to material that will be introduced in Chapters 3 and 4. 
(It also contains several summations, which Appendix A shows how to solve.) 
We’ll begin by examining the insertion sort algorithm to solve the sorting prob- 

lem introduced in Chapter 1. We’ll specify algorithms using a pseudocode that 
should be understandable to you if you have done computer programming. We’ll 
see why insertion sort correctly sorts and analyze its running time. The analysis 
introduces a notation that describes how running time increases with the number 
of items to be sorted. Following a discussion of insertion sort, we’ll use a method 
called divide-and-conquer to develop a sorting algorithm called merge sort. We’ll 
end with an analysis of merge sort’s running time. 

2.1 Insertion sort 

Our ûrst algorithm, insertion sort, solves the sorting problem introduced in Chap- 
ter 1: 
Input: A sequence of n numbers ha 1 ; a 2 ; : : : ; a n i. 
Output: A permutation (reordering) ha 0 1 ; a 0 2 ; : : : ; a 0 n i of the input sequence such 

that a 0 1 හ a 0 2 හ    හ a 0 n . 
The numbers to be sorted are also known as the keys. Although the problem is con- 
ceptually about sorting a sequence, the input comes in the form of an array with 
n elements. When we want to sort numbers, it’s often because they are the keys 
associated with other data, which we call satellite data. Together, a key and satel- 
lite data form a record. For example, consider a spreadsheet containing student 
records with many associated pieces of data such as age, grade-point average, and 
number of courses taken. Any one of these quantities could be a key, but when the 
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spreadsheet sorts, it moves the associated record (the satellite data) with the key. 
When describing a sorting algorithm, we focus on the keys, but it is important to 
remember that there usually is associated satellite data. 
In this book, we’ll typically describe algorithms as procedures written in a pseu- 

docode that is similar in many respects to C, C++, Java, Python, 1 or JavaScript. 
(Apologies if we’ve omitted your favorite programming language. We can’t list 
them all.) If you have been introduced to any of these languages, you should have 
little trouble understanding algorithms <coded= in pseudocode. What separates 
pseudocode from real code is that in pseudocode, we employ whatever expres- 
sive method is most clear and concise to specify a given algorithm. Sometimes 
the clearest method is English, so do not be surprised if you come across an En- 
glish phrase or sentence embedded within a section that looks more like real code. 
Another difference between pseudocode and real code is that pseudocode often ig- 
nores aspects of software engineering4such as data abstraction, modularity, and 
error handling4in order to convey the essence of the algorithm more concisely. 

We start with insertion sort, which is an efûcient algorithm for sorting a small 
number of elements. Insertion sort works the way you might sort a hand of playing 
cards. Start with an empty left hand and the cards in a pile on the table. Pick up 
the ûrst card in the pile and hold it with your left hand. Then, with your right hand, 
remove one card at a time from the pile, and insert it into the correct position in 
your left hand. As Figure 2.1 illustrates, you ûnd the correct position for a card 
by comparing it with each of the cards already in your left hand, starting at the 
right and moving left. As soon as you see a card in your left hand whose value is 
less than or equal to the card you’re holding in your right hand, insert the card that 
you’re holding in your right hand just to the right of this card in your left hand. If 
all the cards in your left hand have values greater than the card in your right hand, 
then place this card as the leftmost card in your left hand. At all times, the cards 
held in your left hand are sorted, and these cards were originally the top cards of 
the pile on the table. 

The pseudocode for insertion sort is given as the procedure I NSERTION-SORT 
on the facing page. It takes two parameters: an array A containing the values to 
be sorted and the number n of values of sort. The values occupy positions AŒ1� 
through AŒn� of the array, which we denote by AŒ1 W n�. When the I NSERTION- 
SORT procedure is ûnished, array AŒ1 W n� contains the original values, but in sorted 
order. 

1 If you’re familiar with only Python, you can think of arrays as similar to Python lists. 
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Figure 2.1 Sorting a hand of cards using insertion sort. 

I NSERTION-SORT .A; n/ 
1 for i D 2 to n 
2 key D AŒi� 
3 // Insert AŒi� into the sorted subarray AŒ1 W i  1�. 
4 j D i  1 
5 while j > 0 and AŒj � > key 
6 AŒj C 1� D AŒj � 
7 j D j  1 
8 AŒj C 1� D key 

Loop invariants and the correctness of insertion sort 
Figure 2.2 shows how this algorithm works for an array A that starts out with 
the sequence h5; 2; 4; 6; 1; 3i. The index i indicates the <current card= being 
inserted into the hand. At the beginning of each iteration of the for loop, which 
is indexed by i , the subarray (a contiguous portion of the array) consisting of 
elements AŒ1 W i  1� (that is, AŒ1� through AŒi  1�) constitutes the currently sorted 
hand, and the remaining subarray AŒi C 1 W n� (elements AŒi C 1� through AŒn�) 
corresponds to the pile of cards still on the table. In fact, elements AŒ1 W i  1� are 
the elements originally in positions 1 through i  1, but now in sorted order. We 
state these properties of AŒ1 W i  1� formally as a loop invariant: 
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1 2 3 4 5 6 
5 2 4 6 1 3 (a) 

1 2 3 4 5 6 
2 5 4 6 1 3 (b) 

1 2 3 4 5 6 
2 4 5 6 1 3 (c) 

1 2 3 4 5 6 
2 4 5 6 1 3 (d) 

1 2 3 4 5 6 
2 4 5 6 1 3 (e) 

1 2 3 4 5 6 
2 4 5 6 1 3 (f) 

Figure 2.2 The operation of I NSERTION-SORT.A; n/, where A initially contains the sequence 
h5; 2; 4; 6; 1; 3i and n D 6. Array indices appear above the rectangles, and values stored in the 
array positions appear within the rectangles. (a)–(e) The iterations of the for loop of lines 138. In 
each iteration, the blue rectangle holds the key taken from AŒi�, which is compared with the values 
in tan rectangles to its left in the test of line 5. Orange arrows show array values moved one position 
to the right in line 6, and blue arrows indicate where the key moves to in line 8. (f) The ûnal sorted 
array. 

At the start of each iteration of the for loop of lines 138, the subarray 
AŒ1 W i  1� consists of the elements originally in AŒ1 W i  1�, but in sorted 
order. 

Loop invariants help us understand why an algorithm is correct. When you’re 
using a loop invariant, you need to show three things: 
Initialization: It is true prior to the ûrst iteration of the loop. 
Maintenance: If it is true before an iteration of the loop, it remains true before 

the next iteration. 
Termination: The loop terminates, and when it terminates, the invariant4usually 

along with the reason that the loop terminated4gives us a useful property that 
helps show that the algorithm is correct. 

When the ûrst two properties hold, the loop invariant is true prior to every iteration 
of the loop. (Of course, you are free to use established facts other than the loop 
invariant itself to prove that the loop invariant remains true before each iteration.) 
A loop-invariant proof is a form of mathematical induction, where to prove that a 
property holds, you prove a base case and an inductive step. Here, showing that the 
invariant holds before the ûrst iteration corresponds to the base case, and showing 
that the invariant holds from iteration to iteration corresponds to the inductive step. 

The third property is perhaps the most important one, since you are using the 
loop invariant to show correctness. Typically, you use the loop invariant along with 
the condition that caused the loop to terminate. Mathematical induction typically 
applies the inductive step inûnitely, but in a loop invariant the <induction= stops 
when the loop terminates. 
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Let’s see how these properties hold for insertion sort. 
Initialization: We start by showing that the loop invariant holds before the ûrst 

loop iteration, when i D 2. 2 The subarray AŒ1 W i  1� consists of just the 
single element AŒ1�, which is in fact the original element in AŒ1�. Moreover, 
this subarray is sorted (after all, how could a subarray with just one value not 
be sorted?), which shows that the loop invariant holds prior to the ûrst iteration 
of the loop. 

Maintenance: Next, we tackle the second property: showing that each iteration 
maintains the loop invariant. Informally, the body of the for loop works by 
moving the values in AŒi  1�, AŒi  2�, AŒi  3�, and so on by one position 
to the right until it ûnds the proper position for AŒi� (lines 437), at which point 
it inserts the value of AŒi� (line 8). The subarray AŒ1 W i � then consists of the 
elements originally in AŒ1 W i �, but in sorted order. Incrementing i (increasing 
its value by 1) for the next iteration of the for loop then preserves the loop 
invariant. 
A more formal treatment of the second property would require us to state and 
show a loop invariant for the while loop of lines 537. Let’s not get bogged 
down in such formalism just yet. Instead, we’ll rely on our informal analysis to 
show that the second property holds for the outer loop. 

Termination: Finally, we examine loop termination. The loop variable i starts 
at 2 and increases by 1 in each iteration. Once i ’s value exceeds n in line 1, the 
loop terminates. That is, the loop terminates once i equals n C 1. Substituting 
n C 1 for i in the wording of the loop invariant yields that the subarray AŒ1 W n� 
consists of the elements originally in AŒ1 W n�, but in sorted order. Hence, the 
algorithm is correct. 

This method of loop invariants is used to show correctness in various places 
throughout this book. 

Pseudocode conventions 
We use the following conventions in our pseudocode. 
 Indentation indicates block structure. For example, the body of the for loop that 

begins on line 1 consists of lines 238, and the body of the while loop that 

2 When the loop is a for loop, the loop-invariant check just prior to the ûrst iteration occurs immedi- 
ately after the initial assignment to the loop-counter variable and just before the ûrst test in the loop 
header. In the case of I NSERTION-SORT, this time is after assigning 2 to the variable i but before the 
ûrst test of whether i හ n. 
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begins on line 5 contains lines 637 but not line 8. Our indentation style applies 
to if-else statements 3 as well. Using indentation instead of textual indicators 
of block structure, such as begin and end statements or curly braces, reduces 
clutter while preserving, or even enhancing, clarity. 4 

 The looping constructs while, for, and repeat-until and the if-else conditional 
construct have interpretations similar to those in C, C++, Java, Python, and 
JavaScript. 5 In this book, the loop counter retains its value after the loop is 
exited, unlike some situations that arise in C++ and Java. Thus, immediately 
after a for loop, the loop counter’s value is the value that ûrst exceeded the for 
loop bound. 6 We used this property in our correctness argument for insertion 
sort. The for loop header in line 1 is for i D 2 to n, and so when this loop 
terminates, i equals nC1. We use the keyword to when a for loop increments its 
loop counter in each iteration, and we use the keyword downto when a for loop 
decrements its loop counter (reduces its value by 1 in each iteration). When 
the loop counter changes by an amount greater than 1, the amount of change 
follows the optional keyword by. 

 The symbol <//= indicates that the remainder of the line is a comment. 
 Variables (such as i , j , and key) are local to the given procedure. We won’t use 

global variables without explicit indication. 
 We access array elements by specifying the array name followed by the index 

in square brackets. For example, AŒi� indicates the i th element of the array A. 
Although many programming languages enforce 0-origin indexing for arrays (0 
is the smallest valid index), we choose whichever indexing scheme is clearest 
for human readers to understand. Because people usually start counting at 1, 
not 0, most4but not all4of the arrays in this book use 1-origin indexing. To be 

3 In an if-else statement, we indent else at the same level as its matching if. The ûrst executable line 
of an else clause appears on the same line as the keyword else. For multiway tests, we use elseif for 
tests after the ûrst one. When it is the ûrst line in an else clause, an if statement appears on the line 
following else so that you do not misconstrue it as elseif. 
4 Each pseudocode procedure in this book appears on one page so that you do not need to discern 
levels of indentation in pseudocode that is split across pages. 
5 Most block-structured languages have equivalent constructs, though the exact syntax may differ. 
Python lacks repeat-until loops, and its for loops operate differently from the for loops in this book. 
Think of the pseudocode line <for i D 1 to n= as equivalent to <for i in range(1, n+1)= in Python. 
6 In Python, the loop counter retains its value after the loop is exited, but the value it retains is the 
value it had during the ûnal iteration of the for loop, rather than the value that exceeded the loop 
bound. That is because a Python for loop iterates through a list, which may contain nonnumeric 
values. 
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clear about whether a particular algorithm assumes 0-origin or 1-origin index- 
ing, we’ll specify the bounds of the arrays explicitly. If you are implementing 
an algorithm that we specify using 1-origin indexing, but you’re writing in a 
programming language that enforces 0-origin indexing (such as C, C++, Java, 
Python, or JavaScript), then give yourself credit for being able to adjust. You 
can either always subtract 1 from each index or allocate each array with one 
extra position and just ignore position 0. 
The notation <W= denotes a subarray. Thus, AŒi W j � indicates the subarray of A 
consisting of the elements AŒi�; AŒi C 1�; : : : ; AŒj �. 7 We also use this notation 
to indicate the bounds of an array, as we did earlier when discussing the array 
AŒ1 W n�. 

 We typically organize compound data into objects, which are composed of 
attributes. We access a particular attribute using the syntax found in many 
object-oriented programming languages: the object name, followed by a dot, 
followed by the attribute name. For example, if an object x has attribute f , we 
denote this attribute by x: f . 
We treat a variable representing an array or object as a pointer (known as a 
reference in some programming languages) to the data representing the array 
or object. For all attributes f of an object x , setting y D x causes y: f to 
equal x: f . Moreover, if we now set x: f D 3, then afterward not only does x: f 
equal 3, but y: f equals 3 as well. In other words, x and y point to the same 
object after the assignment y D x . This way of treating arrays and objects is 
consistent with most contemporary programming languages. 
Our attribute notation can <cascade.= For example, suppose that the attribute f 
is itself a pointer to some type of object that has an attribute g. Then the notation 
x: f : g is implicitly parenthesized as .x: f /: g. In other words, if we had assigned 
y D x: f , then x: f : g is the same as y: g. 
Sometimes a pointer refers to no object at all. In this case, we give it the special 
value NIL. 

 We pass parameters to a procedure by value: the called procedure receives its 
own copy of the parameters, and if it assigns a value to a parameter, the change 
is not seen by the calling procedure. When objects are passed, the pointer to 
the data representing the object is copied, but the object’s attributes are not. For 
example, if x is a parameter of a called procedure, the assignment x D y within 

7 If you’re used to programming in Python, bear in mind that in this book, the subarray AŒi W j � 
includes the element AŒj �. In Python, the last element of AŒi W j � is AŒj  1�. Python allows negative 
indices, which count from the back end of the list. This book does not use negative array indices. 
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the called procedure is not visible to the calling procedure. The assignment 
x: f D 3, however, is visible if the calling procedure has a pointer to the same 
object as x . Similarly, arrays are passed by pointer, so that a pointer to the array 
is passed, rather than the entire array, and changes to individual array elements 
are visible to the calling procedure. Again, most contemporary programming 
languages work this way. 

 A return statement immediately transfers control back to the point of call in 
the calling procedure. Most return statements also take a value to pass back to 
the caller. Our pseudocode differs from many programming languages in that 
we allow multiple values to be returned in a single return statement without 
having to create objects to package them together. 8 

 The boolean operators <and= and <or= are short circuiting. That is, evaluate 
the expression <x and y = by ûrst evaluating x . If x evaluates to FALSE, then 
the entire expression cannot evaluate to TRUE, and therefore y is not evaluated. 
If, on the other hand, x evaluates to TRUE, y must be evaluated to determine 
the value of the entire expression. Similarly, in the expression <x or y = the ex- 
pression y is evaluated only if x evaluates to FALSE. Short-circuiting operators 
allow us to write boolean expressions such as <x ¤ NIL and x: f D y = without 
worrying about what happens upon evaluating x: f when x is NIL. 

 The keyword error indicates that an error occurred because conditions were 
wrong for the procedure to have been called, and the procedure immediately 
terminates. The calling procedure is responsible for handling the error, and so 
we do not specify what action to take. 

Exercises 
2.1-1 
Using Figure 2.2 as a model, illustrate the operation of I NSERTION-SORT on an 
array initially containing the sequence h31; 41; 59; 26; 41; 58i. 
2.1-2 
Consider the procedure SUM-ARRAY on the facing page. It computes the sum of 
the n numbers in array AŒ1 W n�. State a loop invariant for this procedure, and use 
its initialization, maintenance, and termination properties to show that the SUM- 
ARRAY procedure returns the sum of the numbers in AŒ1 W n�. 

8 Python’s tuple notation allows return statements to return multiple values without creating objects 
from a programmer-deûned class. 
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SUM-ARRAY.A; n/ 
1 sum D 0 
2 for i D 1 to n 
3 sum D sum C AŒi� 
4 return sum 

2.1-3 
Rewrite the I NSERTION-SORT procedure to sort into monotonically decreasing in- 
stead of monotonically increasing order. 
2.1-4 
Consider the searching problem: 
Input: A sequence of n numbers ha 1 ; a 2 ; : : : ; a n i stored in array AŒ1 W n� and a 

value x . 
Output: An index i such that x equals AŒi� or the special value NIL if x does not 

appear in A. 
Write pseudocode for linear search, which scans through the array from begin- 

ning to end, looking for x . Using a loop invariant, prove that your algorithm is 
correct. Make sure that your loop invariant fulûlls the three necessary properties. 
2.1-5 
Consider the problem of adding two n-bit binary integers a and b, stored in two 
n-element arrays AŒ0 W n  1� and BŒ0 W n  1�, where each element is either 0 
or 1, a D 

P n1 
i D0 AŒi�  2 i , and b D 

P n1 
i D0 BŒi�  2 i . The sum c D a C b of the 

two integers should be stored in binary form in an .n C 1/-element array CŒ0 W n�, 
where c D 

P n 
i D0 CŒi�  2 i . Write a procedure ADD-BINARY-I NTEGERS that takes 

as input arrays A and B , along with the length n, and returns array C holding the 
sum. 

2.2 Analyzing algorithms 

Analyzing an algorithm has come to mean predicting the resources that the algo- 
rithm requires. You might consider resources such as memory, communication 
bandwidth, or energy consumption. Most often, however, you’ll want to measure 
computational time. If you analyze several candidate algorithms for a problem, 
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you can identify the most efûcient one. There might be more than just one viable 
candidate, but you can often rule out several inferior algorithms in the process. 

Before you can analyze an algorithm, you need a model of the technology that 
it runs on, including the resources of that technology and a way to express their 
costs. Most of this book assumes a generic one-processor, random-access ma- 
chine (RAM) model of computation as the implementation technology, with the 
understanding that algorithms are implemented as computer programs. In the RAM 
model, instructions execute one after another, with no concurrent operations. The 
RAM model assumes that each instruction takes the same amount of time as any 
other instruction and that each data access4using the value of a variable or storing 
into a variable4takes the same amount of time as any other data access. In other 
words, in the RAM model each instruction or data access takes a constant amount 
of time4even indexing into an array. 9 

Strictly speaking, we should precisely deûne the instructions of the RAM model 
and their costs. To do so, however, would be tedious and yield little insight into al- 
gorithm design and analysis. Yet we must be careful not to abuse the RAM model. 
For example, what if a RAM had an instruction that sorts? Then you could sort 
in just one step. Such a RAM would be unrealistic, since such instructions do 
not appear in real computers. Our guide, therefore, is how real computers are de- 
signed. The RAM model contains instructions commonly found in real computers: 
arithmetic (such as add, subtract, multiply, divide, remainder, üoor, ceiling), data 
movement (load, store, copy), and control (conditional and unconditional branch, 
subroutine call and return). 
The data types in the RAM model are integer, üoating point (for storing real- 

number approximations), and character. Real computers do not usually have a 
separate data type for the boolean values TRUE and FALSE. Instead, they often test 
whether an integer value is 0 (FALSE) or nonzero (TRUE), as in C. Although we 
typically do not concern ourselves with precision for üoating-point values in this 
book (many numbers cannot be represented exactly in üoating point), precision is 
crucial for most applications. We also assume that each word of data has a limit on 
the number of bits. For example, when working with inputs of size n, we typically 

9 We assume that each element of a given array occupies the same number of bytes and that the 
elements of a given array are stored in contiguous memory locations. For example, if array AŒ1 W n� 
starts at memory address 1000 and each element occupies four bytes, then element AŒi� is at address 
1000 C 4.i  1/. In general, computing the address in memory of a particular array element requires 
at most one subtraction (no subtraction for a 0-origin array), one multiplication (often implemented 
as a shift operation if the element size is an exact power of 2), and one addition. Furthermore, for 
code that iterates through the elements of an array in order, an optimizing compiler can generate the 
address of each element using just one addition, by adding the element size to the address of the 
preceding element. 
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assume that integers are represented by c log 2 n bits for some constant c  1. We 
require c  1 so that each word can hold the value of n, enabling us to index 
the individual input elements, and we restrict c to be a constant so that the word 
size does not grow arbitrarily. (If the word size could grow arbitrarily, we could 
store huge amounts of data in one word and operate on it all in constant time4an 
unrealistic scenario.) 

Real computers contain instructions not listed above, and such instructions rep- 
resent a gray area in the RAM model. For example, is exponentiation a constant- 
time instruction? In the general case, no: to compute x n when x and n are general 
integers typically takes time logarithmic in n (see equation (31.34) on page 934), 
and you must worry about whether the result ûts into a computer word. If n is an 
exact power of 2, however, exponentiation can usually be viewed as a constant-time 
operation. Many computers have a <shift left= instruction, which in constant time 
shifts the bits of an integer by n positions to the left. In most computers, shifting 
the bits of an integer by 1 position to the left is equivalent to multiplying by 2, so 
that shifting the bits by n positions to the left is equivalent to multiplying by 2 n . 
Therefore, such computers can compute 2 n in 1 constant-time instruction by shift- 
ing the integer 1 by n positions to the left, as long as n is no more than the number 
of bits in a computer word. We’ll try to avoid such gray areas in the RAM model 
and treat computing 2 n and multiplying by 2 n as constant-time operations when 
the result is small enough to ût in a computer word. 

The RAM model does not account for the memory hierarchy that is common 
in contemporary computers. It models neither caches nor virtual memory. Sev- 
eral other computational models attempt to account for memory-hierarchy effects, 
which are sometimes signiûcant in real programs on real machines. Section 11.5 
and a handful of problems in this book examine memory-hierarchy effects, but for 
the most part, the analyses in this book do not consider them. Models that include 
the memory hierarchy are quite a bit more complex than the RAM model, and so 
they can be difûcult to work with. Moreover, RAM-model analyses are usually 
excellent predictors of performance on actual machines. 

Although it is often straightforward to analyze an algorithm in the RAM model, 
sometimes it can be quite a challenge. You might need to employ mathematical 
tools such as combinatorics, probability theory, algebraic dexterity, and the ability 
to identify the most signiûcant terms in a formula. Because an algorithm might 
behave differently for each possible input, we need a means for summarizing that 
behavior in simple, easily understood formulas. 

Analysis of insertion sort 
How long does the I NSERTION-SORT procedure take? One way to tell would be for 
you to run it on your computer and time how long it takes to run. Of course, you’d 
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ûrst have to implement it in a real programming language, since you cannot run our 
pseudocode directly. What would such a timing test tell you? You would ûnd out 
how long insertion sort takes to run on your particular computer, on that particular 
input, under the particular implementation that you created, with the particular 
compiler or interpreter that you ran, with the particular libraries that you linked 
in, and with the particular background tasks that were running on your computer 
concurrently with your timing test (such as checking for incoming information over 
a network). If you run insertion sort again on your computer with the same input, 
you might even get a different timing result. From running just one implementation 
of insertion sort on just one computer and on just one input, what would you be able 
to determine about insertion sort’s running time if you were to give it a different 
input, if you were to run it on a different computer, or if you were to implement it 
in a different programming language? Not much. We need a way to predict, given 
a new input, how long insertion sort will take. 

Instead of timing a run, or even several runs, of insertion sort, we can determine 
how long it takes by analyzing the algorithm itself. We’ll examine how many times 
it executes each line of pseudocode and how long each line of pseudocode takes 
to run. We’ll ûrst come up with a precise but complicated formula for the running 
time. Then, we’ll distill the important part of the formula using a convenient no- 
tation that can help us compare the running times of different algorithms for the 
same problem. 
How do we analyze insertion sort? First, let’s acknowledge that the running time 

depends on the input. You shouldn’t be terribly surprised that sorting a thousand 
numbers takes longer than sorting three numbers. Moreover, insertion sort can take 
different amounts of time to sort two input arrays of the same size, depending on 
how nearly sorted they already are. Even though the running time can depend on 
many features of the input, we’ll focus on the one that has been shown to have 
the greatest effect, namely the size of the input, and describe the running time of a 
program as a function of the size of its input. To do so, we need to deûne the terms 
<running time= and <input size= more carefully. We also need to be clear about 
whether we are discussing the running time for an input that elicits the worst-case 
behavior, the best-case behavior, or some other case. 

The best notion for input size depends on the problem being studied. For many 
problems, such as sorting or computing discrete Fourier transforms, the most nat- 
ural measure is the number of items in the input4for example, the number n of 
items being sorted. For many other problems, such as multiplying two integers, 
the best measure of input size is the total number of bits needed to represent the 
input in ordinary binary notation. Sometimes it is more appropriate to describe the 
size of the input with more than just one number. For example, if the input to an 
algorithm is a graph, we usually characterize the input size by both the number 
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of vertices and the number of edges in the graph. We’ll indicate which input size 
measure is being used with each problem we study. 

The running time of an algorithm on a particular input is the number of in- 
structions and data accesses executed. How we account for these costs should be 
independent of any particular computer, but within the framework of the RAM 
model. For the moment, let us adopt the following view. A constant amount of 
time is required to execute each line of our pseudocode. One line might take more 
or less time than another line, but we’ll assume that each execution of the kth line 
takes c k time, where c k is a constant. This viewpoint is in keeping with the RAM 
model, and it also reüects how the pseudocode would be implemented on most 
actual computers. 10 

Let’s analyze the I NSERTION-SORT procedure. As promised, we’ll start by de- 
vising a precise formula that uses the input size and all the statement costs c k . 
This formula turns out to be messy, however. We’ll then switch to a simpler no- 
tation that is more concise and easier to use. This simpler notation makes clear 
how to compare the running times of algorithms, especially as the size of the input 
increases. 

To analyze the I NSERTION-SORT procedure, let’s view it on the following page 
with the time cost of each statement and the number of times each statement is 
executed. For each i D 2; 3; : : : ; n, let t i denote the number of times the while 
loop test in line 5 is executed for that value of i . When a for or while loop exits 
in the usual way4because the test in the loop header comes up FALSE4the test is 
executed one time more than the loop body. Because comments are not executable 
statements, assume that they take no time. 

The running time of the algorithm is the sum of running times for each state- 
ment executed. A statement that takes c k steps to execute and executes m times 
contributes c k m to the total running time. 11 We usually denote the running time of 
an algorithm on an input of size n by T .n/. To compute T .n/, the running time 
of I NSERTION-SORT on an input of n values, we sum the products of the cost and 
times columns, obtaining 

10 There are some subtleties here. Computational steps that we specify in English are often variants 
of a procedure that requires more than just a constant amount of time. For example, in the R ADIX- 
SORT procedure on page 213, one line reads <use a stable sort to sor t array A on digit i ,= which, 
as we shall see, takes more than a constant amount of time. Also, although a statement that calls a 
subroutine takes only constant time, the subroutine itself, once invoked, may take more. That is, we 
separate the process of calling the subroutine4passing parameters to it, etc.4from the process of 
executing the subroutine. 
11 This characteristic does not necessarily hold for a resource such as memory. A statement that 
references m words of memory and is executed n times does not necessarily reference mn distinct 
words of memory. 
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I NSERTION-SORT .A; n/ cost times 
1 for i D 2 to n c 1 n 
2 key D AŒi� c 2 n  1 
3 // Insert AŒi� into the sorted subarray AŒ1 W i  1�. 0 n  1 
4 j D i  1 c 4 n  1 
5 while j > 0 and AŒj � > key c 5 

P n 
i D2 t i 

6 AŒj C 1� D AŒj � c 6 
P n 

i D2 .t i  1/ 
7 j D j  1 c 7 

P n 
i D2 .t i  1/ 

8 AŒj C 1� D key c 8 n  1 

T .n/ D c 1 n C c 2 .n  1/ C c 4 .n  1/ C c 5 

n X 

i D2 

t i C c 6 

n X 

i D2 

.t i  1/ 

C c 7 

n X 

i D2 

.t i  1/ C c 8 .n  1/ : 

Even for inputs of a given size, an algorithm’s running time may depend on 
which input of that size is given. For example, in I NSERTION-SORT, the best case 
occurs when the array is already sorted. In this case, each time that line 5 executes, 
the value of key4the value originally in AŒi�4is already greater than or equal to 
all values in AŒ1 W i  1�, so that the while loop of lines 537 always exits upon the 
ûrst test in line 5. Therefore, we have that t i D 1 for i D 2; 3; : : : ; n, and the 
best-case running time is given by 

T .n/ D c 1 n C c 2 .n  1/ C c 4 .n  1/ C c 5 .n  1/ C c 8 .n  1/ 
D .c 1 C c 2 C c 4 C c 5 C c 8 /n  .c 2 C c 4 C c 5 C c 8 / : (2.1) 

We can express this running time as an C b for constants a and b that depend on 
the statement costs c k (where a D c 1 Cc 2 Cc 4 Cc 5 Cc 8 and b D c 2 Cc 4 Cc 5 Cc 8 ). 
The running time is thus a linear function of n. 

The worst case arises when the array is in reverse sorted order4that is, it starts 
out in decreasing order. The procedure must compare each element AŒi� with each 
element in the entire sorted subarray AŒ1 W i  1�, and so t i D i for i D 2; 3; : : : ; n. 
(The procedure ûnds that AŒj � > key every time in line 5, and the while loop exits 
only when j reaches 0.) Noting that 
n X 

i D2 

i D 

 
n X 

i D1 

i 

! 

 1 

D 
n.n C 1/ 

2 
 1 (by equation (A.2) on page 1141) 
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and 
n X 

i D2 

.i  1/ D 
n1 X 

i D1 

i 

D 
n.n  1/ 

2 
(again, by equation (A.2)) , 

we ûnd that in the worst case, the running time of I NSERTION-SORT is 

T .n/ D c 1 n C c 2 .n  1/ C c 4 .n  1/ C c 5 

Î 
n.n C 1/ 

2 
 1 

Ï 

C c 6 

Î 
n.n  1/ 

2 

Ï 
C c 7 

Î 
n.n  1/ 

2 

Ï 
C c 8 .n  1/ 

D 
 c 5 

2 
C 
c 6 

2 
C 
c 7 

2 

Í 
n 2 C 

 
c 1 C c 2 C c 4 C 

c 5 

2 
 
c 6 

2 
 
c 7 

2 
C c 8 

Í 
n 

 .c 2 C c 4 C c 5 C c 8 / : (2.2) 
We can express this worst-case running time as an 2 C bn C c for constants a, b, 
and c that again depend on the statement costs c k (now, a D c 5 =2 C c 6 =2 C c 7 =2, 
b D c 1 C c 2 C c 4 C c 5 =2  c 6 =2  c 7 =2 C c 8 , and c D .c 2 C c 4 C c 5 C c 8 /). The 
running time is thus a quadratic function of n. 

Typically, as in insertion sort, the running time of an algorithm is ûxed for a 
given input, although we’ll also see some interesting <randomized= algorithms 
whose behavior can vary even for a ûxed input. 

Worst-case and average-case analysis 
Our analysis of insertion sort looked at both the best case, in which the input array 
was already sorted, and the worst case, in which the input array was reverse sorted. 
For the remainder of this book, though, we’ll usually (but not always) concentrate 
on ûnding only the worst-case running time, that is, the longest running time for 
any input of size n. Why? Here are three reasons: 
 The worst-case running time of an algorithm gives an upper bound on the run- 

ning time for any input. If you know it, then you have a guarantee that the 
algorithm never takes any longer. You need not make some educated guess 
about the running time and hope that it never gets much worse. This feature is 
especially important for real-time computing, in which operations must com- 
plete by a deadline. 

 For some algorithms, the worst case occurs fairly often. For example, in search- 
ing a database for a particular piece of information, the searching algorithm’s 
worst case often occurs when the information is not present in the database. In 
some applications, searches for absent information may be frequent. 
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 The <average case= is often roughly as bad as the worst case. Suppose that 
you run insertion sort on an array of n randomly chosen numbers. How long 
does it take to determine where in subarray AŒ1 W i  1� to insert element AŒi�? 
On average, half the elements in AŒ1 W i  1� are less than AŒi�, and half the 
elements are greater. On average, therefore, AŒi� is compared with just half 
of the subarray AŒ1 W i  1�, and so t i is about i=2. The resulting average-case 
running time turns out to be a quadratic function of the input size, just like the 
worst-case running time. 
In some particular cases, we’ll be interested in the average-case running time of 

an algorithm. We’ll see the technique of probabilistic analysis applied to various 
algorithms throughout this book. The scope of average-case analysis is limited, 
because it may not be apparent what constitutes an <average= input for a particular 
problem. Often, we’ll assume that all inputs of a given size are equally likely. In 
practice, this assumption may be violated, but we can sometimes use a randomized 
algorithm, which makes random choices, to allow a probabilistic analysis and yield 
an expected running time. We explore randomized algorithms more in Chapter 5 
and in several other subsequent chapters. 

Order of growth 

In order to ease our analysis of the I NSERTION-SORT procedure, we used some 
simplifying abstractions. First, we ignored the actual cost of each statement, using 
the constants c k to represent these costs. Still, the best-case and worst-case run- 
ning times in equations (2.1) and (2.2) are rather unwieldy. The constants in these 
expressions give us more detail than we really need. That’s why we also expressed 
the best-case running time as an C b for constants a and b that depend on the state- 
ment costs c k and why we expressed the worst-case running time as an 2 C bn C c 
for constants a, b, and c that depend on the statement costs. We thus ignored not 
only the actual statement costs, but also the abstract costs c k . 
Let’s now make one more simplifying abstraction: it is the rate of growth, or 

order of growth, of the running time that really interests us. We therefore consider 
only the leading term of a formula (e.g., an 2 ), since the lower-order terms are rela- 
tively insigniûcant for large values of n. We also ignore the leading term’s constant 
coefûcient, since constant factors are less signiûcant than the rate of growth in de- 
termining computational efûciency for large inputs. For insertion sort’s worst-case 
running time, when we ignore the lower-order terms and the leading term’s con- 
stant coefûcient, only the factor of n 2 from the leading term remains. That factor, 
n 2 , is by far the most important part of the running time. For example, suppose that 
an algorithm implemented on a particular machine takes n 2 =100 C 100n C 17 mi- 
croseconds on an input of size n. Although the coefûcients of 1=100 for the n 2 term 
and 100 for the n term differ by four orders of magnitude, the n 2 =100 term domi- 
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nates the 100n term once n exceeds 10,000. Although 10,000 might seem large, it 
is smaller than the population of an average town. Many real-world problems have 
much larger input sizes. 

To highlight the order of growth of the running time, we have a special notation 
that uses the Greek letter ‚ (theta). We write that insertion sort has a worst-case 
running time of ‚.n 2 / (pronounced <theta of n-squared= or just <theta n-squared=). 
We also write that insertion sort has a best-case running time of ‚.n/ (<theta of n= 
or <theta n=). For now, think of ‚-notation as saying <roughly proportional when 
n is large,= so that ‚.n 2 / means <roughly proportional to n 2 when n is large= and 
‚.n/ means <roughly proportional to n when n is large= We’ll use ‚-notation 
informally in this chapter and deûne it precisely in Chapter 3. 
We usually consider one algorithm to be more efûcient than another if its worst- 

case running time has a lower order of growth. Due to constant factors and lower- 
order terms, an algorithm whose running time has a higher order of growth might 
take less time for small inputs than an algorithm whose running time has a lower or- 
der of growth. But on large enough inputs, an algorithm whose worst-case running 
time is ‚.n 2 /, for example, takes less time in the worst case than an algorithm 
whose worst-case running time is ‚.n 3 /. Regardless of the constants hidden by 
the ‚-notation, there is always some number, say n 0 , such that for all input sizes 
n  n 0 , the ‚.n 2 / algorithm beats the ‚.n 3 / algorithm in the worst case. 

Exercises 
2.2-1 
Express the function n 3 =1000 C 100n 2  100n C 3 in terms of ‚-notation. 
2.2-2 
Consider sorting n numbers stored in array AŒ1 W n� by ûrst ûnding the smallest 
element of AŒ1 W n� and exchanging it with the element in AŒ1�. Then ûnd the 
smallest element of AŒ2 W n�, and exchange it with AŒ2�. Then ûnd the smallest 
element of AŒ3 W n�, and exchange it with AŒ3�. Continue in this manner for the 
ûrst n  1 elements of A. Write pseudocode for this algorithm, which is known 
as selection sort. What loop invariant does this algorithm maintain? Why does it 
need to run for only the ûrst n  1 elements, rather than for all n elements? Give the 
worst-case running time of selection sort in ‚-notation. Is the best-case running 
time any better? 
2.2-3 
Consider linear search again (see Exercise 2.1-4). How many elements of the input 
array need to be checked on the average, assuming that the element being searched 
for is equally likely to be any element in the array? How about in the worst case? 
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Using ‚-notation, give the average-case and worst-case running times of linear 
search. Justify your answers. 
2.2-4 
How can you modify any sorting algorithm to have a good best-case running time? 

2.3 Designing algorithms 

You can choose from a wide range of algorithm design techniques. Insertion sort 
uses the incremental method: for each element AŒi�, insert it into its proper place 
in the subarray AŒ1 W i �, having already sorted the subarray AŒ1 W i  1�. 

This section examines another design method, known as <divide-and-conquer,= 
which we explore in more detail in Chapter 4. We’ll use divide-and-conquer to 
design a sorting algorithm whose worst-case running time is much less than that 
of insertion sort. One advantage of using an algorithm that follows the divide-and- 
conquer method is that analyzing its running time is often straightforward, using 
techniques that we’ll explore in Chapter 4. 

2.3.1 The divide-and-conquer method 

Many useful algorithms are recursive in structure: to solve a given problem, they 
recurse (call themselves) one or more times to handle closely related subprob- 
lems. These algorithms typically follow the divide-and-conquer method: they 
break the problem into several subproblems that are similar to the original prob- 
lem but smaller in size, solve the subproblems recursively, and then combine these 
solutions to create a solution to the original problem. 
In the divide-and-conquer method, if the problem is small enough4the base 

case4you just solve it directly without recursing. Otherwise4the recursive case 
4you perform three characteristic steps: 
Divide the problem into one or more subproblems that are smaller instances of the 

same problem. 
Conquer the subproblems by solving them recursively. 
Combine the subproblem solutions to form a solution to the original problem. 

The merge sort algorithm closely follows the divide-and-conquer method. In 
each step, it sorts a subarray AŒp W r�, starting with the entire array AŒ1 W n� and 
recursing down to smaller and smaller subarrays. Here is how merge sort operates: 
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Divide the subarray AŒp W r� to be sorted into two adjacent subarrays, each of half 
the size. To do so, compute the midpoint q of AŒp W r� (taking the average of p 
and r ), and divide AŒp W r� into subarrays AŒp W q� and AŒq C 1 W r�. 

Conquer by sorting each of the two subarrays AŒp W q� and AŒq C 1 W r� recursively 
using merge sort. 

Combine by merging the two sorted subarrays AŒp W q� and AŒq C 1 W r� back into 
AŒp W r�, producing the sorted answer. 

The recursion <bottoms out=4it reaches the base case4when the subarray AŒp W r� 
to be sorted has just 1 element, that is, when p equals r . As we noted in the ini- 
tialization argument for I NSERTION-SORT’s loop invariant, a subarray comprising 
just a single element is always sorted. 

The key operation of the merge sort algorithm occurs in the <combine= step, 
which merges two adjacent, sorted subarrays. The merge operation is performed 
by the auxiliary procedure MERGE.A; p; q; r/ on the following page, where A is 
an array and p, q, and r are indices into the array such that p හ q < r . The 
procedure assumes that the adjacent subarrays AŒp W q� and AŒq C 1 W r� were al- 
ready recursively sorted. It merges the two sorted subarrays to form a single sorted 
subarray that replaces the current subarray AŒp W r�. 

To understand how the MERGE procedure works, let’s return to our card-playing 
motif. Suppose that you have two piles of cards face up on a table. Each pile is 
sorted, with the smallest-value cards on top. You wish to merge the two piles 
into a single sorted output pile, which is to be face down on the table. The basic 
step consists of choosing the smaller of the two cards on top of the face-up piles, 
removing it from its pile4which exposes a new top card4and placing this card 
face down onto the output pile. Repeat this step until one input pile is empty, at 
which time you can just take the remaining input pile and üip over the entire pile, 
placing it face down onto the output pile. 
Let’s think about how long it takes to merge two sorted piles of cards. Each basic 

step takes constant time, since you are comparing just the two top cards. If the two 
sorted piles that you start with each have n=2 cards, then the number of basic steps 
is at least n=2 (since in whichever pile was emptied, every card was found to be 
smaller than some card from the other pile) and at most n (actually, at most n  1, 
since after n  1 basic steps, one of the piles must be empty). With each basic step 
taking constant time and the total number of basic steps being between n=2 and n, 
we can say that merging takes time roughly proportional to n. That is, merging 
takes ‚.n/ time. 

In detail, the MERGE procedure works as follows. It copies the two subarrays 
AŒp W q� and AŒq C 1 W r� into temporary arrays L and R (<left= and <right=), and 
then it merges the values in L and R back into AŒp W r�. Lines 1 and 2 compute the 
lengths n L and n R of the subarrays AŒp W q� and AŒq C 1 W r�, respectively. Then 
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MERGE.A; p; q; r/ 
1 n L D q  p C 1 // length of AŒp W q� 
2 n R D r  q // length of AŒq C 1 W r� 
3 let LŒ0 W n L  1� and RŒ0 W n R  1� be new arrays 
4 for i D 0 to n L  1 // copy AŒp W q� into LŒ0 W n L  1� 
5 LŒi� D AŒp C i � 
6 for j D 0 to n R  1 // copy AŒq C 1 W r� into RŒ0 W n R  1� 
7 RŒj � D AŒq C j C 1� 
8 i D 0 // i indexes the smallest remaining element in L 
9 j D 0 // j indexes the smallest remaining element in R 
10 k D p // k indexes the location in A to ûll 
11 // As long as each of the arrays L and R contains an unmerged element, 

// copy the smallest unmerged element back into AŒp W r�. 
12 while i < n L and j < n R 
13 if LŒi� හ RŒj � 
14 AŒk� D LŒi� 
15 i D i C 1 
16 else AŒk� D RŒj � 
17 j D j C 1 
18 k D k C 1 
19 // Having gone through one of L and R entirely, copy the 

// remainder of the other to the end of AŒp W r�. 
20 while i < n L 
21 AŒk� D LŒi� 
22 i D i C 1 
23 k D k C 1 
24 while j < n R 
25 AŒk� D RŒj � 
26 j D j C 1 
27 k D k C 1 

line 3 creates arrays LŒ0 W n L  1� and RŒ0 W n R  1� with respective lengths n L 
and n R . 12 The for loop of lines 435 copies the subarray AŒp W q� into L, and the for 
loop of lines 637 copies the subarray AŒq C 1 W r� into R. 
Lines 8318, illustrated in Figure 2.3, perform the basic steps. The while loop 

of lines 12318 repeatedly identiûes the smallest value in L and R that has yet to 

12 This procedure is the rare case that uses both 1-origin indexing (for array A) and 0-origin indexing 
(for arrays L and R). Using 0-origin indexing for L and R makes for a simpler loop invariant in 
Exercise 2.3-3. 
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Figure 2.3 The operation of the while loop in lines 8318 in the call MERGE.A; 9; 12; 16/, when 
the subarray AŒ9 W 16� contains the values h2; 4; 6; 7; 1; 2; 3; 5i. After allocating and copying into 
the arrays L and R, the array L contains h2; 4; 6; 7i, and the array R contains h1; 2; 3; 5i. Tan 
positions in A contain their ûnal values, and tan positions in L and R contain values that have yet 
to be copied back into A. Taken together, the tan positions always comprise the values originally 
in AŒ9 W 16�. Blue positions in A contain values that will be copied over, and dark positions in L 
and R contain values that have already been copied back into A. (a)–(g) The arrays A, L, and R, and 
their respective indices k, i , and j prior to each iteration of the loop of lines 12318. At the poin t in 
part (g), all values in R have been copied back into A (indicated by j equaling the length of R), and 
so the while loop in lines 12318 terminates. (h) The arrays and indices at termination. The while 
loops of lines 20323 and 24327 copied back into A the remaining values in L and R, which are the 
largest values originally in AŒ9 W 16�. Here, lines 20323 copied LŒ2 W 3� into AŒ15 W 16�, and because 
all values in R had already been copied back into A, the while loop of lines 24327 iterated 0 times. 
At this point, the subarray in AŒ9 W 16� is sorted. 
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be copied back into AŒp W r� and copies it back in. As the comments indicate, the 
index k gives the position of A that is being ûlled in, and the indices i and j give the 
positions in L and R, respectively, of the smallest remaining values. Eventually, 
either all of L or all of R is copied back into AŒp W r�, and this loop terminates. 
If the loop terminates because all of R has been copied back, that is, because j 
equals n R , then i is still less than n L , so that some of L has yet to be copied back, 
and these values are the greatest in both L and R. In this case, the while loop 
of lines 20323 copies these remaining values of L into the last few positions of 
AŒp W r�. Because j equals n R , the while loop of lines 24327 iterates 0 times. If 
instead the while loop of lines 12318 terminates because i equals n L , then all of L 
has already been copied back into AŒp W r�, and the while loop of lines 24327 copies 
the remaining values of R back into the end of AŒp W r�. 

To see that the MERGE procedure runs in ‚.n/ time, where n D r  p C 1, 13 

observe that each of lines 133 and 8310 takes constant time, and the for loops 
of lines 437 take ‚.n L C n R / D ‚.n/ time. 14 To account for the three while 
loops of lines 12318, 20323, and 24327, observe that each iteration of these loops 
copies exactly one value from L or R back into A and that every value is copied 
back into A exactly once. Therefore, these three loops together make a total of n 
iterations. Since each iteration of each of the three loops takes constant time, the 
total time spent in these three loops is ‚.n/. 

We can now use the MERGE procedure as a subroutine in the merge sort al- 
gorithm. The procedure MERGE-SORT.A; p; r/ on the facing page sorts the ele- 
ments in the subarray AŒp W r�. If p equals r , the subarray has just 1 element and 
is therefore already sorted. Otherwise, we must have p < r , and MERGE-SORT 
runs the divide, conquer, and combine steps. The divide step simply computes an 
index q that partitions AŒp W r� into two adjacent subarrays: AŒp W q�, containing 
dn=2e elements, and AŒq C 1 W r�, containing bn=2c elements. 15 The initial call 
MERGE-SORT .A; 1; n/ sorts the entire array AŒ1 W n�. 
Figure 2.4 illustrates the operation of the procedure for n D 8, showing also the 

sequence of divide and merge steps. The algorithm recursively divides the array 
down to 1-element subarrays. The combine steps merge pairs of 1-element subar- 

13 If you’re wondering where the <C1= comes from, imagine that r D p C 1. Then the subar- 
ray AŒp W r� consists of two elements, and r  p C 1 D 2. 
14 Chapter 3 shows how to formally interpret equations containing ‚-notation. 
15 The expression dxe denotes the least integer greater than or equal to x, and bxc denotes the 
greatest integer less than or equal to x. These notations are deûned in Section 3.3. The easiest way 
to verify that setting q to b.p C r/=2c yields subarrays AŒp W q� and AŒq C 1 W r� of sizes dn=2e and 
bn=2c, respectively, is to examine the four cases that arise depending on whether each of p and r is 
odd or even. 
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MERGE-SORT.A; p; r/ 
1 if p  r // zero or one element? 
2 return 
3 q D b.p C r/=2c // midpoint of AŒp W r� 
4 MERGE-SORT .A; p; q/ // recursively sort AŒp W q� 
5 MERGE-SORT .A; q C 1; r/ // recursively sort AŒq C 1 W r� 
6 // Merge AŒp W q� and AŒq C 1 W r� into AŒp W r�. 
7 MERGE.A; p; q; r/ 

rays to form sorted subarrays of length 2, merges those to form sorted subarrays 
of length 4, and merges those to form the ûnal sorted subarray of length 8. If n 
is not an exact power of 2, then some divide steps create subarrays whose lengths 
differ by 1. (For example, when dividing a subarray of length 7, one subarray has 
length 4 and the other has length 3.) Regardless of the lengths of the two subarrays 
being merged, the time to merge a total of n items is ‚.n/. 

2.3.2 Analyzing divide-and-conquer algorithms 
When an algorithm contains a recursive call, you can often describe its running 
time by a recurrence equation or recurrence, which describes the overall running 
time on a problem of size n in terms of the running time of the same algorithm on 
smaller inputs. You can then use mathematical tools to solve the recurrence and 
provide bounds on the performance of the algorithm. 
A recurrence for the running time of a divide-and-conquer algorithm falls out 

from the three steps of the basic method. As we did for insertion sort, let T .n/ 
be the worst-case running time on a problem of size n. If the problem size is 
small enough, say n < n 0 for some constant n 0 > 0, the straightforward solution 
takes constant time, which we write as ‚.1/. 16 Suppose that the division of the 
problem yields a subproblems, each with size n=b, that is, 1=b the size of the 
original. For merge sort, both a and b are 2, but we’ll see other divide-and-conquer 
algorithms in which a ¤ b. It takes T .n=b/ time to solve one subproblem of 
size n=b, and so it takes aT .n=b/ time to solve all a of them. If it takes D.n/ time 
to divide the problem into subproblems and C.n/ time to combine the solutions to 
the subproblems into the solution to the original problem, we get the recurrence 

16 If you’re wondering where ‚.1/ comes from, think of it this way. When we say that n 2 =100 
is ‚.n 2 /, we are ignoring the coefûcient 1=100 of the factor n 2 . Likewise, when we say that a 
constant c is ‚.1/, we are ignoring the coefûcient c of the factor 1 (which you can also think of 
as n 0 ). 
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Figure 2.4 The operation of merge sort on the array A with length 8 that initially contains the 
sequence h12; 3; 7; 9; 14; 6; 11; 2i. The indices p, q, and r into each subarray appear above their 
values. Numbers in italics indicate the order in which the MERGE-SORT and MERGE procedures are 
called following the initial call of MERGE-SORT.A; 1; 8/. 

T .n/ D 

( 
‚.1/ if n < n 0 ; 
D.n/ C aT .n=b/ C C.n/ otherwise : 

Chapter 4 shows how to solve common recurrences of this form. 
Sometimes, the n=b size of the divide step isn’t an integer. For example, the 

MERGE-SORT procedure divides a problem of size n into subproblems of sizes 
dn=2e and bn=2c. Since the difference between dn=2e and bn=2c is at most 1, 
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which for large n is much smaller than the effect of dividing n by 2, we’ll squint a 
little and just call them both size n=2. As Chapter 4 will discuss, this simpliûcation 
of ignoring üoors and ceilings does not generally affect the order of growth of a 
solution to a divide-and-conquer recurrence. 
Another convention we’ll adopt is to omit a statement of the base cases of the 

recurrence, which we’ll also discuss in more detail in Chapter 4. The reason is 
that the base cases are pretty much always T .n/ D ‚.1/ if n < n 0 for some 
constant n 0 > 0. That’s because the running time of an algorithm on an input of 
constant size is constant. We save ourselves a lot of extra writing by adopting this 
convention. 

Analysis of merge sort 
Here’s how to set up the recurrence for T .n/, the worst-case running time of merge 
sort on n numbers. 
Divide: The divide step just computes the middle of the subarray, which takes 

constant time. Thus, D.n/ D ‚.1/. 
Conquer: Recursively solving two subproblems, each of size n=2, contributes 
2T .n=2/ to the running time (ignoring the üoors and ceilings, as we discussed). 

Combine: Since the MERGE procedure on an n-element subarray takes ‚.n/ 
time, we have C.n/ D ‚.n/. 

When we add the functions D.n/ and C.n/ for the merge sort analysis, we are 
adding a function that is ‚.n/ and a function that is ‚.1/. This sum is a linear 
function of n. That is, it is roughly proportional to n when n is large, and so 
merge sort’s dividing and combining times together are ‚.n/. Adding ‚.n/ to 
the 2T .n=2/ term from the conquer step gives the recurrence for the worst-case 
running time T .n/ of merge sort: 
T .n/ D 2T .n=2/ C ‚.n/ : (2.3) 
Chapter 4 presents the <master theorem,= which shows that T .n/ D ‚.n lg n/. 17 

Compared with insertion sort, whose worst-case running time is ‚.n 2 /, merge sort 
trades away a factor of n for a factor of lg n. Because the logarithm function grows 
more slowly than any linear function, that’s a good trade. For large enough inputs, 
merge sort, with its ‚.n lg n/ worst-case running time, outperforms insertion sort, 
whose worst-case running time is ‚.n 2 /. 

17 The notation lg n stands for log 2 n, although the base of the logarithm doesn’t matter here, but as 
computer scientists, we like logarithms base 2. Section 3.3 discusses other standard notation. 



42 Chapter 2 Getting Started 

We do not need the master theorem, however, to understand intuitively why the 
solution to recurrence (2.3) is T .n/ D ‚.n lg n/. For simplicity, assume that n is 
an exact power of 2 and that the implicit base case is n D 1. Then recurrence (2.3) 
is essentially 

T .n/ D 

( 
c 1 if n D 1 ; 
2T .n=2/ C c 2 n if n > 1 ; (2.4) 

where the constant c 1 > 0 represents the time required to solve a problem of size 1, 
and c 2 > 0 is the time per array element of the divide and combine steps. 18 

Figure 2.5 illustrates one way of ûguring out the solution to recurrence (2.4). 
Part (a) of the ûgure shows T .n/, which part (b) expands into an equivalent tree 
representing the recurrence. The c 2 n term denotes the cost of dividing and com- 
bining at the top level of recursion, and the two subtrees of the root are the two 
smaller recurrences T .n=2/. Part (c) shows this process carried one step further by 
expanding T .n=2/. The cost for dividing and combining at each of the two nodes 
at the second level of recursion is c 2 n=2. Continue to expand each node in the tree 
by breaking it into its constituent parts as determined by the recurrence, until the 
problem sizes get down to 1, each with a cost of c 1 . Part (d) shows the resulting 
recursion tree. 

Next, add the costs across each level of the tree. The top level has total cost c 2 n, 
the next level down has total cost c 2 .n=2/ C c 2 .n=2/ D c 2 n, the level after that has 
total cost c 2 .n=4/ C c 2 .n=4/ C c 2 .n=4/ C c 2 .n=4/ D c 2 n, and so on. Each level 
has twice as many nodes as the level above, but each node contributes only half 
the cost of a node from the level above. From one level to the next, doubling and 
halving cancel each other out, so that the cost across each level is the same: c 2 n. In 
general, the level that is i levels below the top has 2 i nodes, each contributing a cost 
of c 2 .n=2 i /, so that the i th level below the top has total cost 2 i  c 2 .n=2 i / D c 2 n. 
The bottom level has n nodes, each contributing a cost of c 1 , for a total cost of c 1 n. 
The total number of levels of the recursion tree in Figure 2.5 is lg n C 1, where 

n is the number of leaves, corresponding to the input size. An informal inductive 
argument justiûes this claim. The base case occurs when n D 1, in which case 
the tree has only 1 level. Since lg 1 D 0, we have that lg n C 1 gives the correct 
number of levels. Now assume as an inductive hypothesis that the number of levels 
of a recursion tree with 2 i leaves is lg 2 i C 1 D i C 1 (since for any value of i , we 
have that lg 2 i D i ). Because we assume that the input size is an exact power of 2, 
the next input size to consider is 2 i C1 . A tree with n D 2 i C1 leaves has 1 more 

18 It is unlikely that c 1 is exactly the time to solve problems of size 1 and that c 2 n is exactly the 
time of the divide and combine steps. We’ll look more closely at bounding recurrences in Chapter 4, 
where we’ll be more careful about this kind of detail. 



2.3 Designing algorithms 43 

… 

…
 

(d) 

(c) (b) (a) 

T .n/ 

c 2 n 

c 2 n c 2 n 

T .n=2/ T .n=2/ 

c 2 n=2 c 2 n=2 

c 2 n=2 c 2 n=2 

T .n=4/ T .n=4/ T .n=4/ T .n=4/ 

c 2 n=4 c 2 n=4 c 2 n=4 c 2 n=4 

c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 c 1 

n 

lg n C 1 

c 2 n 

c 2 n 

c 2 n 

c 1 n 

Total: c 2 n lg n C c 1 n 

Figure 2.5 How to construct a recursion tree for the recurrence (2.4). Part (a) shows T .n/, which 
progressively expands in (b)–(d) to form the recursion tree. The fully expanded tree in part (d) 
has lg n C 1 levels. Each level above the leaves contributes a total cost of c 2 n, and the leaf level 
contributes c 1 n. The total cost, therefore, is c 2 n lg n C c 1 n D ‚.n lg n/. 
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level than a tree with 2 i leaves, and so the total number of levels is .i C 1/ C 1 D 
lg 2 i C1 C 1. 
To compute the total cost represented by the recurrence (2.4), simply add up the 

costs of all the levels. The recursion tree has lg n C 1 levels. The levels above the 
leaves each cost c 2 n, and the leaf level costs c 1 n, for a total cost of c 2 n lg n Cc 1 n D 
‚.n lg n/. 

Exercises 
2.3-1 
Using Figure 2.4 as a model, illustrate the operation of merge sort on an array 
initially containing the sequence h3; 41; 52; 26; 38; 57; 9; 49i. 
2.3-2 
The test in line 1 of the MERGE-SORT procedure reads <if p  r = rather than <if 
p ¤ r .= If MERGE-SORT is called with p > r , then the subarray AŒp W r� is empty. 
Argue that as long as the initial call of MERGE-SORT.A; 1; n/ has n  1, the test 
<if p ¤ r = sufûces to ensure that no recursive call has p > r . 
2.3-3 
State a loop invariant for the while loop of lines 12318 of the MERGE procedure. 
Show how to use it, along with the while loops of lines 20323 and 24327, to prove 
that the MERGE procedure is correct. 
2.3-4 
Use mathematical induction to show that when n  2 is an exact power of 2, the 
solution of the recurrence 

T .n/ D 

( 
2 if n D 2 ; 
2T .n=2/ C n if n > 2 

is T .n/ D n lg n. 
2.3-5 
You can also think of insertion sort as a recursive algorithm. In order to sort 
AŒ1 W n�, recursively sort the subarray AŒ1 W n  1� and then insert AŒn� into the 
sorted subarray AŒ1 W n  1�. Write pseudocode for this recursive version of inser- 
tion sort. Give a recurrence for its worst-case running time. 
2.3-6 
Referring back to the searching problem (see Exercise 2.1-4), observe that if the 
subarray being searched is already sorted, the searching algorithm can check the 
midpoint of the subarray against v and eliminate half of the subarray from further 
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consideration. The binary search algorithm repeats this procedure, halving the 
size of the remaining portion of the subarray each time. Write pseudocode, either 
iterative or recursive, for binary search. Argue that the worst-case running time of 
binary search is ‚.lg n/. 
2.3-7 
The while loop of lines 537 of the I NSERTION-SORT procedure in Section 2.1 
uses a linear search to scan (backward) through the sorted subarray AŒ1 W j  1�. 
What if insertion sort used a binary search (see Exercise 2.3-6) instead of a linear 
search? Would that improve the overall worst-case running time of insertion sort 
to ‚.n lg n/? 
2.3-8 
Describe an algorithm that, given a set S of n integers and another integer x , de- 
termines whether S contains two elements that sum to exactly x . Your algorithm 
should take ‚.n lg n/ time in the worst case. 

Problems 

2-1 Insertion sort on small arrays in merge sort 
Although merge sort runs in ‚.n lg n/ worst-case time and insertion sort runs 
in ‚.n 2 / worst-case time, the constant factors in insertion sort can make it faster 
in practice for small problem sizes on many machines. Thus it makes sense to 
coarsen the leaves of the recursion by using insertion sort within merge sort when 
subproblems become sufûciently small. Consider a modiûcation to merge sort in 
which n=k sublists of length k are sorted using insertion sort and then merged 
using the standard merging mechanism, where k is a value to be determined. 
a. Show that insertion sort can sort the n=k sublists, each of length k, in ‚.nk/ 

worst-case time. 

b. Show how to merge the sublists in ‚.n lg.n=k// worst-case time. 

c. Given that the modiûed algorithm runs in ‚.nk C n lg.n=k// worst-case time, 
what is the largest value of k as a function of n for which the modiûed algorithm 
has the same running time as standard merge sort, in terms of ‚-notation? 

d. How should you choose k in practice? 
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2-2 Correctness of bubblesort 
Bubblesort is a popular, but inefûcient, sorting algorithm. It works by repeatedly 
swapping adjacent elements that are out of order. The procedure BUBBLESORT 
sorts array AŒ1 W n�. 

BUBBLESORT .A; n/ 
1 for i D 1 to n  1 
2 for j D n downto i C 1 
3 if AŒj � < AŒj  1� 
4 exchange AŒj � with AŒj  1� 

a. Let A 0 denote the array A after BUBBLESORT .A; n/ is executed. To prove that 
BUBBLESORT is correct, you need to prove that it terminates and that 
A 0 Œ1� හ A 0 Œ2� හ    හ A 0 Œn� : (2.5) 
In order to show that BUBBLESORT actually sorts, what else do you need to 
prove? 

The next two parts prove inequality (2.5). 
b. State precisely a loop invariant for the for loop in lines 234, and prove that this 

loop invariant holds. Your proof should use the structure of the loop-invariant 
proof presented in this chapter. 

c. Using the termination condition of the loop invariant proved in part (b), state 
a loop invariant for the for loop in lines 134 that allows you to prove inequal- 
ity (2.5). Your proof should use the structure of the loop-invariant proof pre- 
sented in this chapter. 

d. What is the worst-case running time of BUBBLESORT? How does it compare 
with the running time of I NSERTION-SORT? 

2-3 Correctness of Horner’s rule 
You are given the coefûcents a 0 ; a 1 ; a 2 ; : : : ; a n of a polynomial 

P.x/ D 
n X 

kD0 

a k x k 

D a 0 C a 1 x C a 2 x 2 C    C a n1 x n1 C a n x n ; 

and you want to evaluate this polynomial for a given value of x . Horner’s rule 
says to evaluate the polynomial according to this parenthesization: 
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P.x/ D a 0 C x 
 
a 1 C x 

ã 
a 2 C    C x.a n1 C xa n /    

ä Í 
: 

The procedure HORNER implements Horner’s rule to evaluate P.x/, given the 
coefûcients a 0 ; a 1 ; a 2 ; : : : ; a n in an array AŒ0 W n� and the value of x . 

HORNER.A; n; x/ 
1 p D 0 
2 for i D n downto 0 
3 p D AŒi� C x  p 
4 return p 

a. In terms of ‚-notation, what is the running time of this procedure? 

b. Write pseudocode to implement the naive polynomial-evaluation algorithm that 
computes each term of the polynomial from scratch. What is the running time 
of this algorithm? How does it compare with HORNER? 

c. Consider the following loop invariant for the procedure HORNER: 
At the start of each iteration of the for loop of lines 233, 

p D 
n.i C1/ X 

kD0 

AŒk C i C 1�  x k : 

Interpret a summation with no terms as equaling 0. Following the structure 
of the loop-invariant proof presented in this chapter, use this loop invariant to 
show that, at termination, p D 

P n 
kD0 AŒk�  x k . 

2-4 Inversions 
Let AŒ1 W n� be an array of n distinct numbers. If i < j and AŒi� > AŒj �, then the 
pair .i; j / is called an inversion of A. 
a. List the ûve inversions of the array h2; 3; 8; 6; 1i. 

b. What array with elements from the set f1; 2; : : : ; ng has the most inversions? 
How many does it have? 

c. What is the relationship between the running time of insertion sort and the 
number of inversions in the input array? Justify your answer . 

d. Give an algorithm that determines the number of inversions in any permutation 
on n elements in ‚.n lg n/ worst-case time. (Hint: Modify merge sort.) 



48 Chapter 2 Getting Started 

Chapter notes 

In 1968, Knuth published the ûrst of three volumes with the general title The Art of 
Computer Programming [259, 260, 261]. The ûrst volume ushered in the modern 
study of computer algorithms with a focus on the analysis of running time. The 
full series remains an engaging and worthwhile reference for many of the topics 
presented here. According to Knuth, the word <algorithm= is derived from the 
name <al-Khowˆ arizmˆ ı,= a ninth-century Persian mathematician. 
Aho, Hopcroft, and Ullman [5] advocated the asymptotic analysis of algorithms 

4using notations that Chapter 3 introduces, including ‚-notation4as a means 
of comparing relative performance. They also popularized the use of recurrence 
relations to describe the running times of recursive algorithms. 
Knuth [261] provides an encyclopedic treatment of many sorting algorithms. His 

comparison of sorting algorithms (page 381) includes exact step-counting analyses, 
like the one we performed here for insertion sort. Knuth’s discussion of insertion 
sort encompasses several variations of the algorithm. The most important of these 
is Shell’s sort, introduced by D. L. Shell, which uses insertion sort on periodic 
subarrays of the input to produce a faster sorting algorithm. 
Merge sort is also described by Knuth. He mentions that a mechanical colla- 

tor capable of merging two decks of punched cards in a single pass was invented 
in 1938. J. von Neumann, one of the pioneers of computer science, apparently 
wrote a program for merge sort on the EDVAC computer in 1945. 

The early history of proving programs correct is described by Gries [200], who 
credits P. Naur with the ûrst article in this ûeld. Gries attributes loop invariants to 
R. W. Floyd. The textbook by Mitchell [329] is a good reference on how to prove 
programs correct. 
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The order of growth of the running time of an algorithm, deûned in Chapter 2, 
gives a simple way to characterize the algorithm’s efûciency and also allows us 
to compare it with alternative algorithms. Once the input size n becomes large 
enough, merge sort, with its ‚.n lg n/ worst-case running time, beats insertion sort, 
whose worst-case running time is ‚.n 2 /. Although we can sometimes determine 
the exact running time of an algorithm, as we did for insertion sort in Chapter 2, 
the extra precision is rarely worth the effort of computing it. For large enough 
inputs, the multiplicative constants and lower-order terms of an exact running time 
are dominated by the effects of the input size itself. 

When we look at input sizes large enough to make relevant only the order of 
growth of the running time, we are studying the asymptotic efûciency of algo- 
rithms. That is, we are concerned with how the running time of an algorithm 
increases with the size of the input in the limit, as the size of the input increases 
without bound. Usually, an algorithm that is asymptotically more efûcient is the 
best choice for all but very small inputs. 

This chapter gives several standard methods for simplifying the asymptotic anal- 
ysis of algorithms. The next section presents informally the three most commonly 
used types of <asymptotic notation,= of which we have already seen an example 
in ‚-notation. It also shows one way to use these asymptotic notations to reason 
about the worst-case running time of insertion sort. Then we look at asymptotic 
notations more formally and present several notational con ventions used through- 
out this book. The last section reviews the behavior of functions that commonly 
arise when analyzing algorithms. 
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3.1 O-notation, -notation, and ‚-notation 

When we analyzed the worst-case running time of insertion sort in Chapter 2, we 
started with the complicated expression  c 5 

2 
C 
c 6 

2 
C 
c 7 

2 

Í 
n 2 C 

 
c 1 C c 2 C c 4 C 

c 5 

2 
 
c 6 

2 
 
c 7 

2 
C c 8 

Í 
n 

 .c 2 C c 4 C c 5 C c 8 / : 

We then discarded the lower-order terms .c 1 C c 2 C c 4 C c 5 =2  c 6 =2  c 7 =2 C c 8 /n 
and c 2 C c 4 C c 5 C c 8 , and we also ignored the coefûcient c 5 =2 C c 6 =2 C c 7 =2 
of n 2 . That left just the factor n 2 , which we put into ‚-notation as ‚.n 2 /. We 
use this style to characterize running times of algorithms: discard the lower-order 
terms and the coefûcient of the leading term, and use a notation that focuses on the 
rate of growth of the running time. 
‚-notation is not the only such <asymptotic notation.= In this section, we’ll 

see other forms of asymptotic notation as well. We start with intuitive looks at 
these notations, revisiting insertion sort to see how we can apply them. In the next 
section, we’ll see the formal deûnitions of our asymptotic notations, along with 
conventions for using them. 
Before we get into speciûcs, bear in mind that the asymptotic notations we’ll see 

are designed so that they characterize functions in general. It so happens that the 
functions we are most interested in denote the running times of algorithms. But 
asymptotic notation can apply to functions that characterize some other aspect of 
algorithms (the amount of space they use, for example), or even to functions that 
have nothing whatsoever to do with algorithms. 

O-notation 

O-notation characterizes an upper bound on the asymptotic behavior of a function. 
In other words, it says that a function grows no faster than a certain rate, based on 
the highest-order term. Consider, for example, the function 7n 3 C 100n 2  20n C 6. 
Its highest-order term is 7n 3 , and so we say that this function’s rate of growth is n 3 . 
Because this function grows no faster than n 3 , we can write that it is O.n 3 /. You 
might be surprised that we can also write that the function 7n 3 C 100n 2  20n C 6 
is O.n 4 /. Why? Because the function grows more slowly than n 4 , we are correct 
in saying that it grows no faster. As you might have guessed, this function is also 
O.n 5 /, O.n 6 /, and so on. More generally, it is O.n c / for any constant c  3. 
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-notation 

�-notation characterizes a lower bound on the asymptotic behavior of a function. 
In other words, it says that a function grows at least as fast as a certain rate, based 
4as in O-notation4on the highest-order term. Because the highest-order term 
in the function 7n 3 C 100n 2  20n C 6 grows at least as fast as n 3 , this function 
is �.n 3 /. This function is also �.n 2 / and �.n/. More generally, it is �.n c / for 
any constant c හ 3. 

‚-notation 

‚-notation characterizes a tight bound on the asymptotic behavior of a function. It 
says that a function grows precisely at a certain rate, based4once again4on the 
highest-order term. Put another way, ‚-notation characterizes the rate of growth of 
the function to within a constant factor from above and to within a constant factor 
from below. These two constant factors need not be equal. 

If you can show that a function is both O.f .n// and �.f .n// for some func- 
tion f .n/, then you have shown that the function is ‚.f .n//. (The next section 
states this fact as a theorem.) For example, since the function 7n 3 C100n 2 20nC6 
is both O.n 3 / and �.n 3 /, it is also ‚.n 3 /. 

Example: Insertion sort 
Let’s revisit insertion sort and see how to work with asymptotic notation to charac- 
terize its ‚.n 2 / worst-case running time without evaluating summations as we did 
in Chapter 2. Here is the I NSERTION-SORT procedure once again: 

I NSERTION-SORT .A; n/ 
1 for i D 2 to n 
2 key D AŒi� 
3 // Insert AŒi� into the sorted subarray AŒ1 W i  1�. 
4 j D i  1 
5 while j > 0 and AŒj � > key 
6 AŒj C 1� D AŒj � 
7 j D j  1 
8 AŒj C 1� D key 

What can we observe about how the pseudocode operates? The procedure has 
nested loops. The outer loop is a for loop that runs n  1 times, regardless of the 
values being sorted. The inner loop is a while loop, but the number of iterations 
it makes depends on the values being sorted. The loop variable j starts at i  1 
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each of the 
n/3 largest 

values moves 

through each 
of these 

n/3 positions 

to somewhere 
in these 

n/3 positions 

AŒ1 W n=3� AŒn=3 C 1 W 2n=3� AŒ2n=3 C 1 W n� 

Figure 3.1 The �.n 2 / lower bound for insertion sort. If the ûrst n=3 positions contain the n=3 
largest values, each of these values must move through each of the middle n=3 positions, one position 
at a time, to end up somewhere in the last n=3 positions. Since each of n=3 values moves through at 
least each of n=3 positions, the time taken in this case is at least proportional to .n=3/.n=3/ D n 2 =9, 
or �.n 2 /. 

and decreases by 1 in each iteration until either it reaches 0 or AŒj � හ key. For a 
given value of i , the while loop might iterate 0 times, i  1 times, or anywhere in 
between. The body of the while loop (lines 637) takes constant time per iteration 
of the while loop. 
These observations sufûce to deduce an O.n 2 / running time for any case of 

I NSERTION-SORT, giving us a blanket statement that covers all inputs. The run- 
ning time is dominated by the inner loop. Because each of the n  1 iterations of 
the outer loop causes the inner loop to iterate at most i  1 times, and because i is 
at most n, the total number of iterations of the inner loop is at most .n  1/.n  1/, 
which is less than n 2 . Since each iteration of the inner loop takes constant time, 
the total time spent in the inner loop is at most a constant times n 2 , or O.n 2 /. 
With a little creativity, we can also see that the worst-case running time of 

I NSERTION-SORT is �.n 2 /. By saying that the worst-case running time of an 
algorithm is �.n 2 /, we mean that for every input size n above a certain threshold, 
there is at least one input of size n for which the algorithm takes at least cn 2 time, 
for some positive constant c . It does not necessarily mean that the algorithm takes 
at least cn 2 time for all inputs. 
Let’s now see why the worst-case running time of I NSERTION-SORT is �.n 2 /. 

For a value to end up to the right of where it started, it must have been moved in 
line 6. In fact, for a value to end up k positions to the right of where it started, 
line 6 must have executed k times. As Figure 3.1 shows, let’s assume that n is 
a multiple of 3 so that we can divide the array A into groups of n=3 positions. 
Suppose that in the input to I NSERTION-SORT, the n=3 largest values occupy the 
ûrst n=3 array positions AŒ1 W n=3�. (It does not matter what relative order they 
have within the ûrst n=3 positions.) Once the array has been sorted, each of these 
n=3 values ends up somewhere in the last n=3 positions AŒ2n=3 C 1 W n�. For that 
to happen, each of these n=3 values must pass through each of the middle n=3 
positions AŒn=3 C 1 W 2n=3�. Each of these n=3 values passes through these middle 
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n=3 positions one position at a time, by at least n=3 executions of line 6. Because 
at least n=3 values have to pass through at least n=3 positions, the time taken by 
I NSERTION-SORT in the worst case is at least proportional to .n=3/.n=3/ D n 2 =9, 
which is �.n 2 /. 

Because we have shown that I NSERTION-SORT runs in O.n 2 / time in all cases 
and that there is an input that makes it take �.n 2 / time, we can conclude that the 
worst-case running time of I NSERTION-SORT is ‚.n 2 /. It does not matter that 
the constant factors for upper and lower bounds might differ. What matters is 
that we have characterized the worst-case running time to within constant factors 
(discounting lower-order terms). This argument does not show that I NSERTION- 
SORT runs in ‚.n 2 / time in all cases. Indeed, we saw in Chapter 2 that the best- 
case running time is ‚.n/. 

Exercises 
3.1-1 
Modify the lower-bound argument for insertion sort to handle input sizes that are 
not necessarily a multiple of 3. 
3.1-2 
Using reasoning similar to what we used for insertion sort, analyze the running 
time of the selection sort algorithm from Exercise 2.2-2. 
3.1-3 
Suppose that ˛ is a fraction in the range 0 < ˛ < 1. Show how to generalize 
the lower-bound argument for insertion sort to consider an input in which the ˛n 
largest values start in the ûrst ˛n positions. What additional restriction do you 
need to put on ˛? What value of ˛ maximizes the number of times that the ˛n 
largest values must pass through each of the middle .1  2˛/n array positions? 

3.2 Asymptotic notation: formal deûnitions 

Having seen asymptotic notation informally, let’s get more formal. The notations 
we use to describe the asymptotic running time of an algorithm are deûned in 
terms of functions whose domains are typically the set N of natural numbers or 
the set R of real numbers. Such notations are convenient for describing a running- 
time function T .n/. This section deûnes the basic asymptotic notations and also 
introduces some common <proper= notational abuses. 
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(a) (b) (c) 

n n n 
n 0 n 0 n 0 

f .n/ D ‚.g.n// f .n/ D O.g.n// f .n/ D �.g.n// 

f .n/ 

f .n/ 
f .n/ 

cg.n/ 

cg.n/ 

c 1 g.n/ 

c 2 g.n/ 

Figure 3.2 Graphic examples of the O , �, and ‚ notations. In each part, the value of n 0 shown 
is the minimum possible value, but any greater value also works. (a) O-notation gives an upper 
bound for a function to within a constant factor. We write f .n/ D O.g.n// if there are positive 
constants n 0 and c such that at and to the right of n 0 , the value of f .n/ always lies on or be- 
low cg.n/. (b) �-notation gives a lower bound for a function to within a constant factor. We write 
f .n/ D �.g.n// if there are positive constants n 0 and c such that at and to the right of n 0 , the value 
of f .n/ always lies on or above cg.n/. (c) ‚-notation bounds a function to within constant factors. 
We write f .n/ D ‚.g.n// if there exist positive constants n 0 , c 1 , and c 2 such that at and to the right 
of n 0 , the value of f .n/ always lies between c 1 g.n/ and c 2 g.n/ inclusive. 

O-notation 

As we saw in Section 3.1, O-notation describes an asymptotic upper bound. We 
use O-notation to give an upper bound on a function, to within a constant factor. 
Here is the formal deûnition of O-notation. For a given function g.n/, we denote 

by O.g.n// (pronounced <big-oh of g of n= or sometimes just <oh of g of n=) the 
set of functions 
O.g.n// D ff .n/ W there exist positive constants c and n 0 such that 

0 හ f .n/ හ cg.n/ for all n  n 0 g : 1 

A function f .n/ belongs to the set O.g.n// if there exists a positive constant c such 
that f .n/ හ cg.n/ for sufûciently large n. Figure 3.2(a) shows the intuition behind 
O-notation. For all values n at and to the right of n 0 , the value of the function f .n/ 
is on or below cg.n/. 
The deûnition of O.g.n// requires that every function f .n/ in the set O.g.n// 

be asymptotically nonnegative: f .n/ must be nonnegative whenever n is sufû- 
ciently large. (An asymptotically positive function is one that is positive for all 

1 Within set notation, a colon means <such that.= 
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sufûciently large n.) Consequently, the function g.n/ itself must be asymptotically 
nonnegative, or else the set O.g.n// is empty. We therefore assume that every 
function used within O-notation is asymptotically nonnegative. This assumption 
holds for the other asymptotic notations deûned in this chapter as well. 
You might be surprised that we deûne O-notation in terms of sets. Indeed, you 

might expect that we would write <f .n/ 2 O.g.n//= to indicate that f .n/ be- 
longs to the set O.g.n//. Instead, we usually write <f .n/ D O.g.n//= and say 
<f .n/ is big-oh of g.n/= to express the same notion. Although it may seem con- 
fusing at ûrst to abuse equality in this way, we’ll see later in this section that doing 
so has its advantages. 
Let’s explore an example of how to use the formal deûnition of O-notation to 

justify our practice of discarding lower-order terms and ignoring the constant coef- 
ûcient of the highest-order term. We’ll show that 4n 2 C100n C500 D O.n 2 /, even 
though the lower-order terms have much larger coefûcients than the leading term. 
We need to ûnd positive constants c and n 0 such that 4n 2 C 100n C 500 හ cn 2 

for all n  n 0 . Dividing both sides by n 2 gives 4 C 100=n C 500=n 2 හ c . This 
inequality is satisûed for many choices of c and n 0 . For example, if we choose 
n 0 D 1, then this inequality holds for c D 604. If we choose n 0 D 10, then c D 19 
works, and choosing n 0 D 100 allows us to use c D 5:05. 
We can also use the formal deûnition of O-notation to show that the function 

n 3  100n 2 does not belong to the set O.n 2 /, even though the coefûcient of n 2 

is a large negative number. If we had n 3  100n 2 D O.n 2 /, then there would be 
positive constants c and n 0 such that n 3  100n 2 හ cn 2 for all n  n 0 . Again, we 
divide both sides by n 2 , giving n  100 හ c . Regardless of what value we choose 
for the constant c , this inequality does not hold for any value of n > c C 100. 

-notation 

Just as O-notation provides an asymptotic upper bound on a function, �-notation 
provides an asymptotic lower bound. For a given function g.n/, we denote 
by �.g.n// (pronounced <big-omega of g of n= or sometimes just <omega of g 
of n=) the set of functions 
�.g.n// D ff .n/ W there exist positive constants c and n 0 such that 

0 හ cg.n/ හ f .n/ for all n  n 0 g : 

Figure 3.2(b) shows the intuition behind �-notation. For all values n at or to the 
right of n 0 , the value of f .n/ is on or above cg.n/. 
We’ve already shown that 4n 2 C 100n C 500 D O.n 2 /. Now let’s show that 

4n 2 C 100n C 500 D �.n 2 /. We need to ûnd positive constants c and n 0 such that 
4n 2 C 100n C 500  cn 2 for all n  n 0 . As before, we divide both sides by n 2 , 
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giving 4 C 100=n C 500=n 2  c . This inequality holds when n 0 is any positive 
integer and c D 4. 
What if we had subtracted the lower-order terms from the 4n 2 term instead of 

adding them? What if we had a small coefûcient for the n 2 term? The function 
would still be �.n 2 /. For example, let’s show that n 2 =100  100n  500 D �.n 2 /. 
Dividing by n 2 gives 1=100  100=n  500=n 2  c . We can choose any value 
for n 0 that is at least 10,005 and ûnd a positive value for c . For example, when 
n 0 D 10,005, we can choose c D 2:49  10 9 . Yes, that’s a tiny value for c , but it 
is positive. If we select a larger value for n 0 , we can also increase c . For example, 
if n 0 D 100,000, then we can choose c D 0:0089. The higher the value of n 0 , the 
closer to the coefûcient 1=100 we can choose c . 

‚-notation 

We use ‚-notation for asymptotically tight bounds. For a given function g.n/, we 
denote by ‚.g.n// (<theta of g of n=) the set of functions 
‚.g.n// D ff .n/ W there exist positive constants c 1 , c 2 , and n 0 such that 

0 හ c 1 g.n/ හ f .n/ හ c 2 g.n/ for all n  n 0 g : 

Figure 3.2(c) shows the intuition behind ‚-notation. For all values of n at and to 
the right of n 0 , the value of f .n/ lies at or above c 1 g.n/ and at or below c 2 g.n/. In 
other words, for all n  n 0 , the function f .n/ is equal to g.n/ to within constant 
factors. 
The deûnitions of O-, �-, and ‚-notations lead to the following theorem, whose 

proof we leave as Exercise 3.2-4. 

Theorem 3.1 
For any two functions f .n/ and g.n/, we have f .n/ D ‚.g.n// if and only if 
f .n/ D O.g.n// and f .n/ D �.g.n//. 
We typically apply Theorem 3.1 to prove asymptotically tight bounds from asymp- 
totic upper and lower bounds. 

Asymptotic notation and running times 
When you use asymptotic notation to characterize an algorithm’s running time, 
make sure that the asymptotic notation you use is as precise as possible without 
overstating which running time it applies to. Here are some examples of using 
asymptotic notation properly and improperly to characterize running times. 
Let’s start with insertion sort. We can correctly say that insertion sort’s worst- 

case running time is O.n 2 /, �.n 2 /, and4due to Theorem 3.14‚.n 2 /. Although 
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all three ways to characterize the worst-case running times are correct, the ‚.n 2 / 
bound is the most precise and hence the most preferred. We can also correctly say 
that insertion sort’s best-case running time is O.n/, �.n/, and ‚.n/, again with 
‚.n/ the most precise and therefore the most preferred. 

Here is what we cannot correctly say: insertion sort’s running time is ‚.n 2 /. 
That is an overstatement because by omitting <worst-case= from the statement, 
we’re left with a blanket statement covering all cases. The error here is that inser- 
tion sort does not run in ‚.n 2 / time in all cases since, as we’ve seen, it runs in 
‚.n/ time in the best case. We can correctly say that insertion sort’s running time 
is O.n 2 /, however, because in all cases, its running time grows no faster than n 2 . 
When we say O.n 2 / instead of ‚.n 2 /, there is no problem in having cases whose 
running time grows more slowly than n 2 . Likewise, we cannot correctly say that 
insertion sort’s running time is ‚.n/, but we can say that its running time is �.n/. 
How about merge sort? Since merge sort runs in ‚.n lg n/ time in all cases, 

we can just say that its running time is ‚.n lg n/ without specifying worst-case, 
best-case, or any other case. 
People occasionally conüate O-notation with ‚-notation by mistakenly using 

O-notation to indicate an asymptotically tight bound. They say things like <an 
O.n lg n/-time algorithm runs faster than an O.n 2 /-time algorithm.= Maybe it 
does, maybe it doesn’t. Since O-notation denotes only an asymptotic upper bound, 
that so-called O.n 2 /-time algorithm might actually run in ‚.n/ time. You should 
be careful to choose the appropriate asymptotic notation. If you want to indicate 
an asymptotically tight bound, use ‚-notation. 

We typically use asymptotic notation to provide the simplest and most precise 
bounds possible. For example, if an algorithm has a running time of 3n 2 C 20n 
in all cases, we use asymptotic notation to write that its running time is ‚.n 2 /. 
Strictly speaking, we are also correct in writing that the running time is O.n 3 / or 
‚.3n 2 C 20n/. Neither of these expressions is as useful as writing ‚.n 2 / in this 
case, however: O.n 3 / is less precise than ‚.n 2 / if the running time is 3n 2 C 20n, 
and ‚.3n 2 C 20n/ introduces complexity that obscures the order of growth. By 
writing the simplest and most precise bound, such as ‚.n 2 /, we can categorize 
and compare different algorithms. Throughout the book, you will see asymptotic 
running times that are almost always based on polynomials and logarithms: func- 
tions such as n, n lg 2 n, n 2 lg n, or n 1=2 . You will also see some other functions, 
such as exponentials, lg lg n, and lg  n (see Section 3.3). It is usually fairly easy 
to compare the rates of growth of these functions. Problem 3-3 gives you good 
practice. 
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Asymptotic notation in equations and inequalities 
Although we formally deûne asymptotic notation in terms of sets, we use the equal 
sign (D) instead of the set membership sign (2) within formulas. For example, we 
wrote that 4n 2 C 100n C 500 D O.n 2 /. We might also write 2n 2 C 3n C 1 D 
2n 2 C ‚.n/. How do we interpret such formulas? 

When the asymptotic notation stands alone (that is, not within a larger formula) 
on the right-hand side of an equation (or inequality), as in 4n 2 C 100n C 500 D 
O.n 2 /, the equal sign means set membership: 4n 2 C 100n C 500 2 O.n 2 /. In 
general, however, when asymptotic notation appears in a formula, we interpret it as 
standing for some anonymous function that we do not care to name. For example, 
the formula 2n 2 C 3n C 1 D 2n 2 C ‚.n/ means that 2n 2 C 3n C 1 D 2n 2 C f .n/, 
where f .n/ 2 ‚.n/. In this case, we let f .n/ D 3n C 1, which indeed belongs 
to ‚.n/. 

Using asymptotic notation in this manner can help eliminate inessential detail 
and clutter in an equation. For example, in Chapter 2 we expressed the worst-case 
running time of merge sort as the recurrence 
T .n/ D 2T .n=2/ C ‚.n/ : 

If we are interested only in the asymptotic behavior of T .n/, there is no point in 
specifying all the lower-order terms exactly, because they are all understood to be 
included in the anonymous function denoted by the term ‚.n/. 

The number of anonymous functions in an expression is understood to be equal 
to the number of times the asymptotic notation appears. For example, in the ex- 
pression 
n X 

i D1 

O.i/ ; 

there is only a single anonymous function (a function of i ). This expression is thus 
not the same as O.1/ C O.2/ C    C O.n/, which doesn’t really have a clean 
interpretation. 
In some cases, asymptotic notation appears on the left-hand side of an equation, 

as in 
2n 2 C ‚.n/ D ‚.n 2 / : 

Interpret such equations using the following rule: No matter how the anonymous 
functions are chosen on the left of the equal sign, there is a way to choose the 
anonymous functions on the right of the equal sign to make the equation valid. 
Thus, our example means that for any function f .n/ 2 ‚.n/, there is some function 
g.n/ 2 ‚.n 2 / such that 2n 2 Cf .n/ D g.n/ for all n. In other words, the right-hand 
side of an equation provides a coarser level of detail than the left-hand side. 
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We can chain together a number of such relationships, as in 
2n 2 C 3n C 1 D 2n 2 C ‚.n/ 

D ‚.n 2 / : 

By the rules above, interpret each equation separately. The ûrst equation says that 
there is some function f .n/ 2 ‚.n/ such that 2n 2 C3n C1 D 2n 2 C f .n/ for all n. 
The second equation says that for any function g.n/ 2 ‚.n/ (such as the f .n/ just 
mentioned), there is some function h.n/ 2 ‚.n 2 / such that 2n 2 C g.n/ D h.n/ for 
all n. This interpretation implies that 2n 2 C 3n C 1 D ‚.n 2 /, which is what the 
chaining of equations intuitively says. 

Proper abuses of asymptotic notation 

Besides the abuse of equality to mean set membership, which we now see has a 
precise mathematical interpretation, another abuse of asymptotic notation occurs 
when the variable tending toward 1 must be inferred from context. For example, 
when we say O.g.n//, we can assume that we’re interested in the growth of g.n/ 
as n grows, and if we say O.g.m// we’re talking about the growth of g.m/ as m 
grows. The free variable in the expression indicates what variable is going to 1. 

The most common situation requiring contextual knowledge of which variable 
tends to 1 occurs when the function inside the asymptotic notation is a constant, 
as in the expression O.1/. We cannot infer from the expression which variable is 
going to 1, because no variable appears there. The context must disambiguate. For 
example, if the equation using asymptotic notation is f .n/ D O.1/, it’s apparent 
that the variable we’re interested in is n. Knowing from context that the variable of 
interest is n, however, allows us to make perfect sense of the expression by using 
the formal deûnition of O-notation: the expression f .n/ D O.1/ means that the 
function f .n/ is bounded from above by a constant as n goes to 1. Technically, it 
might be less ambiguous if we explicitly indicated the variable tending to 1 in the 
asymptotic notation itself, but that would clutter the notation. Instead, we simply 
ensure that the context makes it clear which variable (or variables) tend to 1. 

When the function inside the asymptotic notation is bounded by a positive con- 
stant, as in T .n/ D O.1/, we often abuse asymptotic notation in yet another way, 
especially when stating recurrences. We may write something like T .n/ D O.1/ 
for n < 3. According to the formal deûnition of O-notation, this statement is 
meaningless, because the deûnition only says that T .n/ is bounded above by a 
positive constant c for n  n 0 for some n 0 > 0. The value of T .n/ for n < n 0 
need not be so bounded. Thus, in the example T .n/ D O.1/ for n < 3, we cannot 
infer any constraint on T .n/ when n < 3, because it might be that n 0 > 3. 

What is conventionally meant when we say T .n/ D O.1/ for n < 3 is that there 
exists a positive constant c such that T .n/ හ c for n < 3. This convention saves 
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us the trouble of naming the bounding constant, allowing it to remain anonymous 
while we focus on more important variables in an analysis. Similar abuses occur 
with the other asymptotic notations. For example, T .n/ D ‚.1/ for n < 3 means 
that T .n/ is bounded above and below by positive constants when n < 3. 
Occasionally, the function describing an algorithm’s running time may not be 

deûned for certain input sizes, for example, when an algorithm assumes that the 
input size is an exact power of 2. We still use asymptotic notation to describe the 
growth of the running time, understanding that any constraints apply only when 
the function is deûned. For example, suppose that f .n/ is deûned only on a subset 
of the natural or nonnegative real numbers. Then f .n/ D O.g.n// means that the 
bound 0 හ T .n/ හ cg.n/ in the deûnition of O-notation holds for all n  n 0 over 
the domain of f .n/, that is, where f .n/ is deûned. This abuse is rarely pointed 
out, since what is meant is generally clear from context. 
In mathematics, it’s okay4and often desirable4to abuse a notation, as long as 

we don’t misuse it. If we understand precisely what is meant by the abuse and don’t 
draw incorrect conclusions, it can simplify our mathematical language, contribute 
to our higher-level understanding, and help us focus on what really matters. 

o-notation 

The asymptotic upper bound provided by O-notation may or may not be asymp- 
totically tight. The bound 2n 2 D O.n 2 / is asymptotically tight, but the bound 
2n D O.n 2 / is not. We use o-notation to denote an upper bound that is not asymp- 
totically tight. We formally deûne o.g.n// (<little-oh of g of n=) as the set 
o.g.n// D ff .n/ W for any positive constant c > 0, there exists a constant 

n 0 > 0 such that 0 හ f .n/ < cg.n/ for all n  n 0 g : 

For example, 2n D o.n 2 /, but 2n 2 ¤ o.n 2 /. 
The deûnitions of O-notation and o-notation are similar. The main difference 

is that in f .n/ D O.g.n//, the bound 0 හ f .n/ හ cg.n/ holds for some con- 
stant c > 0, but in f .n/ D o.g.n//, the bound 0 හ f .n/ < cg.n/ holds for all 
constants c > 0. Intuitively, in o-notation, the function f .n/ becomes insigniûcant 
relative to g.n/ as n gets large: 

lim 
n!1 

f .n/ 
g.n/ 

D 0 : 

Some authors use this limit as a deûnition of the o-notation, but the deûnition in 
this book also restricts the anonymous functions to be asymptotically nonnegative. 
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!-notation 

By analogy, !-notation is to �-notation as o-notation is to O-notation. We use 
!-notation to denote a lower bound that is not asymptotically tight. One way to 
deûne it is by 

f .n/ 2 !.g.n// if and only if g.n/ 2 o.f .n// : 

Formally, however, we deûne !.g.n// (<little-omega of g of n=) as the set 
!.g.n// D ff .n/ W for any positive constant c > 0, there exists a constant 

n 0 > 0 such that 0 හ cg.n/ < f .n/ for all n  n 0 g : 

Where the deûnition of o-notation says that f .n/ < cg.n/ , the deûnition of 
!-notation says the opposite: that cg.n/ < f .n/ . For examples of !-notation, 
we have n 2 =2 D !.n/, but n 2 =2 ¤ !.n 2 /. The relation f .n/ D !.g.n// implies 
that 
lim 
n!1 

f .n/ 
g.n/ 

D 1 ; 

if the limit exists. That is, f .n/ becomes arbitrarily large relative to g.n/ as n gets 
large. 

Comparing functions 
Many of the relational properties of real numbers apply to asymptotic comparisons 
as well. For the following, assume that f .n/ and g.n/ are asymptotically positive. 
Transitivity: 
f .n/ D ‚.g.n// and g.n/ D ‚.h.n// imply f .n/ D ‚.h.n// ; 
f .n/ D O.g.n// and g.n/ D O.h.n// imply f .n/ D O.h.n// ; 
f .n/ D �.g.n// and g.n/ D �.h.n// imply f .n/ D �.h.n// ; 
f .n/ D o.g.n// and g.n/ D o.h.n// imply f .n/ D o.h.n// ; 
f .n/ D !.g.n// and g.n/ D !.h.n// imply f .n/ D !.h.n// : 

Reüexivity: 
f .n/ D ‚.f .n// ; 
f .n/ D O.f .n// ; 
f .n/ D �.f .n// : 

Symmetry: 
f .n/ D ‚.g.n// if and only if g.n/ D ‚.f .n// : 
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Transpose symmetry: 
f .n/ D O.g.n// if and only if g.n/ D �.f .n// ; 
f .n/ D o.g.n// if and only if g.n/ D !.f .n// : 

Because these properties hold for asymptotic notations, we can draw an analogy 
between the asymptotic comparison of two functions f and g and the comparison 
of two real numbers a and b: 
f .n/ D O.g.n// is like a හ b ; 
f .n/ D �.g.n// is like a  b ; 
f .n/ D ‚.g.n// is like a D b ; 
f .n/ D o.g.n// is like a < b ; 
f .n/ D !.g.n// is like a > b : 
We say that f .n/ is asymptotically smaller than g.n/ if f .n/ D o.g.n//, and f .n/ 
is asymptotically larger than g.n/ if f .n/ D !.g.n//. 
One property of real numbers, however, does not carry over to asymptotic nota- 

tion: 
Trichotomy: For any two real numbers a and b, exactly one of the following 

must hold: a < b, a D b, or a > b. 
Although any two real numbers can be compared, not all functions are asymptot- 
ically comparable. That is, for two functions f .n/ and g.n/, it may be the case 
that neither f .n/ D O.g.n// nor f .n/ D �.g.n// holds. For example, we cannot 
compare the functions n and n 1Csin n using asymptotic notation, since the value of 
the exponent in n 1Csin n oscillates between 0 and 2, taking on all values in between. 

Exercises 
3.2-1 
Let f .n/ and g.n/ be asymptotically nonnegative functions. Using the basic deû- 
nition of ‚-notation, prove that max ff .n/; g.n/g D ‚.f .n/ C g.n//. 
3.2-2 
Explain why the statement, <The running time of algorithm A is at least O.n 2 /,= is 
meaningless. 
3.2-3 
Is 2 nC1 D O.2 n /? Is 2 2n D O.2 n /? 
3.2-4 
Prove Theorem 3.1. 
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3.2-5 
Prove that the running time of an algorithm is ‚.g.n// if and only if its worst-case 
running time is O.g.n// and its best-case running time is �.g.n//. 
3.2-6 
Prove that o.g.n// \ !.g.n// is the empty set. 
3.2-7 
We can extend our notation to the case of two parameters n and m that can go to 
1 independently at different rates. For a given function g.n;m/, we denote by 
O.g.n;m// the set of functions 
O.g.n;m// D ff .n;m/ W there exist positive constants c , n 0 , and m 0 

such that 0 හ f .n;m/ හ cg.n;m/ 
for all n  n 0 or m  m 0 g : 

Give corresponding deûnitions for �.g.n; m// and ‚.g.n;m//. 

3.3 Standard notations and common functions 

This section reviews some standard mathematical functions and notations and ex- 
plores the relationships among them. It also illustrates the use of the asymptotic 
notations. 

Monotonicity 

A function f .n/ is monotonically increasing if m හ n implies f .m/ හ f .n/. 
Similarly, it is monotonically decreasing if m හ n implies f .m/  f .n/. A func- 
tion f .n/ is strictly increasing if m < n implies f .m/ < f .n/ and strictly de- 
creasing if m < n implies f .m/ > f .n/. 

Floors and ceilings 
For any real number x , we denote the greatest integer less than or equal to x by bx c 
(read <the üoor of x =) and the least integer greater than or equal to x by dx e (read 
<the ceiling of x =). The üoor function is monotonically increasing, as is the ceiling 
function. 

Floors and ceilings obey the following properties. For any integer n, we have 
bnc D n D dne : (3.1) 
For all real x , we have 
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x  1 < bx c හ x හ dx e < x C 1 : (3.2) 
We also have 
 bx c D dx e ; (3.3) 
or equivalently, 
 dx e D bx c : (3.4) 
For any real number x  0 and integers a; b > 0, we have å dx=ae 

b 

æ 
D 
å 
x 
ab 

æ 
; (3.5) ç bx=ac 

b 

è 
D 
ç 
x 
ab 

è 
; (3.6) å 

a 
b 

æ 
හ 
a C .b  1/ 

b 
; (3.7) ç 

a 
b 

è 
 
a  .b  1/ 

b 
: (3.8) 

For any integer n and real number x , we have 
bn C x c D n C bx c ; (3.9) 
dn C x e D n C dx e : (3.10) 

Modular arithmetic 
For any integer a and any positive integer n, the value a mod n is the remainder 
(or residue) of the quotient a=n: 
a mod n D a  n ba=nc : (3.11) 
It follows that 
0 හ a mod n < n ; (3.12) 
even when a is negative. 
Given a well-deûned notion of the remainder of one integer when divided by an- 

other, it is convenient to provide special notation to indicate equality of remainders. 
If .a mod n/ D .b mod n/, we write a D b .mod n/ and say that a is equivalent 
to b, modulo n. In other words, a D b .mod n/ if a and b have the same remain- 
der when divided by n. Equivalently, a D b .mod n/ if and only if n is a divisor 
of b  a. We write a ¤ b .mod n/ if a is not equivalent to b, modulo n. 
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Polynomials 
Given a nonnegative integer d , a polynomial in n of degree d is a function p.n/ 
of the form 

p.n/ D 
d X 

i D0 

a i n i ; 

where the constants a 0 ; a 1 ; : : : ; a d are the coefficients of the polynomial and 
a d ¤ 0. A polynomial is asymptotically positive if and only if a d > 0. For an 
asymptotically positive polynomial p.n/ of degree d , we have p.n/ D ‚.n d /. For 
any real constant a  0, the function n a is monotonically increasing, and for any 
real constant a හ 0, the function n a is monotonically decreasing. We say that a 
function f .n/ is polynomially bounded if f .n/ D O.n k / for some constant k. 

Exponentials 
For all real a > 0, m, and n, we have the following identities: 
a 0 D 1 ; 
a 1 D a ; 
a 1 D 1=a ; 

.a m / n D a mn ; 

.a m / n D .a n / m ; 
a m a n D a mCn : 

For all n and a  1, the function a n is monotonically increasing in n. When 
convenient, we assume that 0 0 D 1. 

We can relate the rates of growth of polynomials and exponentials by the fol- 
lowing fact. For all real constants a > 1 and b, we have 

lim 
n!1 

n b 

a n D 0 ; 

from which we can conclude that 
n b D o.a n / : (3.13) 
Thus, any exponential function with a base strictly greater than 1 grows faster than 
any polynomial function. 

Using e to denote 2:71828 : : :, the base of the natural-logarithm function, we 
have for all real x , 

e x D 1 C x C 
x 2 

2Š 
C 
x 3 

3Š 
C    D 

1 X 

i D0 

x i 

i Š 
; 
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where <Š= denotes the factorial function deûned later in this section. For all real x , 
we have the inequality 
1 C x හ e x ; (3.14) 
where equality holds only when x D 0. When jx j හ 1, we have the approximation 
1 C x හ e x හ 1 C x C x 2 : (3.15) 
When x ! 0, the approximation of e x by 1 C x is quite good: 
e x D 1 C x C ‚.x 2 / : 

(In this equation, the asymptotic notation is used to describe the limiting behavior 
as x ! 0 rather than as x ! 1.) We have for all x , 
lim 
n!1 

 
1 C 

x 
n 

Í n 
D e x : (3.16) 

Logarithms 
We use the following notations: 

lg n D log 2 n (binary logarithm) , 
ln n D log e n (natural logarithm) , 

lg k n D .lg n/ k (exponentiation) , 
lg lg n D lg.lg n/ (composition) . 
We adopt the following notational convention: in the absence of parentheses, a 
logarithm function applies only to the next term in the formula, so that lg n C 1 
means .lg n/ C 1 and not lg.n C 1/. 

For any constant b > 1, the function log b n is undeûned if n හ 0, strictly 
increasing if n > 0, negative if 0 < n < 1, positive if n > 1, and 0 if n D 1. For 
all real a > 0, b > 0, c > 0, and n, we have 

a D b log b a ; (3.17) 
log c .ab/ D log c a C log c b ; (3.18) 

log b a n D n log b a ; 

log b a D 
log c a 
log c b 

; (3.19) 
log b .1=a/ D  log b a ; (3.20) 

log b a D 
1 

log a b 
; 

a log b c D c log b a ; (3.21) 
where, in each equation above, logarithm bases are not 1. 
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By equation (3.19), changing the base of a logarithm from one constant to an- 
other changes the value of the logarithm by only a constant factor. Consequently, 
we often use the notation <lg n= when we don’t care about constant factors, such 
as in O-notation. Computer scientists ûnd 2 to be the most natural base for loga- 
rithms because so many algorithms and data structures involve splitting a problem 
into two parts. 

There is a simple series expansion for ln.1 C x/ when jx j < 1: 

ln.1 C x/ D x  
x 2 

2 
C 
x 3 

3 
 
x 4 

4 
C 
x 5 

5 
    : (3.22) 

We also have the following inequalities for x > 1: 
x 

1 C x 
හ ln.1 C x/ හ x ; (3.23) 

where equality holds only for x D 0. 
We say that a function f .n/ is polylogarithmically bounded if f .n/ D O.lg k n/ 

for some constant k. We can relate the growth of polynomials and polylogarithms 
by substituting lg n for n and 2 a for a in equation (3.13). For all real constants 
a > 0 and b, we have 
lg b n D o.n a / : (3.24) 
Thus, any positive polynomial function grows faster than any polylogarithmic func- 
tion. 

Factorials 
The notation nŠ (read <n factorial=) is deûned for integers n  0 as 

nŠ D 

( 
1 if n D 0 ; 
n  .n  1/Š if n > 0 : 

Thus, nŠ D 1  2  3    n. 
A weak upper bound on the factorial function is nŠ හ n n , since each of the n 

terms in the factorial product is at most n. Stirling’s approximation, 

nŠ D 
p 
2�n 

 n 
e 

Í n 
Î 
1 C ‚ 

Î 
1 
n 

ÏÏ 
; (3.25) 

where e is the base of the natural logarithm, gives us a tighter upper bound, and a 
lower bound as well. Exercise 3.3-4 asks you to prove the three facts 

nŠ D o.n n / ; (3.26) 
nŠ D !.2 n / ; (3.27) 

lg.nŠ/ D ‚.n lg n/ ; (3.28) 
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where Stirling’s approximation is helpful in proving equation (3.28). The following 
equation also holds for all n  1: 

nŠ D 
p 
2�n 

 n 
e 

Í n 
e ˛ n (3.29) 

where 
1 

12n C 1 
< ˛ n < 

1 
12n 

: 

Functional iteration 

We use the notation f .i/ .n/ to denote the function f .n/ iteratively applied i times 
to an initial value of n. Formally, let f .n/ be a function over the reals. For non- 
negative integers i , we recursively deûne 

f .i/ .n/ D 

( 
n if i D 0 ; 
f .f .i 1/ .n// if i > 0 : (3.30) 

For example, if f .n/ D 2n, then f .i/ .n/ D 2 i n. 

The iterated logarithm function 

We use the notation lg  n (read <log star of n=) to denote the iterated logarithm, de- 
ûned as follows. Let lg .i/ n be as deûned above, with f .n/ D lg n. Because the log- 
arithm of a nonpositive number is undeûned, lg .i/ n is deûned only if lg .i 1/ n > 0. 
Be sure to distinguish lg .i/ n (the logarithm function applied i times in succession, 
starting with argument n) from lg i n (the logarithm of n raised to the i th power). 
Then we deûne the iterated logarithm function as 
lg  n D min ̊  

i  0 W lg .i/ n හ 1 
 
: 

The iterated logarithm is a very slowly growing function: 
lg  2 D 1 ; 
lg  4 D 2 ; 

lg  16 D 3 ; 
lg  65536 D 4 ; 

lg  .2 65536 / D 5 : 

Since the number of atoms in the observable universe is estimated to be about 10 80 , 
which is much less than 2 65536 D 10 65536= lg 10  10 19;728 , we rarely encounter an 
input size n for which lg  n > 5. 
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Fibonacci numbers 
We deûne the Fibonacci numbers F i , for i  0, as follows: 

F i D 

Ĩ 
0 if i D 0 ; 
1 if i D 1 ; 
F i 1 C F i 2 if i  2 : 

(3.31) 

Thus, after the ûrst two, each Fibonacci number is the sum of the two previous 
ones, yielding the sequence 
0; 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; : : : : 

Fibonacci numbers are related to the golden ratio � and its conjugate y � , which are 
the two roots of the equation 
x 2 D x C 1 : 

As Exercise 3.3-7 asks you to prove, the golden ratio is given by 

� D 
1 C 

p 
5 

2 
(3.32) 

D 1:61803 : : : ; 

and its conjugate, by 

y � D 
1  

p 
5 

2 
(3.33) 

D :61803 : : : : 
Speciûcally, we have 

F i D 
� i  y � i p 

5 
; 

which can be proved by induction (Exercise 3.3-8). Since 
ˇ ˇ y � ̌

 ˇ < 1, we have ˇ ˇ y � i ̌
 ˇ 

p 
5 
< 

1 p 
5 

< 
1 
2 
; 

which implies that 

F i D 
ç 
� i p 
5 

C 
1 
2 

è 
; (3.34) 

which is to say that the i th Fibonacci number F i is equal to � i = 
p 
5 rounded to the 

nearest integer. Thus, Fibonacci numbers grow exponentially. 
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Exercises 
3.3-1 
Show that if f .n/ and g.n/ are monotonically increasing functions, then so are 
the functions f .n/ C g.n/ and f .g.n//, and if f .n/ and g.n/ are in addition 
nonnegative, then f .n/  g.n/ is monotonically increasing. 
3.3-2 
Prove that b˛ncCd.1  ˛/ne D n for any integer n and real number ˛ in the range 
0 හ ˛ හ 1. 
3.3-3 
Use equation (3.14) or other means to show that .n C o.n// k D ‚.n k / for any real 
constant k. Conclude that dne k D ‚.n k / and bnc k D ‚.n k /. 
3.3-4 
Prove the following: 
a. Equation (3.21). 
b. Equations (3.26)3(3.28). 
c. lg.‚.n// D ‚.lg n/. 

? 3.3-5 
Is the function dlg neŠ polynomially bounded? Is the function dlg lg neŠ polynomi- 
ally bounded? 

? 3.3-6 
Which is asymptotically larger: lg.lg  n/ or lg  .lg n/? 
3.3-7 
Show that the golden ratio � and its conjugate y � both satisfy the equation 
x 2 D x C 1. 
3.3-8 
Prove by induction that the i th Fibonacci number satisûes the equation 

F i D .� i  y � i /= 
p 
5 ; 

where � is the golden ratio and y � is its conjugate. 
3.3-9 
Show that k lg k D ‚.n/ implies k D ‚.n= lg n/. 
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Problems 

3-1 Asymptotic behavior of polynomials 
Let 

p.n/ D 
d X 

i D0 

a i n i ; 

where a d > 0, be a degree-d polynomial in n, and let k be a constant. Use the 
deûnitions of the asymptotic notations to prove the following properties. 
a. If k  d , then p.n/ D O.n k /. 
b. If k හ d , then p.n/ D �.n k /. 

c. If k D d , then p.n/ D ‚.n k /. 
d. If k > d , then p.n/ D o.n k /. 

e. If k < d , then p.n/ D !.n k /. 

3-2 Relative asymptotic growths 
Indicate, for each pair of expressions .A;B/ in the table below whether A is O , o, 
�, !, or ‚ of B . Assume that k  1, � > 0, and c > 1 are constants. Write your 
answer in the form of the table with <yes= or <no= written in each box. 

A B O o � ! ‚ 
a. lg k n n  

b. n k c n 

c. p 
n n sin n 

d. 2 n 2 n=2 

e. n lg c c lg n 

f. lg.nŠ/ lg.n n / 

3-3 Ordering by asymptotic growth rates 
a. Rank the following functions by order of growth. That is, ûnd an arrange- 

ment g 1 ; g 2 ; : : : ; g 30 of the functions satisfying g 1 D �.g 2 /, g 2 D �.g 3 /, . . . , 
g 29 D �.g 30 /. Partition your list into equivalence classes such that functions 
f .n/ and g.n/ belong to the same class if and only if f .n/ D ‚.g.n//. 
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lg.lg  n/ 2 lg  n . 
p 
2/ lg n n 2 nŠ .lg n/Š 

.3=2/ n n 3 lg 2 n lg.nŠ/ 2 2 n 
n 1= lg n 

ln ln n lg  n n  2 n n lg lg n ln n 1 

2 lg n .lg n/ lg n e n 4 lg n .n C 1/Š 
p lg n 

lg  .lg n/ 2 
p 
2 lg n n 2 n n lg n 2 2 nC1 

b. Give an example of a single nonnegative function f .n/ such that for all func- 
tions g i .n/ in part (a), f .n/ is neither O.g i .n// nor �.g i .n//. 

3-4 Asymptotic notation properties 
Let f .n/ and g.n/ be asymptotically positive functions. Prove or disprove each of 
the following conjectures. 
a. f .n/ D O.g.n// implies g.n/ D O.f .n//. 

b. f .n/ C g.n/ D ‚.min ff .n/; g.n/g/. 

c. f .n/ D O.g.n// implies lg f .n/ D O.lg g.n//, where lg g.n/  1 and 
f .n/  1 for all sufûciently large n. 

d. f .n/ D O.g.n// implies 2 f .n/ D O 
ã 
2 g.n/ 

ä . 
e. f .n/ D O ..f .n// 2 /. 

f. f .n/ D O.g.n// implies g.n/ D �.f .n// . 

g. f .n/ D ‚.f .n=2//. 

h. f .n/ C o.f .n// D ‚.f .n//. 

3-5 Manipulating asymptotic notation 
Let f .n/ and g.n/ be asymptotically positive functions. Prove the following iden- 
tities: 
a. ‚.‚.f .n/// D ‚.f .n//. 

b. ‚.f .n// C O.f .n// D ‚.f .n//. 

c. ‚.f .n// C ‚.g.n// D ‚.f .n/ C g.n//. 

d. ‚.f .n//  ‚.g.n// D ‚.f .n/  g.n//. 
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e. Argue that for any real constants a 1 ; b 1 > 0 and integer constants k 1 ; k 2 , the 
following asymptotic bound holds: 

.a 1 n/ k 1 lg k 2 .a 2 n/ D ‚.n k 1 lg k 2 n/ : 

? f. Prove that for S ෂ Z, we have 
X 

k2S 

‚.f .k// D ‚ 

 X 

k2S 

f .k/ 

! 

; 

assuming that both sums converge. 

? g. Show that for S ෂ Z, the following asymptotic bound does not necessarily 
hold, even assuming that both products converge, by giving a counterexample: 

Y 

k2S 

‚.f .k// D ‚ 

 Y 

k2S 

f .k/ 

! 

: 

3-6 Variations on O and ˝ 
Some authors deûne �-notation in a slightly different way than this textbook does. 
We’ll use the nomenclature 1 

� (read <omega inûnity=) for this alternative deûni- 
tion. We say that f .n/ D 

1 
�.g.n// if there exists a positive constant c such that 

f .n/  cg.n/  0 for inûnitely many integers n. 
a. Show that for any two asymptotically nonnegative functions f .n/ and g.n/, we 

have f .n/ D O.g.n// or f .n/ D 
1 
�.g.n// (or both). 

b. Show that there exist two asymptotically nonnegative functions f .n/ and g.n/ 
for which neither f .n/ D O.g.n// nor f .n/ D �.g.n// holds. 

c. Describe the potential advantages and disadvantages of using 1 
�-notation in- 

stead of �-notation to characterize the running times of programs. 
Some authors also deûne O in a slightly different manner. We’ll use O 0 for the 
alternative deûnition: f .n/ D O 0 .g.n// if and only if jf .n/j D O.g.n//. 
d. What happens to each direction of the <if and only if= in Theorem 3.1 on 

page 56 if we substitute O 0 for O but still use �? 
Some authors deûne e O (read <soft-oh=) to mean O with logarithmic factors ig- 
nored: 
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e O.g.n// D ff .n/ W there exist positive constants c , k, and n 0 such that 
0 හ f .n/ හ cg.n/ lg k .n/ for all n  n 0 g : 

e. Deûne e � and e ‚ in a similar manner. Prove the corresponding analog to Theo- 
rem 3.1. 

3-7 Iterated functions 
We can apply the iteration operator  used in the lg  function to any monotonically 
increasing function f .n/ over the reals. For a given constant c 2 R, we deûne the 
iterated function f  

c by 
f  
c .n/ D min ̊  

i  0 W f .i/ .n/ හ c 
 
; 

which need not be well deûned in all cases. In other words, the quantity f  
c .n/ is 

the minimum number of iterated applications of the function f required to reduce 
its argument down to c or less. 

For each of the functions f .n/ and constants c in the table below, give as tight 
a bound as possible on f  

c .n/. If there is no i such that f .i/ .n/ හ c , write <unde- 
ûned= as your answer. 

f .n/ c f  
c .n/ 

a. n  1 0 
b. lg n 1 
c. n=2 1 
d. n=2 2 
e. p 

n 2 
f. p 

n 1 
g. n 1=3 2 

Chapter notes 

Knuth [259] traces the origin of the O-notation to a number-theory text by P. Bach- 
mann in 1892. The o-notation was invented by E. Landau in 1909 for his discussion 
of the distribution of prime numbers. The � and ‚ notations were advocated by 
Knuth [265] to correct the popular, but technically sloppy, practice in the litera- 
ture of using O-notation for both upper and lower bounds. As noted earlier in 
this chapter, many people continue to use the O-notation where the ‚-notation is 
more technically precise. The soft-oh notation e O in Problem 3-6 was introduced 
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by Babai, Luks, and Seress [31], although it was originally written as O. Some 
authors now deûne e O.g.n// as ignoring factors that are logarithmic in g.n/, rather 
than in n. With this deûnition, we can say that n2 n D e O.2 n /, but with the deû- 
nition in Problem 3-6, this statement is not true. Further discussion of the history 
and development of asymptotic notations appears in works by Knuth [259, 265] 
and Brassard and Bratley [70]. 
Not all authors deûne the asymptotic notations in the same way, although the 

various deûnitions agree in most common situations. Some of the alternative def- 
initions encompass functions that are not asymptotically nonnegative, as long as 
their absolute values are appropriately bounded. 
Equation (3.29) is due to Robbins [381]. Other properties of elementary math- 

ematical functions can be found in any good mathematical reference, such as 
Abramowitz and Stegun [1] or Zwillinger [468], or in a calculus book, such as 
Apostol [19] or Thomas et al. [433]. Knuth [259] and Graham, Knuth, and Patash- 
nik [199] contain a wealth of material on discrete mathematics as used in computer 
science. 
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The divide-and-conquer method is a powerful strategy for designing asymptotically 
efûcient algorithms. We saw an example of divide-and-conquer in Section 2.3.1 
when learning about merge sort. In this chapter, we’ll explore applications of the 
divide-and-conquer method and acquire valuable mathematical tools that you can 
use to solve the recurrences that arise when analyzing divide-and-conquer algo- 
rithms. 
Recall that for divide-and-conquer, you solve a given problem (instance) recur- 

sively. If the problem is small enough4the base case4you just solve it directly 
without recursing. Otherwise4the recursive case4you perform three character- 
istic steps: 
Divide the problem into one or more subproblems that are smaller instances of the 

same problem. 
Conquer the subproblems by solving them recursively. 
Combine the subproblem solutions to form a solution to the original problem. 
A divide-and-conquer algorithm breaks down a large problem into smaller sub- 
problems, which themselves may be broken down into even smaller subproblems, 
and so forth. The recursion bottoms out when it reaches a base case and the sub- 
problem is small enough to solve directly without further recursing. 

Recurrences 
To analyze recursive divide-and-conquer algorithms, we’ll need some mathemat- 
ical tools. A recurrence is an equation that describes a function in terms of its 
value on other, typically smaller, arguments. Recurrences go hand in hand with 
the divide-and-conquer method because they give us a natural way to characterize 
the running times of recursive algorithms mathematically. You saw an example 
of a recurrence in Section 2.3.2 when we analyzed the worst-case running time of 
merge sort. 
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For the divide-and-conquer matrix-multiplication algorithms presented in Sec- 
tions 4.1 and 4.2, we’ll derive recurrences that describe their worst-case running 
times. To understand why these two divide-and-conquer algorithms perform the 
way they do, you’ll need to learn how to solve the recurrences that describe their 
running times. Sections 4.334.7 teach several methods for solving recurrences. 
These sections also explore the mathematics behind recurrences, which can give 
you stronger intuition for designing your own divide-and-conquer algorithms. 
We want to get to the algorithms as soon as possible. So, let’s just cover a few 

recurrence basics now, and then we’ll look more deeply at recurrences, especially 
how to solve them, after we see the matrix-multiplication examples. 

The general form of a recurrence is an equation or inequality that describes a 
function over the integers or reals using the function itself. It contains two or more 
cases, depending on the argument. If a case involves the recursive invocation of the 
function on different (usually smaller) inputs, it is a recursive case. If a case does 
not involve a recursive invocation, it is a base case. There may be zero, one, or 
many functions that satisfy the statement of the recurrence. The recurrence is well 
defined if there is at least one function that satisûes it, and ill defined otherwise. 

Algorithmic recurrences 
We’ll be particularly interested in recurrences that describe the running times of 
divide-and-conquer algorithms. A recurrence T .n/ is algorithmic if, for every 
sufûciently large threshold constant n 0 > 0, the following two properties hold: 
1. For all n < n 0 , we have T .n/ D ‚.1/. 
2. For all n  n 0 , every path of recursion terminates in a deûned base case within 

a ûnite number of recursive invocations. 
Similar to how we sometimes abuse asymptotic notation (see page 60), when a 
function is not deûned for all arguments, we understand that this deûnition is con- 
strained to values of n for which T .n/ is deûned. 

Why would a recurrence T .n/ that represents a (correct) divide-and-conquer al- 
gorithm’s worst-case running time satisfy these properties for all sufûciently large 
threshold constants? The ûrst property says that there exist constants c 1 ; c 2 such 
that 0 < c 1 හ T .n/ හ c 2 for n < n 0 . For every legal input, the algorithm must 
output the solution to the problem it’s solving in ûnite time (see Section 1.1). Thus 
we can let c 1 be the minimum amount of time to call and return from a procedure, 
which must be positive, because machine instructions need to be executed to in- 
voke a procedure. The running time of the algorithm may not be deûned for some 
values of n if there are no legal inputs of that size, but it must be deûned for at 
least one, or else the <algorithm= doesn’t solve any problem. Thus we can let c 2 be 
the algorithm’s maximum running time on any input of size n < n 0 , where n 0 is 



78 Chapter 4 Divide-and-Conquer 

sufûciently large that the algorithm solves at least one problem of size less than n 0 . 
The maximum is well deûned, since there are at most a ûnite number of inputs of 
size less than n 0 , and there is at least one if n 0 is sufûciently large. Consequently, 
T .n/ satisûes the ûrst property. If the second property fails to hold for T .n/, then 
the algorithm isn’t correct, because it would end up in an inûnite recursive loop or 
otherwise fail to compute a solution. Thus, it stands to reason that a recurrence for 
the worst-case running time of a correct divide-and-conquer algorithm would be 
algorithmic. 

Conventions for recurrences 
We adopt the following convention: 

Whenever a recurrence is stated without an explicit base case, we assume 
that the recurrence is algorithmic. 

That means you’re free to pick any sufûciently large threshold constant n 0 for the 
range of base cases where T .n/ D ‚.1/. Interestingly, the asymptotic solutions of 
most algorithmic recurrences you’re likely to see when analyzing algorithms don’t 
depend on the choice of threshold constant, as long as it’s large enough to make 
the recurrence well deûned. 
Asymptotic solutions of algorithmic divide-and-conquer recurrences also don’t 

tend to change when we drop any üoors or ceilings in a recurrence deûned on the 
integers to convert it to a recurrence deûned on the reals. Section 4.7 gives a suf- 
ûcient condition for ignoring üoors and ceilings that applies to most of the divide- 
and-conquer recurrences you’re likely to see. Consequently, we’ll frequently state 
algorithmic recurrences without üoors and ceilings. Doing so generally simpliûes 
the statement of the recurrences, as well as any math that we do with them. 

You may sometimes see recurrences that are not equations, but rather inequal- 
ities, such as T .n/ හ 2T .n=2/ C ‚.n/. Because such a recurrence states only 
an upper bound on T .n/, we express its solution using O-notation rather than 
‚-notation. Similarly, if the inequality is reversed to T .n/  2T .n=2/ C ‚.n/, 
then, because the recurrence gives only a lower bound on T .n/, we use �-notation 
in its solution. 

Divide-and-conquer and recurrences 
This chapter illustrates the divide-and-conquer method by presenting and using 
recurrences to analyze two divide-and-conquer algorithms for multiplying n  n 
matrices. Section 4.1 presents a simple divide-and-conquer algorithm that solves 
a matrix-multiplication problem of size n by breaking it into four subproblems of 
size n=2, which it then solves recursively. The running time of the algorithm can 
be characterized by the recurrence 
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T .n/ D 8T .n=2/ C ‚.1/ ; 

which turns out to have the solution T .n/ D ‚.n 3 /. Although this divide-and- 
conquer algorithm is no faster than the straightforward method that uses a triply 
nested loop, it leads to an asymptotically faster divide-and-conquer algorithm due 
to V. Strassen, which we’ll explore in Section 4.2. Strassen’s remarkable algorithm 
divides a problem of size n into seven subproblems of size n=2 which it solves 
recursively. The running time of Strassen’s algorithm can be described by the 
recurrence 
T .n/ D 7T .n=2/ C ‚.n 2 / ; 

which has the solution T .n/ D ‚.n lg 7 / D O.n 2:81 /. Strassen’s algorithm beats 
the straightforward looping method asymptotically. 
These two divide-and-conquer algorithms both break a problem of size n into 

several subproblems of size n=2. Although it is common when using divide-and- 
conquer for all the subproblems to have the same size, that isn’t always the case. 
Sometimes it’s productive to divide a problem of size n into subproblems of differ- 
ent sizes, and then the recurrence describing the running time reüects the irregular- 
ity. For example, consider a divide-and-conquer algorithm that divides a problem 
of size n into one subproblem of size n=3 and another of size 2n=3, taking ‚.n/ 
time to divide the problem and combine the solutions to the subproblems. Then the 
algorithm’s running time can be described by the recurrence 
T .n/ D T .n=3/ C T .2n=3/ C ‚.n/ ; 

which turns out to have solution T .n/ D ‚.n lg n/. We’ll even see an algorithm in 
Chapter 9 that solves a problem of size n by recursively solving a subproblem of 
size n=5 and another of size 7n=10, taking ‚.n/ time for the divide and combine 
steps. Its performance satisûes the recurrence 
T .n/ D T .n=5/ C T .7n=10/ C ‚.n/ ; 

which has solution T .n/ D ‚.n/. 
Although divide-and-conquer algorithms usually create subproblems with sizes 

a constant fraction of the original problem size, that’s not always the case. For 
example, a recursive version of linear search (see Exercise 2.1-4) creates just one 
subproblem, with one element less than the original problem. Each recursive call 
takes constant time plus the time to recursively solve a subproblem with one less 
element, leading to the recurrence 
T .n/ D T .n  1/ C ‚.1/ ; 

which has solution T .n/ D ‚.n/. Nevertheless, the vast majority of efûcient 
divide-and-conquer algorithms solve subproblems that are a constant fraction of 
the size of the original problem, which is where we’ll focus our efforts. 
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Solving recurrences 
After learning about divide-and-conquer algorithms for matrix multiplication in 
Sections 4.1 and 4.2, we’ll explore several mathematical tools for solving recur- 
rences4that is, for obtaining asymptotic ‚-, O-, or �-bounds on their solutions. 
We want simple-to-use tools that can handle the most commonly occurring situa- 
tions. But we also want general tools that work, perhaps with a little more effort, 
for less common cases. This chapter offers four methods for solving recurrences: 
 In the substitution method (Section 4.3), you guess the form of a bound and 

then use mathematical induction to prove your guess correct and solve for con- 
stants. This method is perhaps the most robust method for solving recurrences, 
but it also requires you to make a good guess and to produce an inductive proof. 

 The recursion-tree method (Section 4.4) models the recurrence as a tree whose 
nodes represent the costs incurred at various levels of the recursion. To solve 
the recurrence, you determine the costs at each level and add them up, perhaps 
using techniques for bounding summations from Section A.2. Even if you don’t 
use this method to formally prove a bound, it can be helpful in guessing the form 
of the bound for use in the substitution method. 

 The master method (Sections 4.5 and 4.6) is the easiest method, when it applies. 
It provides bounds for recurrences of the form 

T .n/ D aT .n=b/ C f .n/ ; 

where a > 0 and b > 1 are constants and f .n/ is a given <driving= function. 
This type of recurrence tends to arise more frequently in the study of algorithms 
than any other. It characterizes a divide-and-conquer algorithm that creates 
a subproblems, each of which is 1=b times the size of the original problem, 
using f .n/ time for the divide and combine steps. To apply the master method, 
you need to memorize three cases, but once you do, you can easily determine 
asymptotic bounds on running times for many divide-and-conquer algorithms. 

 The Akra-Bazzi method (Section 4.7) is a general method for solving divide- 
and-conquer recurrences. Although it involves calculus, it can be used to attack 
more complicated recurrences than those addressed by the master method. 

4.1 Multiplying square matrices 

We can use the divide-and-conquer method to multiply square matrices. If you’ve 
seen matrices before, then you probably know how to multiply them. (Otherwise, 
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you should read Section D.1.) Let A D .a ik / and B D .b jk / be square n  n 
matrices. The matrix product C D A  B is also an n  n matrix, where for 
i; j D 1; 2; : : : ; n, the .i; j / entry of C is given by 

c ij D 
n X 

kD1 

a ik  b kj : (4.1) 

Generally, we’ll assume that the matrices are dense, meaning that most of the n 2 

entries are not 0, as opposed to sparse, where most of the n 2 entries are 0 and the 
nonzero entries can be stored more compactly than in an n  n array. 

Computing the matrix C requires computing n 2 matrix entries, each of which is 
the sum of n pairwise products of input elements from A and B . The MATRIX- 
MULTIPLY procedure implements this strategy in a straightforward manner, and 
it generalizes the problem slightly. It takes as input three n  n matrices A, B , 
and C , and it adds the matrix product A  B to C , storing the result in C . Thus, it 
computes C D C C A  B , instead of just C D A  B . If only the product A  B is 
needed, just initialize all n 2 entries of C to 0 before calling the procedure, which 
takes an additional ‚.n 2 / time. We’ll see that the cost of matrix multiplication 
asymptotically dominates this initialization cost. 

MATRIX-MULTIPLY .A;B;C; n/ 
1 for i D 1 to n // compute entries in each of n rows 
2 for j D 1 to n // compute n entries in row i 
3 for k D 1 to n 
4 c ij D c ij C a ik  b kj // add in another term of equation (4.1) 

The pseudocode for MATRIX-MULTIPLY works as follows. The for loop of 
lines 134 computes the entries of each row i , and within a given row i , the for loop 
of lines 234 computes each of the entries c ij for each column j . Each iteration of 
the for loop of lines 334 adds in one more term of equation (4.1). 

Because each of the triply nested for loops runs for exactly n iterations, and 
each execution of line 4 takes constant time, the MATRIX-MULTIPLY procedure 
operates in ‚.n 3 / time. Even if we add in the ‚.n 2 / time for initializing C to 0, 
the running time is still ‚.n 3 /. 

A simple divide-and-conquer algorithm 

Let’s see how to compute the matrix product A  B using divide-and-conquer. For 
n > 1, the divide step partitions the n  n matrices into four n=2  n=2 submatrices. 
We’ll assume that n is an exact power of 2, so that as the algorithm recurses, we 
are guaranteed that the submatrix dimensions are integer. (Exercise 4.1-1 asks you 
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to relax this assumption.) As with MATRIX-MULTIPLY, we’ll actually compute 
C D C C A  B . But to simplify the math behind the algorithm, let’s assume that C 
has been initialized to the zero matrix, so that we are indeed computing C D A  B . 

The divide step views each of the n  n matrices A, B , and C as four n=2  n=2 
submatrices: 
A D 

Î 
A 11 A 12 
A 21 A 22 

Ï 
; B D 

Î 
B 11 B 12 
B 21 B 22 

Ï 
; C D 

Î 
C 11 C 12 
C 21 C 22 

Ï 
: (4.2) 

Then we can write the matrix product as Î 
C 11 C 12 
C 21 C 22 

Ï 
D 

Î 
A 11 A 12 
A 21 A 22 

ÏÎ 
B 11 B 12 
B 21 B 22 

Ï 
(4.3) 

D 
Î 
A 11  B 11 C A 12  B 21 A 11  B 12 C A 12  B 22 
A 21  B 11 C A 22  B 21 A 21  B 12 C A 22  B 22 

Ï 
; (4.4) 

which corresponds to the equations 
C 11 D A 11  B 11 C A 12  B 21 ; (4.5) 
C 12 D A 11  B 12 C A 12  B 22 ; (4.6) 
C 21 D A 21  B 11 C A 22  B 21 ; (4.7) 
C 22 D A 21  B 12 C A 22  B 22 : (4.8) 
Equations (4.5)3(4.8) involve eight n=2  n=2 multiplications and four additions 
of n=2  n=2 submatrices. 

As we look to transform these equations to an algorithm that can be described 
with pseudocode, or even implemented for real, there are two common approaches 
for implementing the matrix partitioning. 
One strategy is to allocate temporary storage to hold A’s four submatrices A 11 , 

A 12 , A 21 , and A 22 and B ’s four submatrices B 11 , B 12 , B 21 , and B 22 . Then copy 
each element in A and B to its corresponding location in the appropriate submatrix. 
After the recursive conquer step, copy the elements in each of C ’s four submatrices 
C 11 , C 12 , C 21 , and C 22 to their corresponding locations in C . This approach takes 
‚.n 2 / time, since 3n 2 elements are copied. 

The second approach uses index calculations and is faster and more practical. A 
submatrix can be speciûed within a matrix by indicating where within the matrix 
the submatrix lies without touching any matrix elements. Partitioning a matrix 
(or recursively, a submatrix) only involves arithmetic on this location information, 
which has constant size independent of the size of the matrix. Changes to the 
submatrix elements update the original matrix, since they occupy the same storage. 
Going forward, we’ll assume that index calculations are used and that partition- 

ing can be performed in ‚.1/ time. Exercise 4.1-3 asks you to show that it makes 
no difference to the overall asymptotic running time of matrix multiplication, how- 
ever, whether the partitioning of matrices uses the ûrst method of copying or the 
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second method of index calculation. But for other divide-and-conquer matrix cal- 
culations, such as matrix addition, it can make a difference, as Exercise 4.1-4 asks 
you to show. 

The procedure MATRIX-MULTIPLY-RECURSIVE uses equations (4.5)3(4.8) to 
implement a divide-and-conquer strategy for square-matrix multiplication. Like 
MATRIX-MULTIPLY, the procedure MATRIX-MULTIPLY-RECURSIVE computes 
C D C C A  B since, if necessary, C can be initialized to 0 before the procedure 
is called in order to compute only C D A  B . 

MATRIX-MULTIPLY-RECURSIVE .A;B;C; n/ 
1 if n == 1 
2 // Base case. 
3 c 11 D c 11 C a 11  b 11 
4 return 
5 // Divide. 
6 partition A, B , and C into n=2  n=2 submatrices 

A 11 ; A 12 ; A 21 ; A 22 ; B 11 ; B 12 ; B 21 ; B 22 ; 
and C 11 ; C 12 ; C 21 ; C 22 ; respectively 

7 // Conquer. 
8 MATRIX-MULTIPLY-RECURSIVE .A 11 ; B 11 ; C 11 ; n=2/ 
9 MATRIX-MULTIPLY-RECURSIVE .A 11 ; B 12 ; C 12 ; n=2/ 
10 MATRIX-MULTIPLY-RECURSIVE .A 21 ; B 11 ; C 21 ; n=2/ 
11 MATRIX-MULTIPLY-RECURSIVE .A 21 ; B 12 ; C 22 ; n=2/ 
12 MATRIX-MULTIPLY-RECURSIVE .A 12 ; B 21 ; C 11 ; n=2/ 
13 MATRIX-MULTIPLY-RECURSIVE .A 12 ; B 22 ; C 12 ; n=2/ 
14 MATRIX-MULTIPLY-RECURSIVE .A 22 ; B 21 ; C 21 ; n=2/ 
15 MATRIX-MULTIPLY-RECURSIVE .A 22 ; B 22 ; C 22 ; n=2/ 

As we walk through the pseudocode, we’ll derive a recurrence to characterize 
its running time. Let T .n/ be the worst-case time to multiply two n  n matrices 
using this procedure. 

In the base case, when n D 1, line 3 performs just the one scalar multiplica- 
tion and one addition, which means that T .1/ D ‚.1/. As is our convention for 
constant base cases, we can omit this base case in the statement of the recurrence. 

The recursive case occurs when n > 1. As discussed, we’ll use index calcula- 
tions to partition the matrices in line 6, taking ‚.1/ time. Lines 8315 recursively 
call MATRIX-MULTIPLY-RECURSIVE a total of eight times. The ûrst four recur- 
sive calls compute the ûrst terms of equations (4.5)3(4.8), and the subsequent four 
recursive calls compute and add in the second terms. Each recursive call adds the 
product of a submatrix of A and a submatrix of B to the appropriate submatrix 
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of C in place, thanks to index calculations. Because each recursive call multiplies 
two n=2  n=2 matrices, thereby contributing T .n=2/ to the overall running time, 
the time taken by all eight recursive calls is 8T .n=2/. There is no combine step, 
because the matrix C is updated in place. The total time for the recursive case, 
therefore, is the sum of the partitioning time and the time for all the recursive calls, 
or ‚.1/ C 8T .n=2/. 

Thus, omitting the statement of the base case, our recurrence for the running 
time of MATRIX-MULTIPLY-RECURSIVE is 
T .n/ D 8T .n=2/ C ‚.1/ : (4.9) 
As we’ll see from the master method in Section 4.5, recurrence (4.9) has the solu- 
tion T .n/ D ‚.n 3 /, which means that it has the same asymptotic running time as 
the straightforward MATRIX-MULTIPLY procedure. 

Why is the ‚.n 3 / solution to this recurrence so much larger than the ‚.n lg n/ 
solution to the merge-sort recurrence (2.3) on page 41? After all, the recurrence 
for merge sort contains a ‚.n/ term, whereas the recurrence for recursive matrix 
multiplication contains only a ‚.1/ term. 
Let’s think about what the recursion tree for recurrence (4.9) would look like 

as compared with the recursion tree for merge sort, illustrated in Figure 2.5 on 
page 43. The factor of 2 in the merge-sort recurrence determines how many chil- 
dren each tree node has, which in turn determines how many terms contribute to the 
sum at each level of the tree. In comparison, for the recurrence (4.9) for MATRIX- 
MULTIPLY-RECURSIVE, each internal node in the recursion tree has eight children, 
not two, leading to a <bushier= recursion tree with many more leaves, despite the 
fact that the internal nodes are each much smaller. Consequently, the solution to 
recurrence (4.9) grows much more quickly than the solution to recurrence (2.3), 
which is borne out in the actual solutions: ‚.n 3 / versus ‚.n lg n/. 

Exercises 
Note: You may wish to read Section 4.5 before attempting some of these exercises. 
4.1-1 
Generalize MATRIX-MULTIPLY-RECURSIVE to multiply n  n matrices for which 
n is not necessarily an exact power of 2. Give a recurrence describing its running 
time. Argue that it runs in ‚.n 3 / time in the worst case. 
4.1-2 
How quickly can you multiply a kn  n matrix (kn rows and n columns) by an 
n  kn matrix, where k  1, using MATRIX-MULTIPLY-RECURSIVE as a subrou- 
tine? Answer the same question for multiplying an n  kn matrix by a kn  n 
matrix. Which is asymptotically faster, and by how much? 
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4.1-3 
Suppose that instead of partitioning matrices by index calculation in MATRIX- 
MULTIPLY-RECURSIVE, you copy the appropriate elements of A, B , and C into 
separate n=2  n=2 submatrices A 11 , A 12 , A 21 , A 22 ; B 11 , B 12 , B 21 , B 22 ; and C 11 , 
C 12 , C 21 , C 22 , respectively. After the recursive calls, you copy the results from C 11 , 
C 12 , C 21 , and C 22 back into the appropriate places in C . How does recurrence (4.9) 
change, and what is its solution? 
4.1-4 
Write pseudocode for a divide-and-conquer algorithm MATRIX-ADD-RECURSIVE 
that sums two n  n matrices A and B by partitioning each of them into four 
n=2  n=2 submatrices and then recursively summing corresponding pairs of sub- 
matrices. Assume that matrix partitioning uses ‚.1/-time index calculations. 
Write a recurrence for the worst-case running time of MATRIX-ADD-RECURSIVE, 
and solve your recurrence. What happens if you use ‚.n 2 /-time copying to imple- 
ment the partitioning instead of index calculations? 

4.2 Strassen’s algorithm for matrix multiplication 

You might ûnd it hard to imagine that any matrix multiplication algorithm could 
take less than ‚.n 3 / time, since the natural deûnition of matrix multiplication re- 
quires n 3 scalar multiplications. Indeed, many mathematicians presumed that it 
was not possible to multiply matrices in o.n 3 / time until 1969, when V. Strassen 
[424] published a remarkable recursive algorithm for multiplying n  n matrices. 
Strassen’s algorithm runs in ‚.n lg 7 / time. Since lg 7 D 2:8073549 : : : , Strassen’s 
algorithm runs in O.n 2:81 / time, which is asymptotically better than the ‚.n 3 / 
MATRIX-MULTIPLY and MATRIX-MULTIPLY-RECURSIVE procedures. 
The key to Strassen’s method is to use the divide-and-conquer idea from the 

MATRIX-MULTIPLY-RECURSIVE procedure, but make the recursion tree less 
bushy. We’ll actually increase the work for each divide and combine step by a 
constant factor, but the reduction in bushiness will pay off. We won’t reduce the 
bushiness from the eight-way branching of recurrence (4.9) all the way down to 
the two-way branching of recurrence (2.3), but we’ll improve it just a little, and 
that will make a big difference. Instead of performing eight recursive multiplica- 
tions of n=2  n=2 matrices, Strassen’s algorithm performs only seven. The cost 
of eliminating one matrix multiplication is several new additions and subtractions 
of n=2  n=2 matrices, but still only a constant number. Rather than saying <addi- 
tions and subtractions= everywhere, we’ll adopt the common terminology of call- 
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ing them both <additions= because subtraction is structurally the same computation 
as addition, except for a change of sign. 

To get an inkling how the number of multiplications might be reduced, as well 
as why reducing the number of multiplications might be desirable for matrix calcu- 
lations, suppose that you have two numbers x and y , and you want to calculate the 
quantity x 2  y 2 . The straightforward calculation requires two multiplications to 
square x and y , followed by one subtraction (which you can think of as a <negative 
addition=). But let’s recall the old algebra trick x 2  y 2 D x 2  xy C xy  y 2 D 
x.x  y/ C y.x  y/ D .x C y/.x  y/. Using this formulation of the desired 
quantity, you could instead compute the sum x C y and the difference x  y and 
then multiply them, requiring only a single multiplication and two additions. At 
the cost of an extra addition, only one multiplication is needed to compute an ex- 
pression that looks as if it requires two. If x and y are scalars, there’s not much 
difference: both approaches require three scalar operations. If x and y are large 
matrices, however, the cost of multiplying outweighs the cost of adding, in which 
case the second method outperforms the ûrst, although not asymptotically. 
Strassen’s strategy for reducing the number of matrix multiplications at the ex- 

pense of more matrix additions is not at all obvious4perhaps the biggest under- 
statement in this book! As with MATRIX-MULTIPLY-RECURSIVE, Strassen’s al- 
gorithm uses the divide-and-conquer method to compute C D C C A  B , where 
A, B , and C are all n  n matrices and n is an exact power of 2. Strassen’s algo- 
rithm computes the four submatrices C 11 , C 12 , C 21 , and C 22 of C from equations 
(4.5)3(4.8) on page 82 in four steps. We’ll analyze costs as we go along to develop 
a recurrence T .n/ for the overall running time. Let’s see how it works: 
1. If n D 1, the matrices each contain a single element. Perform a single scalar 

multiplication and a single scalar addition, as in line 3 of MATRIX-MULTIPLY- 
RECURSIVE, taking ‚.1/ time, and return. Otherwise, partition the input ma- 
trices A and B and output matrix C into n=2  n=2 submatrices, as in equa- 
tion (4.2). This step takes ‚.1/ time by index calculation, just as in MATRIX- 
MULTIPLY-RECURSIVE. 

2. Create n=2  n=2 matrices S 1 ; S 2 ; : : : ; S 10 , each of which is the sum or dif- 
ference of two submatrices from step 1. Create and zero the entries of seven 
n=2  n=2 matrices P 1 ; P 2 ; : : : ; P 7 to hold seven n=2  n=2 matrix products. 
All 17 matrices can be created, and the P i initialized, in ‚.n 2 / time. 

3. Using the submatrices from step 1 and the matrices S 1 ; S 2 ; : : : ; S 10 created in 
step 2, recursively compute each of the seven matrix products P 1 ; P 2 ; : : : ; P 7 , 
taking 7T .n=2/ time. 

4. Update the four submatrices C 11 ; C 12 ; C 21 ; C 22 of the result matrix C by adding 
or subtracting various P i matrices, which takes ‚.n 2 / time. 



4.2 Strassen’s algorithm for matrix multiplication 87 

We’ll see the details of steps 234 in a moment, but we already have enough 
information to set up a recurrence for the running time of Strassen’s method. As is 
common, the base case in step 1 takes ‚.1/ time, which we’ll omit when stating 
the recurrence. When n > 1, steps 1, 2, and 4 take a total of ‚.n 2 / time, and 
step 3 requires seven multiplications of n=2  n=2 matrices. Hence, we obtain the 
following recurrence for the running time of Strassen’s algorithm: 
T .n/ D 7T .n=2/ C ‚.n 2 / : (4.10) 
Compared with MATRIX-MULTIPLY-RECURSIVE, we have traded off one recur- 
sive submatrix multiplication for a constant number of submatrix additions. Once 
you understand recurrences and their solutions, you’ll be able to see why this trade- 
off actually leads to a lower asymptotic running time. By the master method in Sec- 
tion 4.5, recurrence (4.10) has the solution T .n/ D ‚.n lg 7 / D O.n 2:81 /, beating 
the ‚.n 3 /-time algorithms. 
Now, let’s delve into the details. Step 2 creates the following 10 matrices: 

S 1 D B 12  B 22 ; 
S 2 D A 11 C A 12 ; 
S 3 D A 21 C A 22 ; 
S 4 D B 21  B 11 ; 
S 5 D A 11 C A 22 ; 
S 6 D B 11 C B 22 ; 
S 7 D A 12  A 22 ; 
S 8 D B 21 C B 22 ; 
S 9 D A 11  A 21 ; 
S 10 D B 11 C B 12 : 

This step adds or subtracts n=2  n=2 matrices 10 times, taking ‚.n 2 / time. 
Step 3 recursively multiplies n=2  n=2 matrices 7 times to compute the follow- 

ing n=2  n=2 matrices, each of which is the sum or difference of products of A 
and B submatrices: 
P 1 D A 11  S 1 .D A 11  B 12  A 11  B 22 / ; 
P 2 D S 2  B 22 .D A 11  B 22 C A 12  B 22 / ; 
P 3 D S 3  B 11 .D A 21  B 11 C A 22  B 11 / ; 
P 4 D A 22  S 4 .D A 22  B 21  A 22  B 11 / ; 
P 5 D S 5  S 6 .D A 11  B 11 C A 11  B 22 C A 22  B 11 C A 22  B 22 / ; 
P 6 D S 7  S 8 .D A 12  B 21 C A 12  B 22  A 22  B 21  A 22  B 22 / ; 
P 7 D S 9  S 10 .D A 11  B 11 C A 11  B 12  A 21  B 11  A 21  B 12 / : 
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The only multiplications that the algorithm performs are those in the middle col- 
umn of these equations. The right-hand column just shows what these products 
equal in terms of the original submatrices created in step 1, but the terms are never 
explicitly calculated by the algorithm. 
Step 4 adds to and subtracts from the four n=2  n=2 submatrices of the prod- 

uct C the various P i matrices created in step 3. We start with 

C 11 D C 11 C P 5 C P 4  P 2 C P 6 : 

Expanding the calculation on the right-hand side, with the expansion of each P i 
on its own line and vertically aligning terms that cancel out, we see that the update 
to C 11 equals 
A 11  B 11 C A 11  B 22 C A 22  B 11 C A 22  B 22 

 A 22  B 11 C A 22  B 21 
 A 11  B 22  A 12  B 22 

 A 22  B 22  A 22  B 21 C A 12  B 22 C A 12  B 21 

A 11  B 11 C A 12  B 21 ; 

which corresponds to equation (4.5). Similarly, setting 

C 12 D C 12 C P 1 C P 2 

means that the update to C 12 equals 
A 11  B 12  A 11  B 22 

C A 11  B 22 C A 12  B 22 

A 11  B 12 C A 12  B 22 ; 

corresponding to equation (4.6). Setting 

C 21 D C 21 C P 3 C P 4 

means that the update to C 21 equals 
A 21  B 11 C A 22  B 11 

 A 22  B 11 C A 22  B 21 

A 21  B 11 C A 22  B 21 ; 

corresponding to equation (4.7). Finally, setting 

C 22 D C 22 C P 5 C P 1  P 3  P 7 

means that the update to C 22 equals 
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A 11  B 11 C A 11  B 22 C A 22  B 11 C A 22  B 22 
 A 11  B 22 C A 11  B 12 

 A 22  B 11  A 21  B 11 
 A 11  B 11  A 11  B 12 C A 21  B 11 C A 21  B 12 

A 22  B 22 C A 21  B 12 ; 

which corresponds to equation (4.8). Altogether, since we add or subtract n=2n=2 
matrices 12 times in step 4, this step indeed takes ‚.n 2 / time. 
We can see that Strassen’s remarkable algorithm, comprising steps 134, pro- 

duces the correct matrix product using 7 submatrix multiplications and 18 subma- 
trix additions. We can also see that recurrence (4.10) characterizes its running time. 
Since Section 4.5 shows that this recurrence has the solution T .n/ D ‚.n lg 7 / D 
o.n 3 /, Strassen’s method asymptotically beats the ‚.n 3 / MATRIX-MULTIPLY and 
MATRIX-MULTIPLY-RECURSIVE procedures. 

Exercises 
Note: You may wish to read Section 4.5 before attempting some of these exercises. 
4.2-1 
Use Strassen’s algorithm to compute the matrix product Î 
1 3 
7 5 

ÏÎ 
6 8 
4 2 

Ï 
: 

Show your work. 
4.2-2 
Write pseudocode for Strassen’s algorithm. 
4.2-3 
What is the largest k such that if you can multiply 3  3 matrices using k multi- 
plications (not assuming commutativity of multiplication), then you can multiply 
n  n matrices in o.n lg 7 / time? What is the running time of this algorithm? 
4.2-4 
V. Pan discovered a way of multiplying 68  68 matrices using 132,464 multi- 
plications, a way of multiplying 70  70 matrices using 143,640 multiplications, 
and a way of multiplying 72  72 matrices using 155,424 multiplications. Which 
method yields the best asymptotic running time when used in a divide-and-conquer 
matrix-multiplication algorithm? How does it compare with Strassen’s algorithm? 
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4.2-5 
Show how to multiply the complex numbers a C bi and c C di using only three 
multiplications of real numbers. The algorithm should take a, b, c , and d as input 
and produce the real component ac  bd and the imaginary component ad C bc 
separately. 
4.2-6 
Suppose that you have a ‚.n ˛ /-time algorithm for squaring n  n matrices, where 
˛  2. Show how to use that algorithm to multiply two different n  n matrices in 
‚.n ˛ / time. 

4.3 The substitution method for solving recurrences 

Now that you have seen how recurrences characterize the running times of divide- 
and-conquer algorithms, let’s learn how to solve them. We start in this section 
with the substitution method, which is the most general of the four methods in this 
chapter. The substitution method comprises two steps: 
1. Guess the form of the solution using symbolic constants. 
2. Use mathematical induction to show that the solution works, and ûnd the con- 

stants. 
To apply the inductive hypothesis, you substitute the guessed solution for the func- 
tion on smaller values4hence the name <substitution method.= This method is 
powerful, but you must guess the form of the answer. Although generating a good 
guess might seem difûcult, a little practice can quickly improve your intuition. 

You can use the substitution method to establish either an upper or a lower bound 
on a recurrence. It’s usually best not to try to do both at the same time. That is, 
rather than trying to prove a ‚-bound directly, ûrst prove an O-bound, and then 
prove an �-bound. Together, they give you a ‚-bound (Theorem 3.1 on page 56). 
As an example of the substitution method, let’s determine an asymptotic upper 

bound on the recurrence: 
T .n/ D 2T .bn=2c/ C ‚.n/ : (4.11) 
This recurrence is similar to recurrence (2.3) on page 41 for merge sort, except 
for the üoor function, which ensures that T .n/ is deûned over the integers. Let’s 
guess that the asymptotic upper bound is the same4T .n/ D O.n lg n/4and use 
the substitution method to prove it. 
We’ll adopt the inductive hypothesis that T .n/ හ cn lg n for all n  n 0 , where 

we’ll choose the speciûc constants c > 0 and n 0 > 0 later, after we see what 
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constraints they need to obey. If we can establish this inductive hypothesis, we can 
conclude that T .n/ D O.n lg n/. It would be dangerous to use T .n/ D O.n lg n/ 
as the inductive hypothesis because the constants matter, as we’ll see in a moment 
in our discussion of pitfalls. 

Assume by induction that this bound holds for all numbers at least as big as n 0 
and less than n. In particular, therefore, if n  2n 0 , it holds for bn=2c, yielding 
T .bn=2c/ හ c bn=2c lg.bn=2c/. Substituting into recurrence (4.11)4hence the 
name <substitution= method4yields 
T .n/ හ 2.c bn=2c lg.bn=2c// C ‚.n/ 

හ 2.c.n=2/ lg.n=2// C ‚.n/ 
D cn lg.n=2/ C ‚.n/ 
D cn lg n  cn lg 2 C ‚.n/ 
D cn lg n  cn C ‚.n/ 
හ cn lg n ; 

where the last step holds if we constrain the constants n 0 and c to be sufûciently 
large that for n  2n 0 , the quantity cn dominates the anonymous function hidden 
by the ‚.n/ term. 
We’ve shown that the inductive hypothesis holds for the inductive case, but we 

also need to prove that the inductive hypothesis holds for the base cases of the 
induction, that is, that T .n/ හ cn lg n when n 0 හ n < 2n 0 . As long as n 0 > 1 (a 
new constraint on n 0 ), we have lg n > 0, which implies that n lg n > 0. So let’s 
pick n 0 D 2. Since the base case of recurrence (4.11) is not stated explicitly, by our 
convention, T .n/ is algorithmic, which means that T .2/ and T .3/ are constant (as 
they should be if they describe the worst-case running time of any real program on 
inputs of size 2 or 3). Picking c D max fT .2/; T .3/g yields T .2/ හ c < .2 lg 2/c 
and T .3/ හ c < .3 lg 3/c , establishing the inductive hypothesis for the base cases. 

Thus, we have T .n/ හ cn lg n for all n  2, which implies that the solution to 
recurrence (4.11) is T .n/ D O.n lg n/. 

In the algorithms literature, people rarely carry out their substitution proofs to 
this level of detail, especially in their treatment of base cases. The reason is that for 
most algorithmic divide-and-conquer recurrences, the base cases are all handled in 
pretty much the same way. You ground the induction on a range of values from a 
convenient positive constant n 0 up to some constant n 0 0 > n 0 such that for n  n 0 0 , 
the recurrence always bottoms out in a constant-sized base case between n 0 and n 0 0 . 
(This example used n 0 0 D 2n 0 .) Then, it’s usually apparent, without spelling out 
the details, that with a suitably large choice of the leading constant (such as c for 
this example), the inductive hypothesis can be made to hold for all the values in the 
range from n 0 to n 0 0 . 
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Making a good guess 
Unfortunately, there is no general way to correctly guess the tightest asymptotic 
solution to an arbitrary recurrence. Making a good guess takes experience and, 
occasionally, creativity. Fortunately, learning some recurrence-solving heuristics, 
as well as playing around with recurrences to gain experience, can help you become 
a good guesser. You can also use recursion trees, which we’ll see in Section 4.4, to 
help generate good guesses. 
If a recurrence is similar to one you’ve seen before, then guessing a similar 

solution is reasonable. As an example, consider the recurrence 
T .n/ D 2T .n=2 C 17/ C ‚.n/ ; 
deûned on the reals. This recurrence looks somewhat like the merge-sort recur- 
rence (2.3), but it’s more complicated because of the added <17= in the argument 
to T on the right-hand side. Intuitively, however, this additional term shouldn’t 
substantially affect the solution to the recurrence. When n is large, the relative 
difference between n=2 and n=2 C 17 is not that large: both cut n nearly in half. 
Consequently, it makes sense to guess that T .n/ D O.n lg n/, which you can verify 
is correct using the substitution method (see Exercise 4.3-1). 

Another way to make a good guess is to determine loose upper and lower bounds 
on the recurrence and then reduce your range of uncertainty. For example, you 
might start with a lower bound of T .n/ D �.n/ for recurrence (4.11), since the 
recurrence includes the term ‚.n/, and you can prove an initial upper bound of 
T .n/ D O.n 2 /. Then split your time between trying to lower the upper bound and 
trying to raise the lower bound until you converge on the correct, asymptotically 
tight solution, which in this case is T .n/ D ‚.n lg n/. 

A trick of the trade: subtracting a low-order term 

Sometimes, you might correctly guess a tight asymptotic bound on the solution 
of a recurrence, but somehow the math fails to work out in the induction proof. 
The problem frequently turns out to be that the inductive assumption is not strong 
enough. The trick to resolving this problem is to revise your guess by subtracting 
a lower-order term when you hit such a snag. The math then often goes through. 

Consider the recurrence 
T .n/ D 2T .n=2/ C ‚.1/ (4.12) 
deûned on the reals. Let’s guess that the solution is T .n/ D O.n/ and try to show 
that T .n/ හ cn for n  n 0 , where we choose the constants c; n 0 > 0 suitably. 
Substituting our guess into the recurrence, we obtain 
T .n/ හ 2.c.n=2// C ‚.1/ 

D cn C ‚.1/ ; 
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which, unfortunately, does not imply that T .n/ හ cn for any choice of c . We might 
be tempted to try a larger guess, say T .n/ D O.n 2 /. Although this larger guess 
works, it provides only a loose upper bound. It turns out that our original guess of 
T .n/ D O.n/ is correct and tight. In order to show that it is correct, however, we 
must strengthen our inductive hypothesis. 

Intuitively, our guess is nearly right: we are off only by ‚.1/, a lower-order 
term. Nevertheless, mathematical induction requires us to prove the exact form of 
the inductive hypothesis. Let’s try our trick of subtracting a lower-order term from 
our previous guess: T .n/ හ cn  d , where d  0 is a constant. We now have 
T .n/ හ 2.c.n=2/  d/ C ‚.1/ 

D cn  2d C ‚.1/ 
හ cn  d  .d  ‚.1// 
හ cn  d 

as long as we choose d to be larger than the anonymous upper-bound constant 
hidden by the ‚-notation. Subtracting a lower-order term works! Of course, we 
must not forget to handle the base case, which is to choose the constant c large 
enough that cn  d dominates the implicit base cases. 
You might ûnd the idea of subtracting a lower-order term to be counterintuitive. 

After all, if the math doesn’t work out, shouldn’t you increase your guess? Not 
necessarily! When the recurrence contains more than one recursive invocation 
(recurrence (4.12) contains two), if you add a lower-order term to the guess, then 
you end up adding it once for each of the recursive invocations. Doing so takes 
you even further away from the inductive hypothesis. On the other hand, if you 
subtract a lower-order term from the guess, then you get to subtract it once for each 
of the recursive invocations. In the above example, we subtracted the constant d 
twice because the coefûcient of T .n=2/ is 2. We ended up with the inequality 
T .n/ හ cn  d  .d  ‚.1//, and we readily found a suitable value for d . 

Avoiding pitfalls 
Avoid using asymptotic notation in the inductive hypothesis for the substitution 
method because it’s error prone. For example, for recurrence (4.11), we can falsely 
<prove= that T .n/ D O.n/ if we unwisely adopt T .n/ D O.n/ as our inductive 
hypothesis: 
T .n/ හ 2  O.bn=2c/ C ‚.n/ 

D 2  O.n/ C ‚.n/ 
D O.n/ : Ń wrong! 
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The problem with this reasoning is that the constant hidden by the O-notation 
changes. We can expose the fallacy by repeating the <proof= using an explicit 
constant. For the inductive hypothesis, assume that T .n/ හ cn for all n  n 0 , 
where c; n 0 > 0 are constants. Repeating the ûrst two steps in the inequality chain 
yields 
T .n/ හ 2.c bn=2c/ C ‚.n/ 

හ cn C ‚.n/ : 
Now, indeed cnC‚.n/ D O.n/, but the constant hidden by the O-notation must be 
larger than c because the anonymous function hidden by the ‚.n/ is asymptotically 
positive. We cannot take the third step to conclude that cn C ‚.n/ හ cn, thus 
exposing the fallacy. 

When using the substitution method, or more generally mathematical induction, 
you must be careful that the constants hidden by any asymptotic notation are the 
same constants throughout the proof. Consequently, it’s best to avoid asymptotic 
notation in your inductive hypothesis and to name constants explicitly. 
Here’s another fallacious use of the substitution method to show that the solution 

to recurrence (4.11) is T .n/ D O.n/. We guess T .n/ හ cn and then argue 
T .n/ හ 2.c bn=2c/ C ‚.n/ 

හ cn C ‚.n/ 
D O.n/ ; Ń wrong! 

since c is a positive constant. The mistake stems from the difference between our 
goal4to prove that T .n/ D O.n/4and our inductive hypothesis4to prove that 
T .n/ හ cn. When using the substitution method, or in any inductive proof, you 
must prove the exact statement of the inductive hypothesis. In this case, we must 
explicitly prove that T .n/ හ cn to show that T .n/ D O.n/. 

Exercises 
4.3-1 
Use the substitution method to show that each of the following recurrences deûned 
on the reals has the asymptotic solution speciûed: 
a. T .n/ D T .n  1/ C n has solution T .n/ D O.n 2 /. 
b. T .n/ D T .n=2/ C ‚.1/ has solution T .n/ D O.lg n/. 
c. T .n/ D 2T .n=2/ C n has solution T .n/ D ‚.n lg n/. 
d. T .n/ D 2T .n=2 C 17/ C n has solution T .n/ D O.n lg n/. 
e. T .n/ D 2T .n=3/ C ‚.n/ has solution T .n/ D ‚.n/. 
f. T .n/ D 4T .n=2/ C ‚.n/ has solution T .n/ D ‚.n 2 /. 
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4.3-2 
The solution to the recurrence T .n/ D 4T .n=2/ C n turns out to be T .n/ D ‚.n 2 /. 
Show that a substitution proof with the assumption T .n/ හ cn 2 fails. Then show 
how to subtract a lower-order term to make a substitution proof work. 
4.3-3 
The recurrence T .n/ D 2T .n  1/ C 1 has the solution T .n/ D O.2 n /. Show that a 
substitution proof fails with the assumption T .n/ හ c2 n , where c > 0 is constant. 
Then show how to subtract a lower-order term to make a substitution proof work. 

4.4 The recursion-tree method for solving recurrences 

Although you can use the substitution method to prove that a solution to a recur- 
rence is correct, you might have trouble coming up with a good guess. Drawing 
out a recursion tree, as we did in our analysis of the merge-sort recurrence in Sec- 
tion 2.3.2, can help. In a recursion tree, each node represents the cost of a single 
subproblem somewhere in the set of recursive function invocations. You typically 
sum the costs within each level of the tree to obtain the per-level costs, and then you 
sum all the per-level costs to determine the total cost of all levels of the recursion. 
Sometimes, however, adding up the total cost takes more creativity. 

A recursion tree is best used to generate intuition for a good guess, which you 
can then verify by the substitution method. If you are meticulous when drawing out 
a recursion tree and summing the costs, however, you can use a recursion tree as a 
direct proof of a solution to a recurrence. But if you use it only to generate a good 
guess, you can often tolerate a small amount of <sloppiness,= which can simplify 
the math. When you verify your guess with the substitution method later on, your 
math should be precise. This section demonstrates how you can use recursion trees 
to solve recurrences, generate good guesses, and gain intuition for recurrences. 

An illustrative example 
Let’s see how a recursion tree can provide a good guess for an upper-bound solution 
to the recurrence 
T .n/ D 3T .n=4/ C ‚.n 2 / : (4.13) 
Figure 4.1 shows how to derive the recursion tree for T .n/ D 3T .n=4/ C cn 2 , 
where the constant c > 0 is the upper-bound constant in the ‚.n 2 / term. Part (a) 
of the ûgure shows T .n/, which part (b) expands into an equivalent tree represent- 
ing the recurrence. The cn 2 term at the root represents the cost at the top level 
of recursion, and the three subtrees of the root represent the costs incurred by the 
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Total: O.n 2 / 

Figure 4.1 Constructing a recursion tree for the recurrence T .n/ D 3T .n=4/ C cn 2 . Part (a) 
shows T .n/, which progressively expands in (b)–(d) to form the recursion tree. The fully expanded 
tree in (d) has height log 4 n. 
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subproblems of size n=4. Part (c) shows this process carried one step further by 
expanding each node with cost T .n=4/ from part (b). The cost for each of the three 
children of the root is c.n=4/ 2 . We continue expanding each node in the tree by 
breaking it into its constituent parts as determined by the recurrence. 

Because subproblem sizes decrease by a factor of 4 every time we go down one 
level, the recursion must eventually bottom out in a base case where n < n 0 . By 
convention, the base case is T .n/ D ‚.1/ for n < n 0 , where n 0 > 0 is any 
threshold constant sufûciently large that the recurrence is well deûned. For the 
purpose of intuition, however, let’s simplify the math a little. Let’s assume that n 
is an exact power of 4 and that the base case is T .1/ D ‚.1/. As it turns out, these 
assumptions don’t affect the asymptotic solution. 
What’s the height of the recursion tree? The subproblem size for a node at 

depth i is n=4 i . As we descend the tree from the root, the subproblem size hits 
n D 1 when n=4 i D 1 or, equivalently, when i D log 4 n. Thus, the tree has 
internal nodes at depths 0; 1; 2; : : : ; log 4 n  1 and leaves at depth log 4 n. 
Part (d) of Figure 4.1 shows the cost at each level of the tree. Each level has 

three times as many nodes as the level above, and so the number of nodes at 
depth i is 3 i . Because subproblem sizes reduce by a factor of 4 for each level 
further from the root, each internal node at depth i D 0; 1; 2; : : : ; log 4 n  1 has a 
cost of c.n=4 i / 2 . Multiplying, we see that the total cost of all nodes at a given 
depth i is 3 i c.n=4 i / 2 D .3=16/ i cn 2 . The bottom level, at depth log 4 n, con- 
tains 3 log 4 n D n log 4 3 leaves (using equation (3.21) on page 66). Each leaf con- 
tributes ‚.1/, leading to a total leaf cost of ‚.n log 4 3 /. 

Now we add up the costs over all levels to determine the cost for the entire tree: 

T .n/ D cn 2 C 
3 
16 
cn 2 C 

Î 
3 
16 

Ï 2 

cn 2 C    C 
Î 
3 
16 

Ï log 4 n 

cn 2 C ‚.n log 4 3 / 

D 
log 4 n X 

i D0 

Î 
3 
16 

Ï i 
cn 2 C ‚.n log 4 3 / 

< 
1 X 

i D0 

Î 
3 
16 

Ï i 
cn 2 C ‚.n log 4 3 / 

D 
1 

1  .3=16/ 
cn 2 C ‚.n log 4 3 / (by equation (A.7) on page 1142) 

D 
16 
13 
cn 2 C ‚.n log 4 3 / 

D O.n 2 / (‚.n log 4 3 / D O.n 0:8 / D O.n 2 /) . 
We’ve derived the guess of T .n/ D O.n 2 / for the original recurrence. In this exam- 
ple, the coefûcients of cn 2 form a decreasing geometric series. By equation (A.7), 
the sum of these coefûcients is bounded from above by the constant 16=13. Since 
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the root’s contribution to the total cost is cn 2 , the cost of the root dominates the 
total cost of the tree. 

In fact, if O.n 2 / is indeed an upper bound for the recurrence (as we’ll verify in 
a moment), then it must be a tight bound. Why? The ûrst recursive call contributes 
a cost of ‚.n 2 /, and so �.n 2 / must be a lower bound for the recurrence. 
Let’s now use the substitution method to verify that our guess is correct, namely, 

that T .n/ D O.n 2 / is an upper bound for the recurrence T .n/ D 3T .n=4/C‚.n 2 /. 
We want to show that T .n/ හ dn 2 for some constant d > 0. Using the same 
constant c > 0 as before, we have 
T .n/ හ 3T .n=4/ C cn 2 

හ 3d.n=4/ 2 C cn 2 

D 
3 
16 
dn 2 C cn 2 

හ dn 2 ; 

where the last step holds if we choose d  .16=13/c . 
For the base case of the induction, let n 0 > 0 be a sufûciently large threshold 

constant that the recurrence is well deûned when T .n/ D ‚.1/ for n < n 0 . We 
can pick d large enough that d dominates the constant hidden by the ‚, in which 
case dn 2  d  T .n/ for 1 හ n < n 0 , completing the proof of the base case. 

The substitution proof we just saw involves two named constants, c and d . We 
named c and used it to stand for the upper-bound constant hidden and guaranteed to 
exist by the ‚-notation. We cannot pick c arbitrarily4it’s given to us4although, 
for any such c , any constant c 0  c also sufûces. We also named d , but we were 
free to choose any value for it that ût our needs. In this example, the value of d 
happened to depend on the value of c , which is ûne, since d is constant if c is 
constant. 

An irregular example 
Let’s ûnd an asymptotic upper bound for another, more irregular, example. Fig- 
ure 4.2 shows the recursion tree for the recurrence 
T .n/ D T .n=3/ C T .2n=3/ C ‚.n/ : (4.14) 
This recursion tree is unbalanced, with different root-to-leaf paths having different 
lengths. Going left at any node produces a subproblem of one-third the size, and 
going right produces a subproblem of two-thirds the size. Let n 0 > 0 be the implicit 
threshold constant such that T .n/ D ‚.1/ for 0 < n < n 0 , and let c represent the 
upper-bound constant hidden by the ‚.n/ term for n  n 0 . There are actually two 
n 0 constants here4one for the threshold in the recurrence, and the other for the 
threshold in the ‚-notation, so we’ll let n 0 be the larger of the two constants. 
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Figure 4.2 A recursion tree for the recurrence T .n/ D T .n=3/ C T .2n=3/ C cn. 

The height of the tree runs down the right edge of the tree, corresponding to sub- 
problems of sizes n; .2=3/n; .4=9/n; : : : ;‚.1/ with costs bounded by cn; c.2n=3/; 
c.4n=9/; : : : ;‚.1/, respectively. We hit the rightmost leaf when .2=3/ h n < n 0 හ 
.2=3/ h1 n, which happens when h D blog 3=2 .n=n 0 /cC 1 since, applying the üoor 
bounds in equation (3.2) on page 64 with x D log 3=2 .n=n 0 /, we have .2=3/ h n D 
.2=3/ bxcC1 n < .2=3/ x n D .n 0 =n/n D n 0 and .2=3/ h1 n D .2=3/ bxc n > .2=3/ x n 
D .n 0 =n/n D n 0 . Thus, the height of the tree is h D ‚.lg n/. 
We’re now in a position to understand the upper bound. Let’s postpone dealing 

with the leaves for a moment. Summing the costs of internal nodes across each 
level, we have at most cn per level times the ‚.lg n/ tree height for a total cost of 
O.n lg n/ for all internal nodes. 

It remains to deal with the leaves of the recursion tree, which represent base 
cases, each costing ‚.1/. How many leaves are there? It’s tempting to upper- 
bound their number by the number of leaves in a complete binary tree of height 
h D blog 3=2 .n=n 0 /c C 1, since the recursion tree is contained within such a com- 
plete binary tree. But this approach turns out to give us a poor bound. The 
complete binary tree has 1 node at the root, 2 nodes at depth 1, and gener- 
ally 2 k nodes at depth k. Since the height is h D blog 3=2 nc C 1, there are 
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2 h D 2 blog 3=2 ncC1 හ 2n log 3=2 2 leaves in the complete binary tree, which is an 
upper bound on the number of leaves in the recursion tree. Because the cost of 
each leaf is ‚.1/, this analysis says that the total cost of all leaves in the recursion 
tree is O.n log 3=2 2 / D O.n 1:71 /, which is an asymptotically greater bound than the 
O.n lg n/ cost of all internal nodes. In fact, as we’re about to see, this bound is 
not tight. The cost of all leaves in the recursion tree is O.n/4asymptotically less 
than O.n lg n/. In other words, the cost of the internal nodes dominates the cost of 
the leaves, not vice versa. 

Rather than analyzing the leaves, we could quit right now and prove by substi- 
tution that T .n/ D ‚.n lg n/. This approach works (see Exercise 4.4-3), but it’s 
instructive to understand how many leaves this recursion tree has. You may see 
recurrences for which the cost of leaves dominates the cost of internal nodes, and 
then you’ll be in better shape if you’ve had some experience analyzing the number 
of leaves. 
To ûgure out how many leaves there really are, let’s write a recurrence L.n/ for 

the number of leaves in the recursion tree for T .n/. Since all the leaves in T .n/ 
belong either to the left subtree or the right subtree of the root, we have 

L.n/ D 

( 
1 if n < n 0 ; 
L.n=3/ C L.2n=3/ if n  n 0 : 

(4.15) 

This recurrence is similar to recurrence (4.14), but it’s missing the ‚.n/ term, and 
it contains an explicit base case. Because this recurrence omits the ‚.n/ term, it 
is much easier to solve. Let’s apply the substitution method to show that it has 
solution L.n/ D O.n/. Using the inductive hypothesis L.n/ හ dn for some 
constant d > 0, and assuming that the inductive hypothesis holds for all values 
less than n, we have 
L.n/ D L.n=3/ C L.2n=3/ 

හ dn=3 C 2.dn/=3 
හ dn ; 

which holds for any d > 0. We can now choose d large enough to handle the base 
case L.n/ D 1 for 0 < n < n 0 , for which d D 1 sufûces, thereby completing 
the substitution method for the upper bound on leaves. (Exercise 4.4-2 asks you to 
prove that L.n/ D ‚.n/.) 
Returning to recurrence (4.14) for T .n/, it now becomes apparent that the total 

cost of leaves over all levels must be L.n/  ‚.1/ D ‚.n/. Since we have derived 
the bound of O.n lg n/ on the cost of the internal nodes, it follows that the solution 
to recurrence (4.14) is T .n/ D O.n lg n/ C ‚.n/ D O.n lg n/. (Exercise 4.4-3 
asks you to prove that T .n/ D ‚.n lg n/.) 
It’s wise to verify any bound obtained with a recursion tree by using the sub- 

stitution method, especially if you’ve made simplifying assumptions. But another 
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strategy altogether is to use more-powerful mathematics, typically in the form of 
the master method in the next section (which unfortunately doesn’t apply to recur- 
rence (4.14)) or the Akra-Bazzi method (which does, but requires calculus). Even 
if you use a powerful method, a recursion tree can improve your intuition for what’s 
going on beneath the heavy math. 

Exercises 
4.4-1 
For each of the following recurrences, sketch its recursion tree, and guess a good 
asymptotic upper bound on its solution. Then use the substitution method to verify 
your answer. 
a. T .n/ D T .n=2/ C n 3 . 
b. T .n/ D 4T .n=3/ C n. 
c. T .n/ D 4T .n=2/ C n. 
d. T .n/ D 3T .n  1/ C 1. 

4.4-2 
Use the substitution method to prove that recurrence (4.15) has the asymptotic 
lower bound L.n/ D �.n/. Conclude that L.n/ D ‚.n/. 
4.4-3 
Use the substitution method to prove that recurrence (4.14) has the solution T .n/ D 
�.n lg n/. Conclude that T .n/ D ‚.n lg n/. 
4.4-4 
Use a recursion tree to justify a good guess for the solution to the recurrence 
T .n/ D T .˛n/CT ..1˛/n/C‚.n/, where ̨  is a constant in the range 0 < ˛ < 1. 

4.5 The master method for solving recurrences 

The master method provides a <cookbook= method for solving algorithmic recur- 
rences of the form 
T .n/ D aT .n=b/ C f .n/ ; (4.16) 
where a > 0 and b > 1 are constants. We call f .n/ a driving function, and we call 
a recurrence of this general form a master recurrence. To use the master method, 
you need to memorize three cases, but then you’ll be able to solve many master 
recurrences quite easily. 
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A master recurrence describes the running time of a divide-and-conquer algo- 
rithm that divides a problem of size n into a subproblems, each of size n=b < n . 
The algorithm solves the a subproblems recursively, each in T .n=b/ time. The 
driving function f .n/ encompasses the cost of dividing the problem before the re- 
cursion, as well as the cost of combining the results of the recursive solutions to 
subproblems. For example, the recurrence arising from Strassen’s algorithm is a 
master recurrence with a D 7, b D 2, and driving function f .n/ D ‚.n 2 /. 

As we have mentioned, in solving a recurrence that describes the running time 
of an algorithm, one technicality that we’d often prefer to ignore is the requirement 
that the input size n be an integer. For example, we saw that the running time 
of merge sort can be described by recurrence (2.3), T .n/ D 2T .n=2/ C ‚.n/, 
on page 41. But if n is an odd number, we really don’t have two problems of 
exactly half the size. Rather, to ensure that the problem sizes are integers, we round 
one subproblem down to size bn=2c and the other up to size dn=2e, so the true 
recurrence is T .n/ D T .dn=2e C T .bn=2c/ C ‚.n/. But this üoors-and-ceilings 
recurrence is longer to write and messier to deal with than recurrence (2.3), which 
is deûned on the reals. We’d rather not worry about üoors and ceilings, if we don’t 
have to, especially since the two recurrences have the same ‚.n lg n/ solution. 

The master method allows you to state a master recurrence without üoors and 
ceilings and implicitly infer them. No matter how the arguments are rounded up 
or down to the nearest integer, the asymptotic bounds that it provides remain the 
same. Moreover, as we’ll see in Section 4.6, if you deûne your master recurrence 
on the reals, without implicit üoors and ceilings, the asymptotic bounds still don’t 
change. Thus you can ignore üoors and ceilings for master recurrences. Section 4.7 
gives sufûcient conditions for ignoring üoors and ceilings in more general divide- 
and-conquer recurrences. 

The master theorem 

The master method depends upon the following theorem. 

Theorem 4.1 (Master theorem) 
Let a > 0 and b > 1 be constants, and let f .n/ be a driving function that is 
deûned and nonnegative on all sufûciently large reals. Deûne the recurrence T .n/ 
on n 2 N by 
T .n/ D aT .n=b/ C f .n/ ; (4.17) 
where aT .n=b/ actually means a 0 T .bn=bc/ C a 00 T .dn=be/ for some constants 
a 0  0 and a 00  0 satisfying a D a 0 C a 00 . Then the asymptotic behavior of T .n/ 
can be characterized as follows: 
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1. If there exists a constant � > 0 such that f .n/ D O.n log b a /, then T .n/ D 
‚.n log b a /. 

2. If there exists a constant k  0 such that f .n/ D ‚.n log b a lg k n/, then T .n/ D 
‚.n log b a lg kC1 n/. 

3. If there exists a constant � > 0 such that f .n/ D �.n log b aC /, and if f .n/ addi- 
tionally satisûes the regularity condition af .n=b/ හ cf .n/ for some constant 
c < 1 and all sufûciently large n, then T .n/ D ‚.f .n//. 

Before applying the master theorem to some examples, let’s spend a few mo- 
ments to understand broadly what it says. The function n log b a is called the water- 
shed function. In each of the three cases, we compare the driving function f .n/ to 
the watershed function n log b a . Intuitively, if the watershed function grows asymp- 
totically faster than the driving function, then case 1 applies. Case 2 applies if the 
two functions grow at nearly the same asymptotic rate. Case 3 is the <opposite= of 
case 1, where the driving function grows asymptotically faster than the watershed 
function. But the technical details matter. 
In case 1, not only must the watershed function grow asymptotically faster than 

the driving function, it must grow polynomially faster. That is, the watershed func- 
tion n log b a must be asymptotically larger than the driving function f .n/ by at least 
a factor of ‚.n  / for some constant � > 0. The master theorem then says that the 
solution is T .n/ D ‚.n log b a /. In this case, if we look at the recursion tree for the 
recurrence, the cost per level grows at least geometrically from root to leaves, and 
the total cost of leaves dominates the total cost of the internal nodes. 

In case 2, the watershed and driving functions grow at nearly the same asymp- 
totic rate. But more speciûcally, the driving function grows faster than the wa- 
tershed function by a factor of ‚.lg k n/, where k  0. The master theorem 
says that we tack on an extra lg n factor to f .n/, yielding the solution T .n/ D 
‚.n log b a lg kC1 n/. In this case, each level of the recursion tree costs approxi- 
mately the same4‚.n log b a lg k n/4and there are ‚.lg n/ levels. In practice, the 
most common situation for case 2 occurs when k D 0, in which case the water- 
shed and driving functions have the same asymptotic growth, and the solution is 
T .n/ D ‚.n log b a lg n/. 
Case 3 mirrors case 1. Not only must the driving function grow asymptotically 

faster than the watershed function, it must grow polynomially faster. That is, the 
driving function f .n/ must be asymptotically larger than the watershed function 
n log b a by at least a factor of ‚.n  / for some constant � > 0. Moreover, the driving 
function must satisfy the regularity condition that af .n=b/ හ cf .n/. This condi- 
tion is satisûed by most of the polynomially bounded functions that you’re likely 
to encounter when applying case 3. The regularity condition might not be satisûed 
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if the driving function grows slowly in local areas, yet relatively quickly overall. 
(Exercise 4.5-5 gives an example of such a function.) For case 3, the master theo- 
rem says that the solution is T .n/ D ‚.f .n//. If we look at the recursion tree, the 
cost per level drops at least geometrically from the root to the leaves, and the root 
cost dominates the cost of all other nodes. 
It’s worth looking again at the requirement that there be polynomial separation 

between the watershed function and the driving function for either case 1 or case 3 
to apply. The separation doesn’t need to be much, but it must be there, and it must 
grow polynomially. For example, for the recurrence T .n/ D 4T .n=2/ C n 1:99 

(admittedly not a recurrence you’re likely to see when analyzing an algorithm), the 
watershed function is n log b a D n 2 . Hence the driving function f .n/ D n 1:99 is 
polynomially smaller by a factor of n 0:01 . Thus case 1 applies with � D 0:01. 

Using the master method 

To use the master method, you determine which case (if any) of the master theorem 
applies and write down the answer. 
As a ûrst example, consider the recurrence T .n/ D 9T .n=3/ C n. For this 

recurrence, we have a D 9 and b D 3, which implies that n log b a D n log 3 9 D ‚.n 2 ). 
Since f .n/ D n D O.n 2 / for any constant � හ 1, we can apply case 1 of the 
master theorem to conclude that the solution is T .n/ D ‚.n 2 /. 

Now consider the recurrence T .n/ D T .2n=3/ C 1, which has a D 1 and 
b D 3=2, which means that the watershed function is n log b a D n log 3=2 1 D n 0 D 1. 
Case 2 applies since f .n/ D 1 D ‚.n log b a lg 0 n/ D ‚.1/. The solution to the 
recurrence is T .n/ D ‚.lg n/. 

For the recurrence T .n/ D 3T .n=4/ C n lg n, we have a D 3 and b D 4, which 
means that n log b a D n log 4 3 D O.n 0:793 /. Since f .n/ D n lg n D �.n log 4 3C /, 
where � can be as large as approximately 0:2, case 3 applies as long as the regularity 
condition holds for f .n/. It does, because for sufûciently large n, we have that 
af .n=b/ D 3.n=4/ lg.n=4/ හ .3=4/n lg n D cf .n/ for c D 3=4. By case 3, the 
solution to the recurrence is T .n/ D ‚.n lg n/. 
Next, let’s look at the recurrence T .n/ D 2T .n=2/ C n lg n, where we have 

a D 2, b D 2, and n log b a D n log 2 2 D n. Case 2 applies since f .n/ D n lg n D 
‚.n log b a lg 1 n/. We conclude that the solution is T .n/ D ‚.n lg 2 n/. 

We can use the master method to solve the recurrences we saw in Sections 2.3.2, 
4.1, and 4.2. 
Recurrence (2.3), T .n/ D 2T .n=2/ C ‚.n/, on page 41, characterizes the run- 

ning time of merge sort. Since a D 2 and b D 2, the watershed function is 
n log b a D n log 2 2 D n. Case 2 applies because f .n/ D ‚.n/, and the solution is 
T .n/ D ‚.n lg n/. 



4.5 The master method for solving recurrences 105 

Recurrence (4.9), T .n/ D 8T .n=2/ C ‚.1/, on page 84, describes the running 
time of the simple recursive algorithm for matrix multiplication. We have a D 8 
and b D 2, which means that the watershed function is n log b a D n log 2 8 D n 3 . 
Since n 3 is polynomially larger than the driving function f .n/ D ‚.1/4indeed, 
we have f .n/ D O.n 3 / for any positive � < 34case 1 applies. We conclude 
that T .n/ D ‚.n 3 /. 
Finally, recurrence (4.10), T .n/ D 7T .n=2/ C ‚.n 2 /, on page 87, arose from 

the analysis of Strassen’s algorithm for matrix multiplication. For this recurrence, 
we have a D 7 and b D 2, and the watershed function is n log b a D n lg 7 . Observing 
that lg 7 D 2:807355 : : :, we can let � D 0:8 and bound the driving function 
f .n/ D ‚.n 2 / D O.n lg 7 /. Case 1 applies with solution T .n/ D ‚.n lg 7 /. 

When the master method doesn’t apply 
There are situations where you can’t use the master theorem. For example, it can 
be that the watershed function and the driving function cannot be asymptotically 
compared. We might have that f .n/  n log b a for an inûnite number of values 
of n but also that f .n/  n log b a for an inûnite number of different values of n. 
As a practical matter, however, most of the driving functions that arise in the study 
of algorithms can be meaningfully compared with the watershed function. If you 
encounter a master recurrence for which that’s not the case, you’ll have to resort to 
substitution or other methods. 

Even when the relative growths of the driving and watershed functions can be 
compared, the master theorem does not cover all the possibilities. There is a gap 
between cases 1 and 2 when f .n/ D o.n log b a /, yet the watershed function does 
not grow polynomially faster than the driving function. Similarly, there is a gap 
between cases 2 and 3 when f .n/ D !.n log b a / and the driving function grows 
more than polylogarithmically faster than the watershed function, but it does not 
grow polynomially faster. If the driving function falls into one of these gaps, or if 
the regularity condition in case 3 fails to hold, you’ll need to use something other 
than the master method to solve the recurrence. 

As an example of a driving function falling into a gap, consider the recurrence 
T .n/ D 2T .n=2/ C n= lg n. Since a D 2 and b D 2, the watershed function 
is n log b a D n log 2 2 D n 1 D n. The driving function is n= lg n D o.n/, which 
means that it grows asymptotically more slowly than the watershed function n. 
But n= lg n grows only logarithmically slower than n, not polynomially slower. 
More precisely, equation (3.24) on page 67 says that lg n D o.n  / for any constant 
� > 0, which means that 1= lg n D !.n  / and n= lg n D !.n 1 / D !.n log b a /. 
Thus no constant � > 0 exists such that n= lg n D O.n log b a /, which is required 
for case 1 to apply. Case 2 fails to apply as well, since n= lg n D ‚.n log b a lg k n/, 
where k D 1, but k must be nonnegative for case 2 to apply. 
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To solve this kind of recurrence, you must use another method, such as the sub- 
stitution method (Section 4.3) or the Akra-Bazzi method (Section 4.7). (Exer- 
cise 4.6-3 asks you to show that the answer is ‚.n lg lg n/.) Although the master 
theorem doesn’t handle this particular recurrence, it does handle the overwhelming 
majority of recurrences that tend to arise in practice. 

Exercises 
4.5-1 
Use the master method to give tight asymptotic bounds for the following recur- 
rences. 
a. T .n/ D 2T .n=4/ C 1. 
b. T .n/ D 2T .n=4/ C 

p 
n. 

c. T .n/ D 2T .n=4/ C 
p 
n lg 2 n. 

d. T .n/ D 2T .n=4/ C n. 
e. T .n/ D 2T .n=4/ C n 2 . 

4.5-2 
Professor Caesar wants to develop a matrix-multiplication algorithm that is asymp- 
totically faster than Strassen’s algorithm. His algorithm will use the divide-and- 
conquer method, dividing each matrix into n=4  n=4 submatrices, and the divide 
and combine steps together will take ‚.n 2 / time. Suppose that the professor’s al- 
gorithm creates a recursive subproblems of size n=4. What is the largest integer 
value of a for which his algorithm could possibly run asymptotically faster than 
Strassen’s? 
4.5-3 
Use the master method to show that the solution to the binary-search recurrence 
T .n/ D T .n=2/ C ‚.1/ is T .n/ D ‚.lg n/. (See Exercise 2.3-6 for a description 
of binary search.) 
4.5-4 
Consider the function f .n/ D lg n. Argue that although f .n=2/ < f .n/ , the 
regularity condition af .n=b/ හ cf .n/ with a D 1 and b D 2 does not hold for 
any constant c < 1. Argue further that for any � > 0, the condition in case 3 that 
f .n/ D �.n log b aC / does not hold. 
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4.5-5 
Show that for suitable constants a, b, and � , the function f .n/ D 2 dlg ne satisûes all 
the conditions in case 3 of the master theorem except the regularity condition. 

? 4.6 Proof of the continuous master theorem 

Proving the master theorem (Theorem 4.1) in its full generality, especially dealing 
with the knotty technical issue of üoors and ceilings, is beyond the scope of this 
book. This section, however, states and proves a variant of the master theorem, 
called the continuous master theorem 1 in which the master recurrence (4.17) is 
deûned over sufûciently large positive real numbers. The proof of this version, 
uncomplicated by üoors and ceilings, contains the main ideas needed to understand 
how master recurrences behave. Section 4.7 discusses üoors and ceilings in divide- 
and-conquer recurrences at greater length, presenting sufûcient conditions for them 
not to affect the asymptotic solutions. 
Of course, since you need not understand the proof of the master theorem in 

order to apply the master method, you may choose to skip this section. But if you 
wish to study more-advanced algorithms beyond the scope of this textbook, you 
may appreciate a better understanding of the underlying mathematics, which the 
proof of the continuous master theorem provides. 

Although we usually assume that recurrences are algorithmic and don’t require 
an explicit statement of a base case, we must be much more careful for proofs that 
justify the practice. The lemmas and theorem in this section explicitly state the base 
cases, because the inductive proofs require mathematical grounding. It is common 
in the world of mathematics to be extraordinarily careful proving theorems that 
justify acting more casually in practice. 

The proof of the continuous master theorem involves two lemmas. Lemma 4.2 
uses a slightly simpliûed master recurrence with a threshold constant of n 0 D 1, 
rather than the more general n 0 > 0 threshold constant implied by the unstated base 
case. The lemma employs a recursion tree to reduce the solution of the simpliûed 
master recurrence to that of evaluating a summation. Lemma 4.3 then provides 
asymptotic bounds for the summation, mirroring the three cases of the master the- 
orem. Finally, the continuous master theorem itself (Theorem 4.4) gives asymp- 
totic bounds for master recurrences, while generalizing to an arbitrary threshold 
constant n 0 > 0 as implied by the unstated base case. 

1 This terminology does not mean that either T .n/ or f .n/ need be continuous, only that the domain 
of T .n/ is the real numbers, as opposed to integers. 
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Some of the proofs use the properties described in Problem 3-5 on pages 72373 
to combine and simplify complicated asymptotic expressions. Although Prob- 
lem 3-5 addresses only ‚-notation, the properties enumerated there can be ex- 
tended to O-notation and �-notation as well. 
Here’s the ûrst lemma. 

Lemma 4.2 
Let a > 0 and b > 1 be constants, and let f .n/ be a function deûned over real 
numbers n  1. Then the recurrence 

T .n/ D 

( 
‚.1/ if 0 හ n < 1 ; 
aT .n=b/ C f .n/ if n  1 

has solution 

T .n/ D ‚.n log b a / C 
blog b nc X 

j D0 

a j f .n=b j / : (4.18) 

Proof Consider the recursion tree in Figure 4.3. Let’s look ûrst at its inter- 
nal nodes. The root of the tree has cost f .n/, and it has a children, each with 
cost f .n=b/. (It is convenient to think of a as being an integer, especially when vi- 
sualizing the recursion tree, but the mathematics does not require it.) Each of these 
children has a children, making a 2 nodes at depth 2, and each of the a children 
has cost f .n=b 2 /. In general, there are a j nodes at depth j , and each node has 
cost f .n=b j /. 
Now, let’s move on to understanding the leaves. The tree grows downward un- 

til n=b j becomes less than 1. Thus, the tree has height blog b nc C 1, because 
n=b blog b nc  n=b log b n D 1 and n=b blog b ncC1 < n=b log b n D 1. Since, as we 
have observed, the number of nodes at depth j is a j and all the leaves are at 
depth blog b nc C 1, the tree contains a blog b ncC1 leaves. Using the identity (3.21) 
on page 66, we have a blog b ncC1 හ a log b nC1 D an log b a D O.n log b a /, since a is 
constant, and a blog b ncC1  a log b n D n log b a D �.n log b a /. Consequently, the total 
number of leaves is ‚.n log b a /4asymptotically, the watershed function. 
We are now in a position to derive equation (4.18) by summing the costs of 

the nodes at each depth in the tree, as shown in the ûgure. The ûrst term in the 
equation is the total costs of the leaves. Since each leaf is at depth blog b nc C 1 
and n=b blog b ncC1 < 1, the base case of the recurrence gives the cost of a 
leaf: T .n=b blog b ncC1 / D ‚.1/. Hence the cost of all ‚.n log b a / leaves is 
‚.n log b a /  ‚.1/ D ‚.n log b a / by Problem 3-5(d). The second term in equa- 
tion (4.18) is the cost of the internal nodes, which, in the underlying divide-and- 
conquer algorithm, represents the costs of dividing problems into subproblems and 
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f .n=b/ f .n=b/ f .n=b/ 

f .n=b 2 / f .n=b 2 / f .n=b 2 / f .n=b 2 / f .n=b 2 / f .n=b 2 / f .n=b 2 / f .n=b 2 / f .n=b 2 / 

af .n=b/ 

a 2 f .n=b 2 / 
blog b nc C 1 

a blog b ncC1 

‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.1/ ‚.n log b a / 

Total: ‚.n log b a / C 
blog b nc X 

j D0 

a j f .n=b j / 

Figure 4.3 The recursion tree generated by T .n/ D aT .n=b/ C f .n/. The tree is a complete a-ary 
tree with a blog b ncC1 leaves and height blog b nc C 1. The cost of the nodes at each depth is shown 
at the right, and their sum is given in equation (4.18). 

then recombining the subproblems. Since the cost for all the internal nodes at 
depth j is a j f .n=b j /, the total cost of all internal nodes is 
blog b nc X 

j D0 

a j f .n=b j / : 

As we’ll see, the three cases of the master theorem depend on the distribution of 
the total cost across levels of the recursion tree: 
Case 1: The costs increase geometrically from the root to the leaves, growing by 

a constant factor with each level. 
Case 2: The costs depend on the value of k in the theorem. With k D 0, the costs 

are equal for each level; with k D 1, the costs grow linearly from the root to 
the leaves; with k D 2, the growth is quadratic; and in general, the costs grow 
polynomially in k. 

Case 3: The costs decrease geometrically from the root to the leaves, shrinking 
by a constant factor with each level. 
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The summation in equation (4.18) describes the cost of the dividing and com- 
bining steps in the underlying divide-and-conquer algorithm. The next lemma pro- 
vides asymptotic bounds on the summation’s growth. 

Lemma 4.3 
Let a > 0 and b > 1 be constants, and let f .n/ be a function deûned over real 
numbers n  1. Then the asymptotic behavior of the function 

g.n/ D 
blog b nc X 

j D0 

a j f .n=b j / ; (4.19) 

deûned for n  1, can be characterized as follows: 
1. If there exists a constant � > 0 such that f .n/ D O.n log b a /, then g.n/ D 
O.n log b a /. 

2. If there exists a constant k  0 such that f .n/ D ‚.n log b a lg k n/, then g.n/ D 
‚.n log b a lg kC1 n/. 

3. If there exists a constant c in the range 0 < c < 1 such that 0 < af .n=b/ හ 
cf .n/ for all n  1, then g.n/ D ‚.f .n//. 

Proof For case 1, we have f .n/ D O.n log b a /, which implies that f .n=b j / D 
O..n=b j / log b a /. Substituting into equation (4.19) yields 

g.n/ D 
blog b nc X 

j D0 

a j O 
Î  n 
b j 

Í log b a 
Ï 

D O 

 blog b nc X 

j D0 

a j 
 n 
b j 

Í log b a 
! 

(by Problem 3-5(c), repeatedly) 

D O 

 

n log b a 
blog b nc X 

j D0 

Î 
ab  

b log b a 

Ï j 
! 

D O 

 

n log b a 
blog b nc X 

j D0 

.b  / j 

! 

(by equation (3.17) on page 66) 

D O 
Î 
n log b a 

Î 
b .blog b ncC1/  1 

b   1 

ÏÏ 
(by equation (A.6) on page 1142) , 

the last series being geometric. Since b and � are constants, the b   1 denom- 
inator doesn’t affect the asymptotic growth of g.n/, and neither does the 1 in 
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the numerator. Since b .blog b ncC1/ හ .b log b nC1 /  D b  n  D O.n  /, we obtain 
g.n/ D O.n log b a  O.n  // D O.n log b a /, thereby proving case 1. 

Case 2 assumes that f .n/ D ‚.n log b a lg k n/, from which we can conclude that 
f .n=b j / D ‚..n=b j / log b a lg k .n=b j //. Substituting into equation (4.19) and re- 
peatedly applying Problem 3-5(c) yields 

g.n/ D ‚ 

 blog b nc X 

j D0 

a j 
 n 
b j 

Í log b a 
lg k 

 n 
b j 

Í ! 

D ‚ 

 

n log b a 
blog b nc X 

j D0 

a j 

b j log b a 
lg k 

 n 
b j 

Í ! 

D ‚ 

 

n log b a 
blog b nc X 

j D0 

lg k 
 n 
b j 

Í ! 

D ‚ 

 

n log b a 
blog b nc X 

j D0 

Î log b .n=b j / 
log b 2 

Ï k 
! 

(by equation (3.19) on page 66) 

D ‚ 

 

n log b a 
blog b nc X 

j D0 

Î log b n  j 
log b 2 

Ï k 
! 

(by equations (3.17), (3.18), 
and (3.20)) 

D ‚ 

 
n log b a 

log k 
b 2 

blog b nc X 

j D0 

.log b n  j / k 

! 

D ‚ 

 

n log b a 
blog b nc X 

j D0 

.log b n  j / k 

! 

(b > 1 and k are constants) . 

The summation within the ‚-notation can be bounded from above as follows: 
blog b nc X 

j D0 

.log b n  j / k හ 
blog b nc X 

j D0 

.blog b nc C 1  j / k 

D 
blog b ncC1 X 

j D1 

j k (reindexing4pages 114331144) 

D O..blog b nc C 1/ kC1 / (by Exercise A.1-5 on page 1144) 
D O.log kC1 

b n/ (by Exercise 3.3-3 on page 70) . 
Exercise 4.6-1 asks you to show that the summation can similarly be bounded from 
below by �.log kC1 

b n/. Since we have tight upper and lower bounds, the summa- 
tion is ‚.log kC1 

b n/, from which we can conclude that g.n/ D ‚ 
ã 
n log b a log kC1 

b n 
ä , 

thereby completing the proof of case 2. 
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For case 3, observe that f .n/ appears in the deûnition (4.19) of g.n/ (when 
j D 0) and that all terms of g.n/ are positive. Therefore, we must have g.n/ D 
�.f .n// , and it only remains to prove that g.n/ D O.f .n//. Performing j itera- 
tions of the inequality af .n=b/ හ cf .n/ yields a j f .n=b j / හ c j f .n/. Substitut- 
ing into equation (4.19), we obtain 

g.n/ D 
blog b nc X 

j D0 

a j f .n=b j / 

හ 
blog b nc X 

j D0 

c j f .n/ 

හ f .n/ 
1 X 

j D0 

c j 

D f .n/ 
Î 

1 
1  c 

Ï 
(by equation (A.7) on page 1142 since jc j < 1) 

D O.f .n// : 
Thus, we can conclude that g.n/ D ‚.f .n//. With case 3 proved, the entire proof 
of the lemma is complete. 

We can now state and prove the continuous master theorem. 

Theorem 4.4 (Continuous master theorem) 
Let a > 0 and b > 1 be constants, and let f .n/ be a driving function that is deûned 
and nonnegative on all sufûciently large reals. Deûne the algorithmic recurrence 
T .n/ on the positive real numbers by 
T .n/ D aT .n=b/ C f .n/ : 
Then the asymptotic behavior of T .n/ can be characterized as follows: 
1. If there exists a constant � > 0 such that f .n/ D O.n log b a /, then T .n/ D 
‚.n log b a /. 

2. If there exists a constant k  0 such that f .n/ D ‚.n log b a lg k n/, then T .n/ D 
‚.n log b a lg kC1 n/. 

3. If there exists a constant � > 0 such that f .n/ D �.n log b aC /, and if f .n/ ad- 
ditionally satisûes the regularity condition af .n=b/ හ cf .n/ for some constant 
c < 1 and all sufûciently large n, then T .n/ D ‚.f .n//. 

Proof The idea is to bound the summation (4.18) from Lemma 4.2 by applying 
Lemma 4.3. But we must account for Lemma 4.2 using a base case for 0 < n < 1, 
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whereas this theorem uses an implicit base case for 0 < n < n 0 , where n 0 > 0 is 
an arbitrary threshold constant. Since the recurrence is algorithmic, we can assume 
that f .n/ is deûned for n  n 0 . 

For n > 0, let us deûne two auxiliary functions T 0 .n/ D T .n 0 n/ and f 0 .n/ D 
f .n 0 n/. We have 
T 0 .n/ D T .n 0 n/ 

D 

( 
‚.1/ if n 0 n < n 0 ; 
aT .n 0 n=b/ C f .n 0 n/ if n 0 n  n 0 

D 

( 
‚.1/ if n < 1 ; 
aT 0 .n=b/ C f 0 .n/ if n  1 : 

(4.20) 

We have obtained a recurrence for T 0 .n/ that satisûes the conditions of Lemma 4.2, 
and by that lemma, the solution is 

T 0 .n/ D ‚.n log b a / C 
blog b nc X 

j D0 

a j f 0 .n=b j / : (4.21) 

To solve T 0 .n/, we ûrst need to bound f 0 .n/. Let’s examine the individual cases 
in the theorem. 
The condition for case 1 is f .n/ D O.n log b a / for some constant � > 0. We 

have 
f 0 .n/ D f .n 0 n/ 

D O..n 0 n/ log b a / 
D O.n log b a / ; 

since a, b, n 0 , and � are all constant. The function f 0 .n/ satisûes the conditions of 
case 1 of Lemma 4.3, and the summation in equation (4.18) of Lemma 4.2 evaluates 
to O.n log b a /. Because a, b and n 0 are all constants, we have 
T .n/ D T 0 .n=n 0 / 

D ‚..n=n 0 / log b a / C O..n=n 0 / log b a / 
D ‚.n log b a / C O.n log b a / 
D ‚.n log b a / (by Problem 3-5(b)) , 

thereby completing case 1 of the theorem. 
The condition for case 2 is f .n/ D ‚.n log b a lg k n/ for some constant k  0. 

We have 
f 0 .n/ D f .n 0 n/ 

D ‚..n 0 n/ log b a lg k .n 0 n// 
D ‚.n log b a lg k n/ (by eliminating the constant terms) . 
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Similar to the proof of case 1, the function f 0 .n/ satisûes the conditions of case 2 
of Lemma 4.3. The summation in equation (4.18) of Lemma 4.2 is therefore 
‚.n log b a lg kC1 n/, which implies that 
T .n/ D T 0 .n=n 0 / 

D ‚..n=n 0 / log b a / C ‚..n=n 0 / log b a lg kC1 .n=n 0 // 
D ‚.n log b a / C ‚.n log b a lg kC1 n/ 
D ‚.n log b a lg kC1 n/ (by Problem 3-5(c)) , 

which proves case 2 of the theorem. 
Finally, the condition for case 3 is f .n/ D �.n log b aC / for some constant � > 0 

and f .n/ additionally satisûes the regularity condition af .n=b/ හ cf .n/ for all 
n  n 0 and some constants c < 1 and n 0 > 1. The ûrst part of case 3 is like 
case 1: 
f 0 .n/ D f .n 0 n/ 

D �..n 0 n/ log b aC / 
D �.n log b aC / : 

Using the deûnition of f 0 .n/ and the fact that n 0 n  n 0 for all n  1, we have for 
n  1 that 
af 0 .n=b/ D af .n 0 n=b/ 

හ cf .n 0 n/ 
D cf 0 .n/ : 

Thus f 0 .n/ satisûes the requirements for case 3 of Lemma 4.3, and the summation 
in equation (4.18) of Lemma 4.2 evaluates to ‚.f 0 .n//, yielding 
T .n/ D T 0 .n=n 0 / 

D ‚..n=n 0 / log b a / C ‚.f 0 .n=n 0 // 
D ‚.f 0 .n=n 0 // 
D ‚.f .n// ; 

which completes the proof of case 3 of the theorem and thus the whole theorem. 

Exercises 
4.6-1 
Show that P blog b nc 

j D0 .log b n  j / k D �.log kC1 
b n/. 

? 4.6-2 
Show that case 3 of the master theorem is overstated (which is also why case 3 
of Lemma 4.3 does not require that f .n/ D �.n log b aC /) in the sense that the 
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regularity condition af .n=b/ හ cf .n/ for some constant c < 1 implies that there 
exists a constant � > 0 such that f .n/ D �.n log b aC /. 

? 4.6-3 
For f .n/ D ‚.n log b a = lg n/, prove that the summation in equation (4.19) has solu- 
tion g.n/ D ‚.n log b a lg lg n/. Conclude that a master recurrence T .n/ using f .n/ 
as its driving function has solution T .n/ D ‚.n log b a lg lg n/. 

? 4.7 Akra-Bazzi recurrences 

This section provides an overview of two advanced topics related to divide-and- 
conquer recurrences. The ûrst deals with technicalities arising from the use of 
üoors and ceilings, and the second discusses the Akra-Bazzi method, which in- 
volves a little calculus, for solving complicated divide-and-conquer recurrences. 
In particular, we’ll look at the class of algorithmic divide-and-conquer recur- 

rences originally studied by M. Akra and L. Bazzi [13]. These Akra-Bazzi recur- 
rences take the form 

T .n/ D f .n/ C 
k X 

i D1 

a i T .n=b i / ; (4.22) 

where k is a positive integer; all the constants a 1 ; a 2 ; : : : ; a k 2 R are strictly posi- 
tive; all the constants b 1 ; b 2 ; : : : ; b k 2 R are strictly greater than 1; and the driving 
function f .n/ is deûned on sufûciently large nonnegative reals and is itself non- 
negative. 
Akra-Bazzi recurrences generalize the class of recurrences addressed by the 

master theorem. Whereas master recurrences characterize the running times of 
divide-and-conquer algorithms that break a problem into equal-sized subproblems 
(modulo üoors and ceilings), Akra-Bazzi recurrences can describe the running time 
of divide-and-conquer algorithms that break a problem into different-sized sub- 
problems. The master theorem, however, allows you to ignore üoors and ceilings, 
but the Akra-Bazzi method for solving Akra-Bazzi recurrences needs an additional 
requirement to deal with üoors and ceilings. 
But before diving into the Akra-Bazzi method itself, let’s understand the lim- 

itations involved in ignoring üoors and ceilings in Akra-Bazzi recurrences. As 
you’re aware, algorithms generally deal with integer-sized inputs. The mathemat- 
ics for recurrences is often easier with real numbers, however, than with integers, 
where we must cope with üoors and ceilings to ensure that terms are well deûned. 
The difference may not seem to be much4especially because that’s often the truth 
with recurrences4but to be mathematically correct, we must be careful with our 
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assumptions. Since our end goal is to understand algorithms and not the vagaries 
of mathematical corner cases, we’d like to be casual yet rigorous. How can we 
treat üoors and ceilings casually while still ensuring rigor? 
From a mathematical point of view, the difûculty in dealing with üoors and 

ceilings is that some driving functions can be really, really weird. So it’s not okay in 
general to ignore üoors and ceilings in Akra-Bazzi recurrences. Fortunately, most 
of the driving functions we encounter in the study of algorithms behave nicely, and 
üoors and ceilings don’t make a difference. 

The polynomial-growth condition 

If the driving function f .n/ in equation (4.22) is well behaved in the following 
sense, it’s okay to drop üoors and ceilings. 

A function f .n/ deûned on all sufûciently large positive reals satisûes the 
polynomial-growth condition if there exists a constant y n > 0 such that the 
following holds: for every constant �  1, there exists a constant d > 1 
(depending on �) such that f .n/=d හ f .n/ හ df .n/ for all 1 හ  හ � 
and n  y n. 

This deûnition may be one of the hardest in this textbook to get your head around. 
To a ûrst order, it says that f .n/ satisûes the property that f .‚.n// D ‚.f .n//, 
although the polynomial-growth condition is actually somewhat stronger (see Ex- 
ercise 4.7-4). The deûnition also implies that f .n/ is asymptotically positive (see 
Exercise 4.7-3). 
Examples of functions that satisfy the polynomial-growth condition include any 

function of the form f .n/ D ‚.n ˛ lg ˇ n lg lg  n/, where ˛, ˇ, and � are constants. 
Most of the polynomially bounded functions used in this book satisfy the condition. 
Exponentials and superexponentials do not (see Exercise 4.7-2, for example), and 
there also exist polynomially bounded functions that do not. 

Floors and ceilings in <nice= recurrences 
When the driving function in an Akra-Bazzi recurrence satisûes the polynomial- 
growth condition, üoors and ceilings don’t change the asymptotic behavior of the 
solution. The following theorem, which is presented without proof, formalizes this 
notion. 

Theorem 4.5 
Let T .n/ be a function deûned on the nonnegative reals that satisûes recur- 
rence (4.22), where f .n/ satisûes the polynomial-growth condition. Let T 0 .n/ be 
another function deûned on the natural numbers also satisfying recurrence (4.22), 
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except that each T .n=b i / is replaced either with T .dn=b i e/ or with T .bn=b i c/. 
Then we have T 0 .n/ D ‚.T .n//. 

Floors and ceilings represent a minor perturbation to the arguments in the re- 
cursion. By inequality (3.2) on page 64, they perturb an argument by at most 1. 
But much larger perturbations are tolerable. As long as the driving function f .n/ 
in recurrence (4.22) satisûes the polynomial-growth condition, it turns out that re- 
placing any term T .n=b i / with T .n=b i C h i .n//, where jh i .n/j D O.n= lg 1C n/ 
for some constant � > 0 and sufûciently large n, leaves the asymptotic solution 
unaffected. Thus, the divide step in a divide-and-conquer algorithm can be moder- 
ately coarse without affecting the solution to its running-time recurrence. 

The Akra-Bazzi method 

The Akra-Bazzi method, not surprisingly, was developed to solve Akra-Bazzi re- 
currences (4.22), which by dint of Theorem 4.5, applies in the presence of üoors 
and ceilings or even larger perturbations, as just discussed. The method involves 
ûrst determining the unique real number p such that P k 

i D1 a i =b p 
i D 1. Such a p 

always exists, because when p ! 1, the sum goes to 1; it decreases as p in- 
creases; and when p ! 1, it goes to 0. The Akra-Bazzi method then gives the 
solution to the recurrence as 

T .n/ D ‚ 
Î 
n p 
Î 
1 C 

Z n 

1 

f .x/ 
x pC1 

dx 
ÏÏ 

: (4.23) 

As an example, consider the recurrence 
T .n/ D T .n=5/ C T .7n=10/ C n : (4.24) 
We’ll see the similar recurrence (9.1) on page 240 when we study an algorithm for 
selecting the i th smallest element from a set of n numbers. This recurrence has the 
form of equation (4.22), where a 1 D a 2 D 1, b 1 D 5, b 2 D 10=7, and f .n/ D n. 
To solve it, the Akra-Bazzi method says that we should determine the unique p 
satisfying Î 
1 
5 

Ï p 

C 
Î 
7 
10 

Ï p 

D 1 : 

Solving for p is kind of messy4it turns out that p D 0:83978 : : :4but we can 
solve the recurrence without actually knowing the exact value for p. Observe that 
.1=5/ 0 C .7=10/ 0 D 2 and .1=5/ 1 C .7=10/ 1 D 9=10, and thus p lies in the 
range 0 < p < 1. That turns out to be sufûcient for the Akra-Bazzi method 
to give us the solution. We’ll use the fact from calculus that if k ¤ 1, then R 
x k dx D x kC1 =.k C 1/, which we’ll apply with k D p ¤ 1. The Akra-Bazzi 
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solution (4.23) gives us 

T .n/ D ‚ 
Î 
n p 
Î 
1 C 

Z n 

1 

f .x/ 
x pC1 

dx 
ÏÏ 

D ‚ 
Î 
n p 
Î 
1 C 

Z n 

1 
x p dx 

ÏÏ 

D ‚ 
Î 
n p 
Î 
1 C 

Ð 
x 1p 

1  p 

 n 

1 

ÏÏ 

D ‚ 
Î 
n p 
Î 
1 C 

Î 
n 1p 

1  p 
 

1 
1  p 

ÏÏÏ 

D ‚ 
ã 
n p  ‚.n 1p / 

ä (because 1  p is a positive constant) 
D ‚.n/ (by Problem 3-5(d)) . 

Although the Akra-Bazzi method is more general than the master theorem, it 
requires calculus and sometimes a bit more reasoning. You also must ensure that 
your driving function satisûes the polynomial-growth condition if you want to ig- 
nore üoors and ceilings, although that’s rarely a problem. When it applies, the 
master method is much simpler to use, but only when subproblem sizes are more 
or less equal. They are both good tools for your algorithmic toolkit. 

Exercises 
? 4.7-1 

Consider an Akra-Bazzi recurrence T .n/ on the reals as given in recurrence (4.22), 
and deûne T 0 .n/ as 

T 0 .n/ D cf .n/ C 
k X 

i D1 

a i T 0 .n=b i / ; 

where c > 0 is constant. Prove that whatever the implicit initial conditions for T .n/ 
might be, there exist initial conditions for T 0 .n/ such that T 0 .n/ D cT .n/ for 
all n > 0. Conclude that we can drop the asymptotics on a driving function in any 
Akra-Bazzi recurrence without affecting its asymptotic solution. 
4.7-2 
Show that f .n/ D n 2 satisûes the polynomial-growth condition but that f .n/ D 2 n 

does not. 
4.7-3 
Let f .n/ be a function that satisûes the polynomial-growth condition. Prove that 
f .n/ is asymptotically positive, that is, there exists a constant n 0  0 such that 
f .n/  0 for all n  n 0 . 
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? 4.7-4 
Give an example of a function f .n/ that does not satisfy the polynomial-growth 
condition but for which f .‚.n// D ‚.f .n//. 
4.7-5 
Use the Akra-Bazzi method to solve the following recurrences. 
a. T .n/ D T .n=2/ C T .n=3/ C T .n=6/ C n lg n. 
b. T .n/ D 3T .n=3/ C 8T .n=4/ C n 2 = lg n. 
c. T .n/ D .2=3/T .n=3/ C .1=3/T .2n=3/ C lg n. 
d. T .n/ D .1=3/T .n=3/ C 1=n. 
e. T .n/ D 3T .n=3/ C 3T .2n=3/ C n 2 . 

? 4.7-6 
Use the Akra-Bazzi method to prove the continuous master theorem. 

Problems 

4-1 Recurrence examples 
Give asymptotically tight upper and lower bounds for T .n/ in each of the following 
algorithmic recurrences. Justify your answers. 
a. T .n/ D 2T .n=2/ C n 3 . 

b. T .n/ D T .8n=11/ C n. 

c. T .n/ D 16T .n=4/ C n 2 . 

d. T .n/ D 4T .n=2/ C n 2 lg n. 

e. T .n/ D 8T .n=3/ C n 2 . 

f. T .n/ D 7T .n=2/ C n 2 lg n. 

g. T .n/ D 2T .n=4/ C 
p 
n. 

h. T .n/ D T .n  2/ C n 2 . 
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4-2 Parameter-passing costs 
Throughout this book, we assume that parameter passing during procedure calls 
takes constant time, even if an N -element array is being passed. This assumption 
is valid in most systems because a pointer to the array is passed, not the array itself. 
This problem examines the implications of three parameter-passing strategies: 
1. Arrays are passed by pointer. Time D ‚.1/. 
2. Arrays are passed by copying. Time D ‚.N/, where N is the size of the array. 
3. Arrays are passed by copying only the subrange that might be accessed by the 

called procedure. Time D ‚.n/ if the subarray contains n elements. 
Consider the following three algorithms: 
a. The recursive binary-search algorithm for ûnding a number in a sorted array 

(see Exercise 2.3-6). 

b. The MERGE-SORT procedure from Section 2.3.1. 

c. The MATRIX-MULTIPLY-RECURSIVE procedure from Section 4.1. 
Give nine recurrences T a1 .N; n/; T a2 .N; n/; : : : ; T c3 .N; n/ for the worst-case run- 
ning times of each of the three algorithms above when arrays and matrices are 
passed using each of the three parameter-passing strategies above. Solve your re- 
currences, giving tight asymptotic bounds. 

4-3 Solving recurrences with a change of variables 
Sometimes, a little algebraic manipulation can make an unknown recurrence simi- 
lar to one you have seen before. Let’s solve the recurrence 
T .n/ D 2T 

ãp 
n 
ä C ‚.lg n/ (4.25) 

by using the change-of-variables method. 
a. Deûne m D lg n and S.m/ D T .2 m /. Rewrite recurrence (4.25) in terms of m 

and S.m/. 

b. Solve your recurrence for S.m/. 

c. Use your solution for S.m/ to conclude that T .n/ D ‚.lg n lg lg n/. 

d. Sketch the recursion tree for recurrence (4.25), and use it to explain intuitively 
why the solution is T .n/ D ‚.lg n lg lg n/. 

Solve the following recurrences by changing variables: 
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e. T .n/ D 2T . 
p 
n/ C ‚.1/. 

f. T .n/ D 3T . 3 
p 
n/ C ‚.n/. 

4-4 More recurrence examples 
Give asymptotically tight upper and lower bounds for T .n/ in each of the following 
recurrences. Justify your answers. 
a. T .n/ D 5T .n=3/ C n lg n. 

b. T .n/ D 3T .n=3/ C n= lg n. 

c. T .n/ D 8T .n=2/ C n 3 p 
n. 

d. T .n/ D 2T .n=2  2/ C n=2. 

e. T .n/ D 2T .n=2/ C n= lg n. 

f. T .n/ D T .n=2/ C T .n=4/ C T .n=8/ C n. 

g. T .n/ D T .n  1/ C 1=n. 

h. T .n/ D T .n  1/ C lg n. 

i. T .n/ D T .n  2/ C 1= lg n. 

j. T .n/ D 
p 
nT . 

p 
n/ C n. 

4-5 Fibonacci numbers 
This problem develops properties of the Fibonacci numbers, which are deûned 
by recurrence (3.31) on page 69. We’ll explore the technique of generating func- 
tions to solve the Fibonacci recurrence. Deûne the generating function (or formal 
power series) F as 

F .´/ D 
1 X 

i D0 

F i ́  i 

D 0 C ´ C ´ 2 C 2´ 3 C 3´ 4 C 5´ 5 C 8´ 6 C 13´ 7 C 21´ 8 C    ; 
where F i is the i th Fibonacci number. 
a. Show that F .´/ D ´ C ´F .´/ C ´ 2 

F .´/. 
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b. Show that 
F .´/ D 

´ 
1  ´  ´ 2 

D 
´ 

.1  �´/.1  y �´/ 

D 
1 p 
5 

Î 
1 

1  �´ 
 

1 
1  y �´ 

Ï 
; 

where � is the golden ratio, and y � is its conjugate (see page 69). 

c. Show that 

F .´/ D 
1 X 

i D0 

1 p 
5 
.� i  y � i /´ i : 

You may use without proof the generating-function version of equation (A.7) on 
page 1142, P 1 

kD0 x k D 1=.1  x/. Because this equation involves a generating 
function, x is a formal variable, not a real-valued variable, so that you don’t 
have to worry about convergence of the summation or about the requirement in 
equation (A.7) that jx j < 1, which doesn’t make sense here. 

d. Use part (c) to prove that F i D � i = 
p 
5 for i > 0, rounded to the nearest integer. 

(Hint: Observe that ˇ ˇ y � ̌
 ˇ < 1.) 

e. Prove that F i C2  � i for i  0. 

4-6 Chip testing 
Professor Diogenes has n supposedly identical integrated-circuit chips that in prin- 
ciple are capable of testing each other. The professor’s test jig accommodates two 
chips at a time. When the jig is loaded, each chip tests the other and reports whether 
it is good or bad. A good chip always reports accurately whether the other chip is 
good or bad, but the professor cannot trust the answer of a bad chip. Thus, the four 
possible outcomes of a test are as follows: 
Chip A says Chip B says Conclusion 
B is good A is good both are good, or both are bad 
B is good A is bad at least one is bad 
B is bad A is good at least one is bad 
B is bad A is bad at least one is bad 
a. Show that if at least n=2 chips are bad, the professor cannot necessarily deter- 

mine which chips are good using any strategy based on this kind of pairwise 
test. Assume that the bad chips can conspire to fool the professor. 
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Now you will design an algorithm to identify which chips are good and which are 
bad, assuming that more than n=2 of the chips are good. First, you will determine 
how to identify one good chip. 
b. Show that bn=2c pairwise tests are sufûcient to reduce the problem to one of 

nearly half the size. That is, show how to use bn=2c pairwise tests to obtain a 
set with at most dn=2e chips that still has the property that more than half of 
the chips are good. 

c. Show how to apply the solution to part (b) recursively to identify one good 
chip. Give and solve the recurrence that describes the number of tests needed 
to identify one good chip. 

You have now determined how to identify one good chip. 
d. Show how to identify all the good chips with an additional ‚.n/ pairwise tests. 

4-7 Monge arrays 
An m  n array A of real numbers is a Monge array if for all i , j , k, and l such 
that 1 හ i < k හ m and 1 හ j < l හ n, we have 
AŒi; j � C AŒk; l� හ AŒi; l� C AŒk; j � : 

In other words, whenever we pick two rows and two columns of a Monge array and 
consider the four elements at the intersections of the rows and the columns, the sum 
of the upper-left and lower-right elements is less than or equal to the sum of the 
lower-left and upper-right elements. For example, the following array is Monge: 
10 17 13 28 23 
17 22 16 29 23 
24 28 22 34 24 
11 13 6 17 7 
45 44 32 37 23 
36 33 19 21 6 
75 66 51 53 34 

a. Prove that an array is Monge if and only if for all i D 1; 2; :::;m  1 and 
j D 1; 2; :::; n  1, we have 
AŒi; j � C AŒi C 1; j C 1� හ AŒi; j C 1� C AŒi C 1; j � : 

(Hint: For the <if= part, use induction separately on rows and columns.) 

b. The following array is not Monge. Change one element in order to make it 
Monge. (Hint: Use part (a).) 
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37 23 22 32 
21 6 7 10 
53 34 30 31 
32 13 9 6 
43 21 15 8 

c. Let f .i/ be the index of the column containing the leftmost minimum element 
of row i . Prove that f .1/ හ f .2/ හ    හ f .m/ for any m  n Monge array. 

d. Here is a description of a divide-and-conquer algorithm that computes the left- 
most minimum element in each row of an m  n Monge array A: 

Construct a submatrix A 0 of A consisting of the even-numbered rows of A. 
Recursively determine the leftmost minimum for each row of A 0 . Then 
compute the leftmost minimum in the odd-numbered rows of A. 

Explain how to compute the leftmost minimum in the odd-numbered rows of A 
(given that the leftmost minimum of the even-numbered rows is known) in 
O.m C n/ time. 

e. Write the recurrence for the running time of the algorithm in part (d). Show 
that its solution is O.m C n log m/. 

Chapter notes 

Divide-and-conquer as a technique for designing algorithms dates back at least to 
1962 in an article by Karatsuba and Ofman [242], but it might have been used 
well before then. According to Heideman, Johnson, and Burrus [211], C. F. Gauss 
devised the ûrst fast Fourier transform algorithm in 1805, and Gauss’s formulation 
breaks the problem into smaller subproblems whose solutions are combined. 
Strassen’s algorithm [424] caused much excitement when it appeared in 1969. 

Before then, few imagined the possibility of an algorithm asymptotically faster than 
the basic MATRIX-MULTIPLY procedure. Shortly thereafter, S. Winograd reduced 
the number of submatrix additions from 18 to 15 while still using seven submatrix 
multiplications. This improvement, which Winograd apparently never published 
(and which is frequently miscited in the literature), may enhance the practicality 
of the method, but it does not affect its asymptotic performance. Probert [368] 
described Winograd’s algorithm and showed that with seven multiplications, 15 
additions is the minimum possible. 
Strassen’s ‚.n lg 7 / D O.n 2:81 / bound for matrix multiplication held until 1987, 

when Coppersmith and Winograd [103] made a signiûcant advance, improving the 
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bound to O.n 2:376 / time with a mathematically sophisticated but wildly impracti- 
cal algorithm based on tensor products. It took approximately 25 years before the 
asymptotic upper bound was again improved. In 2012 Vassilevska Williams [445] 
improved it to O.n 2:37287 /, and two years later Le Gall [278] achieved O.n 2:37286 /, 
both of them using mathematically fascinating but impractical algorithms. The best 
lower bound to date is just the obvious �.n 2 / bound (obvious because any algo- 
rithm for matrix multiplication must ûll in the n 2 elements of the product matrix). 

The performance of MATRIX-MULTIPLY-RECURSIVE can be improved in prac- 
tice by coarsening the leaves of the recursion. It also exhibits better cache behav- 
ior than MATRIX-MULTIPLY, although MATRIX-MULTIPLY can be improved by 
<tiling.= Leiserson et al. [293] conducted a performance-engineering study of ma- 
trix multiplication in which a parallel and vectorized divide-and-conquer algorithm 
achieved the highest performance. Strassen’s algorithm can be practical for large 
dense matrices, although large matrices tend to be sparse, and sparse methods can 
be much faster. When using limited-precision üoating-point values, Strassen’s al- 
gorithm produces larger numerical errors than the ‚.n 3 / algorithms do, although 
Higham [215] demonstrated that Strassen’s algorithm is amply accurate for some 
applications. 
Recurrences were studied as early as 1202 by Leonardo Bonacci [66], also 

known as Fibonacci, for whom the Fibonacci numbers are named, although Indian 
mathematicians had discovered Fibonacci numbers centuries before. The French 
mathematician De Moivre [108] introduced the method of generating functions 
with which he studied Fibonacci numbers (see Problem 4-5). Knuth [259] and 
Liu [302] are good resources for learning the method of generating functions. 
Aho, Hopcroft, and Ullman [5, 6] offered one of the ûrst general methods for 

solving recurrences arising from the analysis of divide-and-conquer algorithms. 
The master method was adapted from Bentley, Haken, and Saxe [52]. The Akra- 
Bazzi method is due (unsurprisingly) to Akra and Bazzi [13]. Divide-and-conquer 
recurrences have been studied by many researchers, including Campbell [79], Gra- 
ham, Knuth, and Patashnik [199], Kuszmaul and Leiserson [274], Leighton [287], 
Purdom and Brown [371], Roura [389], Verma [447], and Yap [462]. 
The issue of üoors and ceilings in divide-and-conquer recurrences, including a 

theorem similar to Theorem 4.5, was studied by Leighton [287]. Leighton pro- 
posed a version of the polynomial-growth condition. Campbell [79] removed sev- 
eral limitations in Leighton’s statement of it and showed that there were polyno- 
mially bounded functions that do not satisfy Leighton’s condition. Campbell also 
carefully studied many other technical issues, including the well-deûnedness of 
divide-and-conquer recurrences. Kuszmaul and Leiserson [274] provided a proof 
of Theorem 4.5 that does not involve calculus or other higher math. Both Camp- 
bell and Leighton explored the perturbations of arguments beyond simple üoors 
and ceilings. 



5 Probabilistic Analysis and Randomized 
Algorithms 

This chapter introduces probabilistic analysis and randomized algorithms. If you 
are unfamiliar with the basics of probability theory, you should read Sections 
C.13C.4 of Appendix C, which review this material. We’ll revisit probabilistic 
analysis and randomized algorithms several times throughout this book. 

5.1 The hiring problem 

Suppose that you need to hire a new ofûce assistant. Your previous attempts at 
hiring have been unsuccessful, and you decide to use an employment agency. The 
employment agency sends you one candidate each day. You interview that person 
and then decide either to hire that person or not. You must pay the employment 
agency a small fee to interview an applicant. To actually hire an applicant is more 
costly, however, since you must ûre your current ofûce assistant and also pay a 
substantial hiring fee to the employment agency. You are committed to having, at 
all times, the best possible person for the job. Therefore, you decide that, after 
interviewing each applicant, if that applicant is better qualiûed than the current 
ofûce assistant, you will ûre the current ofûce assistant and hire the new applicant. 
You are willing to pay the resulting price of this strategy, but you wish to estimate 
what that price will be. 

The procedure HIRE-ASSISTANT on the facing page expresses this strategy for 
hiring in pseudocode. The candidates for the ofûce assistant job are numbered 1 
through n and interviewed in that order. The procedure assumes that after inter- 
viewing candidate i , you can determine whether candidate i is the best candidate 
you have seen so far. It starts by creating a dummy candidate, numbered 0, who is 
less qualiûed than each of the other candidates. 

The cost model for this problem differs from the model described in Chapter 2. 
We focus not on the running time of HIRE-ASSISTANT, but instead on the fees paid 
for interviewing and hiring. On the surface, analyzing the cost of this algorithm 
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HIRE-ASSISTANT .n/ 
1 best D 0 // candidate 0 is a least-qualiûed dummy candidate 
2 for i D 1 to n 
3 interview candidate i 
4 if candidate i is better than candidate best 
5 best D i 
6 hire candidate i 

may seem very different from analyzing the running time of, say, merge sort. The 
analytical techniques used, however, are identical whether we are analyzing cost 
or running time. In either case, we are counting the number of times certain basic 
operations are executed. 

Interviewing has a low cost, say c i , whereas hiring is expensive, costing c h . Let- 
ting m be the number of people hired, the total cost associated with this algorithm 
is O.c i n C c h m/. No matter how many people you hire, you always interview n 
candidates and thus always incur the cost c i n associated with interviewing. We 
therefore concentrate on analyzing c h m, the hiring cost. This quantity depends on 
the order in which you interview candidates. 

This scenario serves as a model for a common computational paradigm. Al- 
gorithms often need to ûnd the maximum or minimum value in a sequence by 
examining each element of the sequence and maintaining a current <winner.= The 
hiring problem models how often a procedure updates its notion of which element 
is currently winning. 

Worst-case analysis 
In the worst case, you actually hire every candidate that you interview. This situa- 
tion occurs if the candidates come in strictly increasing order of quality, in which 
case you hire n times, for a total hiring cost of O.c h n/. 
Of course, the candidates do not always come in increasing order of quality. In 

fact, you have no idea about the order in which they arrive, nor do you have any 
control over this order. Therefore, it is natural to ask what we expect to happen in 
a typical or average case. 

Probabilistic analysis 
Probabilistic analysis is the use of probability in the analysis of problems. Most 
commonly, we use probabilistic analysis to analyze the running time of an algo- 
rithm. Sometimes we use it to analyze other quantities, such as the hiring cost in 
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procedure HIRE-ASSISTANT. In order to perform a probabilistic analysis, we must 
use knowledge of, or make assumptions about, the distribution of the inputs. Then 
we analyze our algorithm, computing an average-case running time, where we take 
the average, or expected value, over the distribution of the possible inputs. When 
reporting such a running time, we refer to it as the average-case running time. 

You must be careful in deciding on the distribution of inputs. For some problems, 
you may reasonably assume something about the set of all possible inputs, and 
then you can use probabilistic analysis as a technique for designing an efûcient 
algorithm and as a means for gaining insight into a problem. For other problems, 
you cannot characterize a reasonable input distribution, and in these cases you 
cannot use probabilistic analysis. 

For the hiring problem, we can assume that the applicants come in a random 
order. What does that mean for this problem? We assume that you can compare 
any two candidates and decide which one is better qualiûed, which is to say that 
there is a total order on the candidates. (See Section B.2 for the deûnition of a total 
order.) Thus, you can rank each candidate with a unique number from 1 through n, 
using rank.i/ to denote the rank of applicant i , and adopt the convention that a 
higher rank corresponds to a better qualiûed applicant. The ordered list hrank.1/; 
rank.2/; : : : ; rank.n/i is a permutation of the list h1; 2; : : : ; ni. Saying that the 
applicants come in a random order is equivalent to saying that this list of ranks is 
equally likely to be any one of the nŠ permutations of the numbers 1 through n. 
Alternatively, we say that the ranks form a uniform random permutation, that is, 
each of the possible nŠ permutations appears with equal probability. 
Section 5.2 contains a probabilistic analysis of the hiring problem. 

Randomized algorithms 
In order to use probabilistic analysis, you need to know something about the dis- 
tribution of the inputs. In many cases, you know little about the input distribu- 
tion. Even if you do know something about the distribution, you might not be able 
to model this knowledge computationally. Yet, probability and randomness often 
serve as tools for algorithm design and analysis, by making part of the algorithm 
behave randomly. 

In the hiring problem, it may seem as if the candidates are being presented to 
you in a random order, but you have no way of knowing whether they really are. 
Thus, in order to develop a randomized algorithm for the hiring problem, you need 
greater control over the order in which you’ll interview the candidates. We will, 
therefore, change the model slightly. The employment agency sends you a list of 
the n candidates in advance. On each day, you choose, randomly, which candi- 
date to interview. Although you know nothing about the candidates (besides their 
names), we have made a signiûcant change. Instead of accepting the order given 
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to you by the employment agency and hoping that it’s random, you have instead 
gained control of the process and enforced a random order. 

More generally, we call an algorithm randomized if its behavior is determined 
not only by its input but also by values produced by a random-number generator. 
We assume that we have at our disposal a random-number generator RANDOM. 
A call to RANDOM.a; b/ returns an integer between a and b, inclusive, with each 
such integer being equally likely. For example, RANDOM.0; 1/ produces 0 with 
probability 1=2, and it produces 1 with probability 1=2. A call to RANDOM.3; 7/ 
returns any one of 3, 4, 5, 6, or 7, each with probability 1=5. Each integer returned 
by RANDOM is independent of the integers returned on previous calls. You may 
imagine RANDOM as rolling a .b  a C 1/-sided die to obtain its output. (In prac- 
tice, most programming environments offer a pseudorandom-number generator: 
a deterministic algorithm returning numbers that <look= statistically random.) 

When analyzing the running time of a randomized algorithm, we take the expec- 
tation of the running time over the distribution of values returned by the random 
number generator. We distinguish these algorithms from those in which the input 
is random by referring to the running time of a randomized algorithm as an ex- 
pected running time. In general, we discuss the average-case running time when 
the probability distribution is over the inputs to the algorithm, and we discuss the 
expected running time when the algorithm itself makes random choices. 

Exercises 
5.1-1 
Show that the assumption that you are always able to determine which candidate is 
best, in line 4 of procedure HIRE-ASSISTANT, implies that you know a total order 
on the ranks of the candidates. 

? 5.1-2 
Describe an implementation of the procedure RANDOM.a; b/ that makes calls only 
to RANDOM.0; 1/. What is the expected running time of your procedure, as a 
function of a and b? 

? 5.1-3 
You wish to implement a program that outputs 0 with probability 1=2 and 1 with 
probability 1=2. At your disposal is a procedure B IASED-RANDOM that outputs 
either 0 or 1, but it outputs 1 with some probability p and 0 with probability 1  p, 
where 0 < p < 1. You do not know what p is. Give an algorithm that uses 
BIASED-RANDOM as a subroutine, and returns an unbiased answer, returning 0 
with probability 1=2 and 1 with probability 1=2. What is the expected running 
time of your algorithm as a function of p? 
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5.2 Indicator random variables 

In order to analyze many algorithms, including the hiring problem, we use indicator 
random variables. Indicator random variables provide a convenient method for 
converting between probabilities and expectations. Given a sample space S and an 
event A, the indicator random variable I fAg associated with event A is deûned as 

I fAg D 

( 
1 if A occurs ; 
0 if A does not occur : (5.1) 

As a simple example, let us determine the expected number of heads obtained 
when üipping a fair coin. The sample space for a single coin üip is S D fH;T g, 
with Pr fH g D Pr fT g D 1=2. We can then deûne an indicator random vari- 
able X H , associated with the coin coming up heads, which is the event H . This 
variable counts the number of heads obtained in this üip, and it is 1 if the coin 
comes up heads and 0 otherwise. We write 
X H D I fH g 

D 

( 
1 if H occurs ; 
0 if T occurs : 

The expected number of heads obtained in one üip of the coin is simply the ex- 
pected value of our indicator variable X H : 
E ŒX H � D E ŒI fH g� 

D 1  Pr fH g C 0  Pr fT g 
D 1  .1=2/ C 0  .1=2/ 
D 1=2 : 

Thus the expected number of heads obtained by one üip of a fair coin is 1=2. As 
the following lemma shows, the expected value of an indicator random variable 
associated with an event A is equal to the probability that A occurs. 

Lemma 5.1 
Given a sample space S and an event A in the sample space S , let X A D I fAg. 
Then E ŒX A � D Pr fAg. 

Proof By the deûnition of an indicator random variable from equation (5.1) and 
the deûnition of expected value, we have 
E ŒX A � D E ŒI fAg� 

D 1  Pr fAg C 0  Pr ̊  
A 
 

D Pr fAg ; 
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where A denotes S  A, the complement of A. 
Although indicator random variables may seem cumbersome for an applica- 

tion such as counting the expected number of heads on a üip of a single coin, 
they are useful for analyzing situations that perform repeated random trials. In 
Appendix C, for example, indicator random variables provide a simple way to 
determine the expected number of heads in n coin üips. One option is to con- 
sider separately the probability of obtaining 0 heads, 1 head, 2 heads, etc. to ar- 
rive at the result of equation (C.41) on page 1199. Alternati vely, we can employ 
the simpler method proposed in equation (C.42), which uses indicator random 
variables implicitly. Making this argument more explicit, let X i be the indicator 
random variable associated with the event in which the i th üip comes up heads: 
X i D I fthe i th üip results in the event H g. Let X be the random variable denot- 
ing the total number of heads in the n coin üips, so that 

X D 
n X 

i D1 

X i : 

In order to compute the expected number of heads, take the expectation of both 
sides of the above equation to obtain 

E ŒX� D E 
" 

n X 

i D1 

X i 

# 

: (5.2) 

By Lemma 5.1, the expectation of each of the random variables is E ŒX i � D 1=2 for 
i D 1; 2; : : : ; n. Then we can compute the sum of the expectations: P n 

i D1 E ŒX i � D 
n=2. But equation (5.2) calls for the expectation of the sum, not the sum of the ex- 
pectations. How can we resolve this conundrum? Linearity of expectation, equa- 
tion (C.24) on page 1192, to the rescue: the expectation of the sum always equals 
the sum of the expectations. Linearity of expectation applies even when there is 
dependence among the random variables. Combining indicator random variables 
with linearity of expectation gives us a powerful technique to compute expected 
values when multiple events occur. We now can compute the expected number of 
heads: 

E ŒX� D E 
" 

n X 

i D1 

X i 

# 

D 
n X 

i D1 

E ŒX i � 

D 
n X 

i D1 

1=2 

D n=2 : 
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Thus, compared with the method used in equation (C.41), indicator random vari- 
ables greatly simplify the calculation. We use indicator random variables through- 
out this book. 

Analysis of the hiring problem using indicator random variables 
Returning to the hiring problem, we now wish to compute the expected number of 
times that you hire a new ofûce assistant. In order to use a probabilistic analysis, 
let’s assume that the candidates arrive in a random order, as discussed in Sec- 
tion 5.1. (We’ll see in Section 5.3 how to remove this assumption.) Let X be the 
random variable whose value equals the number of times you hire a new ofûce as- 
sistant. We could then apply the deûnition of expected value from equation (C.23) 
on page 1192 to obtain 

E ŒX� D 
n X 

xD1 

x Pr fX D x g ; 

but this calculation would be cumbersome. Instead, let’s simplify the calculation 
by using indicator random variables. 

To use indicator random variables, instead of computing E ŒX� by deûning just 
one variable denoting the number of times you hire a new ofûce assistant, think 
of the process of hiring as repeated random trials and deûne n variables indicating 
whether each particular candidate is hired. In particular, let X i be the indicator 
random variable associated with the event in which the i th candidate is hired. Thus, 
X i D I fcandidate i is hiredg 

D 

( 
1 if candidate i is hired ; 
0 if candidate i is not hired ; 

and 
X D X 1 C X 2 C    C X n : (5.3) 
Lemma 5.1 gives 
E ŒX i � D Pr fcandidate i is hiredg ; 

and we must therefore compute the probability that lines 536 of HIRE-ASSISTANT 
are executed. 

Candidate i is hired, in line 6, exactly when candidate i is better than each of 
candidates 1 through i  1. Because we have assumed that the candidates arrive in 
a random order, the ûrst i candidates have appeared in a random order. Any one of 
these ûrst i candidates is equally likely to be the best qualiûed so far. Candidate i 
has a probability of 1=i of being better qualiûed than candidates 1 through i  1 
and thus a probability of 1=i of being hired. By Lemma 5.1, we conclude that 
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E ŒX i � D 1=i : (5.4) 
Now we can compute E ŒX�: 

E ŒX� D E 
" 

n X 

i D1 

X i 

# 

(by equation (5.3)) (5.5) 

D 
n X 

i D1 

E ŒX i � (by equation (C.24), linearity of expectation) 

D 
n X 

i D1 

1 
i 

(by equation (5.4)) 

D ln n C O.1/ (by equation (A.9), the harmonic series) . (5.6) 
Even though you interview n people, you actually hire only approximately ln n of 
them, on average. We summarize this result in the following lemma. 

Lemma 5.2 
Assuming that the candidates are presented in a random order, algorithm H IRE- 
ASSISTANT has an average-case total hiring cost of O.c h ln n/. 

Proof The bound follows immediately from our deûnition of the hiring cost 
and equation (5.6), which shows that the expected number of hires is approxi- 
mately ln n. 

The average-case hiring cost is a signiûcant improvement over the worst-case 
hiring cost of O.c h n/. 

Exercises 
5.2-1 
In HIRE-ASSISTANT, assuming that the candidates are presented in a random or- 
der, what is the probability that you hire exactly one time? What is the probability 
that you hire exactly n times? 
5.2-2 
In HIRE-ASSISTANT, assuming that the candidates are presented in a random or- 
der, what is the probability that you hire exactly twice? 
5.2-3 
Use indicator random variables to compute the expected value of the sum of n dice. 
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5.2-4 
This exercise asks you to (partly) verify that linearity of expectation holds even 
if the random variables are not independent. Consider two 6-sided dice that are 
rolled independently. What is the expected value of the sum? Now consider the 
case where the ûrst die is rolled normally and then the second die is set equal to the 
value shown on the ûrst die. What is the expected value of the sum? Now consider 
the case where the ûrst die is rolled normally and the second die is set equal to 7 
minus the value of the ûrst die. What is the expected value of the sum? 
5.2-5 
Use indicator random variables to solve the following problem, which is known as 
the hat-check problem. Each of n customers gives a hat to a hat-check person at a 
restaurant. The hat-check person gives the hats back to the customers in a random 
order. What is the expected number of customers who get back their own hat? 
5.2-6 
Let AŒ1 W n� be an array of n distinct numbers. If i < j and AŒi� > AŒj �, then the 
pair .i; j / is called an inversion of A. (See Problem 2-4 on page 47 for more on 
inversions.) Suppose that the elements of A form a uniform random permutation 
of h1; 2; : : : ; ni. Use indicator random variables to compute the expected number 
of inversions. 

5.3 Randomized algorithms 

In the previous section, we showed how knowing a distribution on the inputs can 
help us to analyze the average-case behavior of an algorithm. What if you do 
not know the distribution? Then you cannot perform an average-case analysis. 
As mentioned in Section 5.1, however, you might be able to use a randomized 
algorithm. 

For a problem such as the hiring problem, in which it is helpful to assume that 
all permutations of the input are equally likely, a probabilistic analysis can guide 
us when developing a randomized algorithm. Instead of assuming a distribution 
of inputs, we impose a distribution. In particular, before running the algorithm, 
let’s randomly permute the candidates in order to enforce the property that every 
permutation is equally likely. Although we have modiûed the algorithm, we still 
expect to hire a new ofûce assistant approximately ln n times. But now we expect 
this to be the case for any input, rather than for inputs drawn from a particular 
distribution. 

Let us further explore the distinction between probabilistic analysis and ran- 
domized algorithms. In Section 5.2, we claimed that, assuming that the candidates 
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arrive in a random order, the expected number of times you hire a new ofûce as- 
sistant is about ln n. This algorithm is deterministic: for any particular input, the 
number of times a new ofûce assistant is hired is always the same. Furthermore, 
the number of times you hire a new ofûce assistant differs for different inputs, 
and it depends on the ranks of the various candidates. Since this number depends 
only on the ranks of the candidates, to represent a particular input, we can just 
list, in order, the ranks hrank.1/; rank.2/; : : : ; rank.n/i of the candidates. Given 
the rank list A 1 D h1; 2; 3; 4; 5; 6; 7; 8; 9; 10i, a new ofûce assistant is always 
hired 10 times, since each successive candidate is better than the previous one, and 
lines 536 of HIRE-ASSISTANT are executed in each iteration. Given the list of 
ranks A 2 D h10; 9; 8; 7; 6; 5; 4; 3; 2; 1i, a new ofûce assistant is hired only once, 
in the ûrst iteration. Given a list of ranks A 3 D h5; 2; 1; 8; 4; 7; 10; 9; 3; 6i, a new 
ofûce assistant is hired three times, upon interviewing the candidates with ranks 5, 
8, and 10. Recalling that the cost of our algorithm depends on how many times 
you hire a new ofûce assistant, we see that there are expensive inputs such as A 1 , 
inexpensive inputs such as A 2 , and moderately expensive inputs such as A 3 . 
Consider, on the other hand, the randomized algorithm that ûrst permutes the list 

of candidates and then determines the best candidate. In this case, we randomize in 
the algorithm, not in the input distribution. Given a particular input, say A 3 above, 
we cannot say how many times the maximum is updated, because this quantity 
differs with each run of the algorithm. The ûrst time you run the algorithm on A 3 , 
it might produce the permutation A 1 and perform 10 updates. But the second 
time you run the algorithm, it might produce the permutation A 2 and perform only 
one update. The third time you run the algorithm, it might perform some other 
number of updates. Each time you run the algorithm, its execution depends on 
the random choices made and is likely to differ from the previous execution of the 
algorithm. For this algorithm and many other randomized algorithms, no particular 
input elicits its worst-case behavior. Even your worst enemy cannot produce a 
bad input array, since the random permutation makes the input order irrelevant. 
The randomized algorithm performs badly only if the random-number generator 
produces an <unlucky= permutation. 

For the hiring problem, the only change needed in the code is to randomly per- 
mute the array, as done in the RANDOMIZED-HIRE-ASSISTANT procedure. This 
simple change creates a randomized algorithm whose performance matches that 
obtained by assuming that the candidates were presented in a random order. 

RANDOMIZED-HIRE-ASSISTANT .n/ 
1 randomly permute the list of candidates 
2 HIRE-ASSISTANT .n/ 
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Lemma 5.3 
The expected hiring cost of the procedure RANDOMIZED-HIRE-ASSISTANT is 
O.c h ln n/. 

Proof Permuting the input array achieves a situation identical to that of the prob- 
abilistic analysis of HIRE-ASSISTANT in Section 5.2. 

By carefully comparing Lemmas 5.2 and 5.3, you can see the difference between 
probabilistic analysis and randomized algorithms. Lemma 5.2 makes an assump- 
tion about the input. Lemma 5.3 makes no such assumption, although randomizing 
the input takes some additional time. To remain consistent with our terminology, 
we couched Lemma 5.2 in terms of the average-case hiring cost and Lemma 5.3 in 
terms of the expected hiring cost. In the remainder of this section, we discuss some 
issues involved in randomly permuting inputs. 

Randomly permuting arrays 
Many randomized algorithms randomize the input by permuting a given input ar- 
ray. We’ll see elsewhere in this book other ways to randomize an algorithm, but 
now, let’s see how we can randomly permute an array of n elements. The goal is 
to produce a uniform random permutation, that is, a permutation that is as likely 
as any other permutation. Since there are nŠ possible permutations, we want the 
probability that any particular permutation is produced to be 1=nŠ. 

You might think that to prove that a permutation is a uniform random permuta- 
tion, it sufûces to show that, for each element AŒi�, the probability that the element 
winds up in position j is 1=n. Exercise 5.3-4 shows that this weaker condition is, 
in fact, insufûcient. 
Our method to generate a random permutation permutes the array in place: at 

most a constant number of elements of the input array are ever stored outside the 
array. The procedure RANDOMLY-PERMUTE permutes an array AŒ1 W n� in place in 
‚.n/ time. In its i th iteration, it chooses the element AŒi� randomly from among 
elements AŒi� through AŒn�. After the i th iteration, AŒi� is never altered. 

RANDOMLY-PERMUTE .A; n/ 
1 for i D 1 to n 
2 swap AŒi� with AŒRANDOM.i; n/� 

We use a loop invariant to show that procedure RANDOMLY-PERMUTE produces 
a uniform random permutation. A k-permutation on a set of n elements is a se- 
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quence containing k of the n elements, with no repetitions. (See page 1180 in 
Appendix C.) There are nŠ=.n  k/Š such possible k-permutations. 

Lemma 5.4 
Procedure RANDOMLY-PERMUTE computes a uniform random permutation. 

Proof We use the following loop invariant: 
Just prior to the i th iteration of the for loop of lines 132, for each possible 
.i  1/-permutation of the n elements, the subarray AŒ1 W i  1� contains this 
.i  1/-permutation with probability .n  i C 1/Š=nŠ. 

We need to show that this invariant is true prior to the ûrst loop iteration, that each 
iteration of the loop maintains the invariant, that the loop terminates, and that the 
invariant provides a useful property to show correctness when the loop terminates. 
Initialization: Consider the situation just before the ûrst loop iteration, so that 
i D 1. The loop invariant says that for each possible 0-permutation, the sub- 
array AŒ1 W 0� contains this 0-permutation with probability .n  i C 1/Š=nŠ D 
nŠ=nŠ D 1. The subarray AŒ1 W 0� is an empty subarray, and a 0-permutation has 
no elements. Thus, AŒ1 W 0� contains any 0-permutation with probability 1, and 
the loop invariant holds prior to the ûrst iteration. 

Maintenance: By the loop invariant, we assume that just before the i th iteration, 
each possible .i  1/-permutation appears in the subarray AŒ1 W i  1� with prob- 
ability .n  i C 1/Š=nŠ. We shall show that after the i th iteration, each possible 
i -permutation appears in the subarray AŒ1 W i � with probability .n  i/Š=nŠ. In- 
crementing i for the next iteration then maintains the loop invariant. 
Let us examine the i th iteration. Consider a particular i -permutation, and de- 
note the elements in it by hx 1 ; x 2 ; : : : ; x i i. This permutation consists of an 
.i  1/-permutation hx 1 ; : : : ; x i 1 i followed by the value x i that the algorithm 
places in AŒi�. Let E 1 denote the event in which the ûrst i  1 iterations have 
created the particular .i  1/-permutation hx 1 ; : : : ; x i 1 i in AŒ1 W i  1�. By 
the loop invariant, Pr fE 1 g D .n  i C 1/Š=nŠ. Let E 2 be the event that the 
i th iteration puts x i in position AŒi�. The i -permutation hx 1 ; : : : ; x i i appears 
in AŒ1 W i � precisely when both E 1 and E 2 occur, and so we wish to compute 
Pr fE 2 \ E 1 g. Using equation (C.16) on page 1187, we have 

Pr fE 2 \ E 1 g D Pr fE 2 j E 1 g Pr fE 1 g : 

The probability Pr fE 2 j E 1 g equals 1=.ni C1/ because in line 2 the algorithm 
chooses x i randomly from the n  i C 1 values in positions AŒi W n�. Thus, we 
have 
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Pr fE 2 \ E 1 g D Pr fE 2 j E 1 g Pr fE 1 g 

D 
1 

n  i C 1 
 .n  i C 1/Š 

nŠ 

D 
.n  i/Š 
nŠ 

: 

Termination: The loop terminates, since it is a for loop iterating n times. At 
termination, i D n C 1, and we have that the subarray AŒ1 W n� is a given 
n-permutation with probability .n  .n C 1/ C 1/Š=nŠ D 0Š=nŠ D 1=nŠ. 

Thus, RANDOMLY-PERMUTE produces a uniform random permutation. 

A randomized algorithm is often the simplest and most efûcient way to solve a 
problem. 

Exercises 
5.3-1 
Professor Marceau objects to the loop invariant used in the proof of Lemma 5.4. He 
questions whether it holds prior to the ûrst iteration. He reasons that we could just 
as easily declare that an empty subarray contains no 0-permutations. Therefore, 
the probability that an empty subarray contains a 0-permutation should be 0, thus 
invalidating the loop invariant prior to the ûrst iteration. Rewrite the procedure 
RANDOMLY-PERMUTE so that its associated loop invariant applies to a nonempty 
subarray prior to the ûrst iteration, and modify the proof of Lemma 5.4 for your 
procedure. 
5.3-2 
Professor Kelp decides to write a procedure that produces at random any permu- 
tation except the identity permutation, in which every element ends up where it 
started. He proposes the procedure PERMUTE-WITHOUT-I DENTITY. Does this 
procedure do what Professor Kelp intends? 

PERMUTE-WITHOUT-I DENTITY .A; n/ 
1 for i D 1 to n  1 
2 swap AŒi� with AŒRANDOM.i C 1; n/� 

5.3-3 
Consider the PERMUTE-WITH-ALL procedure on the facing page, which instead 
of swapping element AŒi� with a random element from the subarray AŒi W n�, swaps 
it with a random element from anywhere in the array. Does PERMUTE-WITH-ALL 
produce a uniform random permutation? Why or why not? 
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PERMUTE-WITH-ALL .A; n/ 
1 for i D 1 to n 
2 swap AŒi� with AŒRANDOM.1; n/� 

5.3-4 
Professor Knievel suggests the procedure PERMUTE-BY-CYCLE to generate a uni- 
form random permutation. Show that each element AŒi� has a 1=n probability of 
winding up in any particular position in B . Then show that Professor Knievel is 
mistaken by showing that the resulting permutation is not uniformly random. 

PERMUTE-BY-CYCLE .A; n/ 
1 let BŒ1 W n� be a new array 
2 offset D RANDOM.1; n/ 
3 for i D 1 to n 
4 dest D i C offset 
5 if dest > n 
6 dest D dest  n 
7 BŒdest � D AŒi� 
8 return B 

5.3-5 
Professor Gallup wants to create a random sample of the set f1; 2; 3; : : : ; ng, that 
is, an m-element subset S , where 0 හ m හ n, such that each m-subset is equally 
likely to be created. One way is to set AŒi� D i , for i D 1; 2; 3; : : : ; n, call 
RANDOMLY-PERMUTE .A/, and then take just the ûrst m array elements. This 
method makes n calls to the RANDOM procedure. In Professor Gallup’s applica- 
tion, n is much larger than m, and so the professor wants to create a random sample 
with fewer calls to RANDOM. 

RANDOM-SAMPLE .m; n/ 
1 S D ; 
2 for k D n  m C 1 to n // iterates m times 
3 i D RANDOM.1; k/ 
4 if i 2 S 
5 S D S [ fkg 
6 else S D S [ fi g 
7 return S 
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Show that the procedure RANDOM-SAMPLE on the previous page returns a ran- 
dom m-subset S of f1; 2; 3; : : : ; ng, in which each m-subset is equally likely, while 
making only m calls to RANDOM. 

? 5.4 Probabilistic analysis and further uses of indicator random variables 

This advanced section further illustrates probabilistic analysis by way of four ex- 
amples. The ûrst determines the probability that in a room of k people, two of them 
share the same birthday. The second example examines what happens when ran- 
domly tossing balls into bins. The third investigates <streaks= of consecutive heads 
when üipping coins. The ûnal example analyzes a variant of the hiring problem in 
which you have to make decisions without actually interviewing all the candidates. 

5.4.1 The birthday paradox 
Our ûrst example is the birthday paradox. How many people must there be in a 
room before there is a 50% chance that two of them were born on the same day of 
the year? The answer is surprisingly few. The paradox is that it is in fact far fewer 
than the number of days in a year, or even half the number of days in a year, as we 
shall see. 

To answer this question, we index the people in the room with the integers 
1; 2; : : : ; k, where k is the number of people in the room. We ignore the issue 
of leap years and assume that all years have n D 365 days. For i D 1; 2; : : : ; k, 
let b i be the day of the year on which person i ’s birthday falls, where 1 හ b i හ n. 
We also assume that birthdays are uniformly distributed across the n days of the 
year, so that Pr fb i D r g D 1=n for i D 1; 2; : : : ; k and r D 1; 2; : : : ; n. 

The probability that two given people, say i and j , have matching birthdays 
depends on whether the random selection of birthdays is independent. We assume 
from now on that birthdays are independent, so that the probability that i ’s birthday 
and j ’s birthday both fall on day r is 
Pr fb i D r and b j D r g D Pr fb i D r g Pr fb j D r g 

D 
1 
n 2 : 

Thus, the probability that they both fall on the same day is 

Pr fb i D b j g D 
n X 

r D1 

Pr fb i D r and b j D r g 
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D 
n X 

r D1 

1 
n 2 

D 
1 
n 
: (5.7) 

More intuitively, once b i is chosen, the probability that b j is chosen to be the same 
day is 1=n. As long as the birthdays are independent, the probability that i and j 
have the same birthday is the same as the probability that the birthday of one of 
them falls on a given day. 

We can analyze the probability of at least 2 out of k people having matching 
birthdays by looking at the complementary event. The probability that at least two 
of the birthdays match is 1 minus the probability that all the birthdays are different. 
The event B k that k people have distinct birthdays is 

B k D 
k \ 

i D1 

A i ; 

where A i is the event that person i ’s birthday is different from person j ’s for 
all j < i . Since we can write B k D A k \ B k1 , we obtain from equation (C.18) 
on page 1189 the recurrence 
Pr fB k g D Pr fB k1 g Pr fA k j B k1 g ; (5.8) 
where we take Pr fB 1 g D Pr fA 1 g D 1 as an initial condition. In other words, 
the probability that b 1 ; b 2 ; : : : ; b k are distinct birthdays equals the probability that 
b 1 ; b 2 ; : : : ; b k1 are distinct birthdays multiplied by the probability that b k ¤ b i 
for i D 1; 2; : : : ; k  1, given that b 1 ; b 2 ; : : : ; b k1 are distinct. 

If b 1 ; b 2 ; : : : ; b k1 are distinct, the conditional probability that b k ¤ b i for 
i D 1; 2; : : : ; k  1 is Pr fA k j B k1 g D .n  k C 1/=n, since out of the n days, 
n  .k  1/ days are not taken. We iteratively apply the recurrence (5.8) to obtain 
Pr fB k g D Pr fB k1 g Pr fA k j B k1 g 

D Pr fB k2 g Pr fA k1 j B k2 g Pr fA k j B k1 g 
: : : 

D Pr fB 1 g Pr fA 2 j B 1 g Pr fA 3 j B 2 g    Pr fA k j B k1 g 

D 1  
Î 
n  1 
n 

ÏÎ 
n  2 
n 

Ï 
   
Î 
n  k C 1 

n 

Ï 

D 1  
Î 
1  

1 
n 

ÏÎ 
1  

2 
n 

Ï 
   
Î 
1  

k  1 
n 

Ï 
: 

Inequality (3.14) on page 66, 1 C x හ e x , gives us 
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Pr fB k g හ e 1=n e 2=n    e .k1/=n 

D e  
P k1 

i D1 i=n 

D e k.k1/=2n 

හ 
1 
2 

when k.k  1/=2n හ ln.1=2/. The probability that all k birthdays are distinct 
is at most 1=2 when k.k  1/  2n ln 2 or, solving the quadratic equation, when 
k  .1 C 

p 
1 C .8 ln 2/n/=2. For n D 365, we must have k  23. Thus, if at 

least 23 people are in a room, the probability is at least 1=2 that at least two people 
have the same birthday. Since a year on Mars is 669 Martian days long, it takes 31 
Martians to get the same effect. 

An analysis using indicator random variables 
Indicator random variables afford a simpler but approximate analysis of the birth- 
day paradox. For each pair .i; j / of the k people in the room, deûne the indicator 
random variable X ij , for 1 හ i < j හ k, by 
X ij D I fperson i and person j have the same birthdayg 

D 

( 
1 if person i and person j have the same birthday ; 
0 otherwise : 

By equation (5.7), the probability that two people have matching birthdays is 1=n, 
and thus by Lemma 5.1 on page 130, we have 
E ŒX ij � D Pr fperson i and person j have the same birthdayg 

D 1=n : 

Letting X be the random variable that counts the number of pairs of individuals 
having the same birthday, we have 

X D 
k1 X 

i D1 

k X 

j Di C1 

X ij : 

Taking expectations of both sides and applying linearity of expectation, we obtain 

E ŒX� D E 
" 
k1 X 

i D1 

k X 

j Di C1 

X ij 

# 

D 
k1 X 

i D1 

k X 

j Di C1 

E ŒX ij � 
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D 

 
k 
2 

! 
1 
n 

D 
k.k  1/ 
2n 

: 

When k.k  1/  2n, therefore, the expected number of pairs of people with the 
same birthday is at least 1. Thus, if we have at least 

p 
2n C 1 individuals in a room, 

we can expect at least two to have the same birthday. For n D 365, if k D 28, the 
expected number of pairs with the same birthday is .28  27/=.2  365/  1:0356. 
Thus, with at least 28 people, we expect to ûnd at least one matching pair of birth- 
days. On Mars, with 669 days per year, we need at least 38 Martians. 
The ûrst analysis, which used only probabilities, determined the number of peo- 

ple required for the probability to exceed 1=2 that a matching pair of birthdays 
exists, and the second analysis, which used indicator random variables, determined 
the number such that the expected number of matching birthdays is 1. Although 
the exact numbers of people differ for the two situations, they are the same asymp- 
totically: ‚. p 

n/. 

5.4.2 Balls and bins 
Consider a process in which you randomly toss identical balls into b bins, num- 
bered 1; 2; : : : ; b. The tosses are independent, and on each toss the ball is equally 
likely to end up in any bin. The probability that a tossed ball lands in any given bin 
is 1=b. If we view the ball-tossing process as a sequence of Bernoulli trials (see 
Appendix C.4), where success means that the ball falls in the given bin, then each 
trial has a probability 1=b of success. This model is particularly useful for analyz- 
ing hashing (see Chapter 11), and we can answer a variety of interesting questions 
about the ball-tossing process. (Problem C-2 asks additional questions about balls 
and bins.) 
 How many balls fall in a given bin? The number of balls that fall in a given 

bin follows the binomial distribution b.kI n; 1=b/. If you toss n balls, equa- 
tion (C.41) on page 1199 tells us that the expected number of balls that fall in 
the given bin is n=b. 

 How many balls must you toss, on the average, until a given bin contains a ball? 
The number of tosses until the given bin receives a ball follows the geometric 
distribution with probability 1=b and, by equation (C.36) on page 1197, the 
expected number of tosses until success is 1=.1=b/ D b. 

 How many balls must you toss until every bin contains at least one ball? Let us 
call a toss in which a ball falls into an empty bin a <hit.= We want to know the 
expected number n of tosses required to get b hits. 



144 Chapter 5 Probabilistic Analysis and Randomized Algorithms 

Using the hits, we can partition the n tosses into stages. The i th stage consists 
of the tosses after the .i  1/st hit up to and including the i th hit. The ûrst stage 
consists of the ûrst toss, since you are guaranteed to have a hit when all bins are 
empty. For each toss during the i th stage, i  1 bins contain balls and b  i C 1 
bins are empty. Thus, for each toss in the i th stage, the probability of obtaining 
a hit is .b  i C 1/=b. 
Let n i denote the number of tosses in the i th stage. The number of tosses 
required to get b hits is n D 

P b 
i D1 n i . Each random variable n i has a ge- 

ometric distribution with probability of success .b  i C 1/=b and thus, by 
equation (C.36), we have 

E Œn i � D 
b 

b  i C 1 
: 

By linearity of expectation, we have 

E Œn� D E 
" 

b X 

i D1 

n i 

# 

D 
b X 

i D1 

E Œn i � 

D 
b X 

i D1 

b 
b  i C 1 

D b 
b X 

i D1 

1 
i 

(by equation (A.14) on page 1144) 

D b.ln b C O.1// (by equation (A.9) on page 1142) . 
It therefore takes approximately b ln b tosses before we can expect that every 
bin has a ball. This problem is also known as the coupon collector’s problem, 
which says that if you are trying to collect each of b different coupons, then 
you should expect to acquire approximately b ln b randomly obtained coupons 
in order to succeed. 

5.4.3 Streaks 
Suppose that you üip a fair coin n times. What is the longest streak of consecutive 
heads that you expect to see? We’ll prove upper and lower bounds separately to 
show that the answer is ‚.lg n/. 
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We ûrst prove that the expected length of the longest streak of heads is O.lg n/. 
The probability that each coin üip is a head is 1=2. Let A ik be the event that a 
streak of heads of length at least k begins with the i th coin üip or, more precisely, 
the event that the k consecutive coin üips i; i C 1; : : : ; i C k  1 yield only heads, 
where 1 හ k හ n and 1 හ i හ n k C1. Since coin üips are mutually independent, 
for any given event A ik , the probability that all k üips are heads is 
Pr fA ik g D 

1 
2 k 
: (5.9) 

For k D 2 dlg ne, 

Pr fA i;2dlg ne g D 
1 

2 2dlg ne 

හ 
1 

2 2 lg n 

D 
1 
n 2 
; 

and thus the probability that a streak of heads of length at least 2 dlg ne begins in 
position i is quite small. There are at most n  2 dlg ne C 1 positions where such 
a streak can begin. The probability that a streak of heads of length at least 2 dlg ne 
begins anywhere is therefore 

Pr 
( 
n2dlg neC1 [ 

i D1 

A i;2dlg ne 

) 

හ 
n2dlg neC1 X 

i D1 

Pr fA i;2dlg ne g (by Boole’s inequality (C.21) on page 1190) 

හ 
n2dlg neC1 X 

i D1 

1 
n 2 

< 
n X 

i D1 

1 
n 2 

D 
1 
n 
: (5.10) 

We can use inequality (5.10) to bound the length of the longest streak. For 
j D 0; 1; 2; : : : ; n, let L j be the event that the longest streak of heads has length 
exactly j , and let L be the length of the longest streak. By the deûnition of ex- 
pected value, we have 

E ŒL� D 
n X 

j D0 

j Pr fL j g : (5.11) 
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We could try to evaluate this sum using upper bounds on each Pr fL j g similar 
to those computed in inequality (5.10). Unfortunately, this method yields weak 
bounds. We can use some intuition gained by the above analysis to obtain a good 
bound, however. For no individual term in the summation in equation (5.11) are 
both the factors j and Pr fL j g large. Why? When j  2 dlg ne, then Pr fL j g is 
very small, and when j < 2 dlg ne, then j is fairly small. More precisely, since 
the events L j for j D 0; 1; : : : ; n are disjoint, the probability that a streak of heads 
of length at least 2 dlg ne begins anywhere is P n 

j D2dlg ne Pr fL j g. Inequality (5.10) 
tells us that the probability that a streak of heads of length at least 2 dlg ne begins 
anywhere is less than 1=n, which means that P n 

j D2dlg ne Pr fL j g < 1=n. Also, not- 
ing that P n 

j D0 Pr fL j g D 1, we have that P 2dlg ne1 
j D0 Pr fL j g හ 1. Thus, we obtain 

E ŒL� D 
n X 

j D0 

j Pr fL j g 

D 
2dlg ne1 X 

j D0 

j Pr fL j g C 
n X 

j D2dlg ne 
j Pr fL j g 

< 
2dlg ne1 X 

j D0 

.2 dlg ne/ Pr fL j g C 
n X 

j D2dlg ne 
n Pr fL j g 

D 2 dlg ne 
2dlg ne1 X 

j D0 

Pr fL j g C n 
n X 

j D2dlg ne 
Pr fL j g 

< 2 dlg ne  1 C n  1 
n 

D O.lg n/ : 
The probability that a streak of heads exceeds r dlg ne üips diminishes quickly 

with r . Let’s get a rough bound on the probability that a streak of at least r dlg ne 
heads occurs, for r  1. The probability that a streak of at least r dlg ne heads 
starts in position i is 

Pr fA i;r dlg ne g D 
1 

2 r dlg ne 

හ 
1 
n r 
: 

A streak of at least r dlg ne heads cannot start in the last n  r dlg ne C 1 üips, but 
let’s overestimate the probability of such a streak by allowing it to start anywhere 
within the n coin üips. Then the probability that a streak of at least r dlg ne heads 
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occurs is at most 

Pr 
( 

n [ 

i D1 

A i;r dlg ne 

) 

හ 
n X 

i D1 

Pr fA i;r dlg ne g (by Boole’s inequality (C.21)) 

හ 
n X 

i D1 

1 
n r 

D 
1 
n r 1 

: 

Equivalently, the probability is at least 1  1=n r 1 that the longest streak has length 
less than r dlg ne. 

As an example, during n D 1000 coin üips, the probability of encountering a 
streak of at least 2 dlg ne D 20 heads is at most 1=n D 1=1000. The chance of a 
streak of at least 3 dlg ne D 30 heads is at most 1=n 2 D 1=1,000,000. 
Let’s now prove a complementary lower bound: the expected length of the 

longest streak of heads in n coin üips is �.lg n/. To prove this bound, we look 
for streaks of length s by partitioning the n üips into approximately n=s groups of 
s üips each. If we choose s D b.lg n/=2c, we’ll see that it is likely that at least one 
of these groups comes up all heads, which means that it’s likely that the longest 
streak has length at least s D �.lg n/. We’ll then show that the longest streak has 
expected length �.lg n/. 
Let’s partition the n coin üips into at least bn= b.lg n/=2cc groups of b.lg n/=2c 

consecutive üips and bound the probability that no group comes up all heads. By 
equation (5.9), the probability that the group starting in position i comes up all 
heads is 
Pr fA i;b.lg n/=2c g D 

1 
2 b.lg n/=2c 

 
1 p 
n 
: 

The probability that a streak of heads of length at least b.lg n/=2c does not begin 
in position i is therefore at most 1  1= 

p 
n. Since the bn= b.lg n/=2cc groups are 

formed from mutually exclusive, independent coin üips, the probability that every 
one of these groups fails to be a streak of length b.lg n/=2c is at most ã 
1  1= 

p 
n 
ä bn=b.lg n/=2cc හ 

ã 
1  1= 

p 
n 
ä n=b.lg n/=2c1 

හ 
ã 
1  1= 

p 
n 
ä 2n= lg n1 

හ e .2n= lg n1/= 
p 
n 

D O.e  ln n / 
D O.1=n/ : (5.12) 
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For this argument, we used inequality (3.14), 1 C x හ e x , on page 66 and the fact, 
which you may verify, that .2n= lg n  1/= 

p 
n  ln n for sufûciently large n. 

We want to bound the probability that the longest streak equals or exceeds 
b.lg n/=2c. To do so, let L be the event that the longest streak of heads equals 
or exceeds s D b.lg n/=2c. Let L be the complementary event, that the longest 
streak of heads is strictly less than s , so that Pr fLg C Pr ̊  

L 
 D 1. Let F be the 

event that every group of s üips fails to be a streak of s heads. By inequality (5.12), 
we have Pr fF g D O.1=n/. If the longest streak of heads is less than s , then 
certainly every group of s üips fails to be a streak of s heads, which means that 
event L implies event F . Of course, event F could occur even if event L does not 
(for example, if a streak of s or more heads crosses over the boundary between two 
groups), and so we have Pr ̊  

L 
 හ Pr fF g D O.1=n/. Since Pr fLg C Pr ̊  

L 
 D 1, 

we have that 
Pr fLg D 1  Pr ̊  

L 
 

 1  Pr fF g 
D 1  O.1=n/ : 

That is, the probability that the longest streak equals or exceeds b.lg n/=2c is 
n X 

j Db.lg n/=2c 
Pr fL j g  1  O.1=n/ : (5.13) 

We can now calculate a lower bound on the expected length of the longest streak, 
beginning with equation (5.11) and proceeding in a manner similar to our analysis 
of the upper bound: 

E ŒL� D 
n X 

j D0 

j Pr fL j g 

D 
b.lg n/=2c1 X 

j D0 

j Pr fL j g C 
n X 

j Db.lg n/=2c 
j Pr fL j g 

 
b.lg n/=2c1 X 

j D0 

0  Pr fL j g C 
n X 

j Db.lg n/=2c 
b.lg n/=2c Pr fL j g 

D 0  
b.lg n/=2c1 X 

j D0 

Pr fL j g C b.lg n/=2c 
n X 

j Db.lg n/=2c 
Pr fL j g 

 0 C b.lg n/=2c .1  O.1=n// (by inequality (5.13)) 
D �.lg n/ : 
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As with the birthday paradox, we can obtain a simpler, but approximate, analysis 
using indicator random variables. Instead of determining the expected length of 
the longest streak, we’ll ûnd the expected number of streaks with at least a given 
length. Let X ik D I fA ik g be the indicator random variable associated with a 
streak of heads of length at least k beginning with the i th coin üip. To count the 
total number of such streaks, deûne 

X k D 
nkC1 X 

i D1 

X ik : 

Taking expectations and using linearity of expectation, we have 

E ŒX k � D E 
" 
nkC1 X 

i D1 

X ik 

# 

D 
nkC1 X 

i D1 

E ŒX ik � 

D 
nkC1 X 

i D1 

Pr fA ik g 

D 
nkC1 X 

i D1 

1 
2 k 

D 
n  k C 1 

2 k 
: 

By plugging in various values for k, we can calculate the expected number of 
streaks of length at least k. If this expected number is large (much greater than 1), 
then we expect many streaks of length k to occur, and the probability that one oc- 
curs is high. If this expected number is small (much less than 1), then we expect to 
see few streaks of length k, and the probability that one occurs is low. If k D c lg n, 
for some positive constant c , we obtain 

E ŒX c lg n � D 
n  c lg n C 1 

2 c lg n 

D 
n  c lg n C 1 

n c 

D 
1 
n c1  

.c lg n  1/=n 
n c1 

D ‚.1=n c1 / : 

If c is large, the expected number of streaks of length c lg n is small, and we con- 
clude that they are unlikely to occur. On the other hand, if c D 1=2, then we 
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obtain E ŒX .1=2/ lg n � D ‚.1=n 1=21 / D ‚.n 1=2 /, and we expect there to be numer- 
ous streaks of length .1=2/ lg n. Therefore, one streak of such a length is likely to 
occur. We can conclude that the expected length of the longest streak is ‚.lg n/. 

5.4.4 The online hiring problem 

As a ûnal example, let’s consider a variant of the hiring problem. Suppose now 
that you do not wish to interview all the candidates in order to ûnd the best one. 
You also want to avoid hiring and ûring as you ûnd better and better applicants. 
Instead, you are willing to settle for a candidate who is close to the best, in ex- 
change for hiring exactly once. You must obey one company requirement: after 
each interview you must either immediately offer the position to the applicant or 
immediately reject the applicant. What is the trade-off between minimizing the 
amount of interviewing and maximizing the quality of the candidate hired? 

We can model this problem in the following way. After meeting an applicant, 
you are able to give each one a score. Let score.i/ denote the score you give to 
the i th applicant, and assume that no two applicants receive the same score. After 
you have seen j applicants, you know which of the j has the highest score, but 
you do not know whether any of the remaining n  j applicants will receive a 
higher score. You decide to adopt the strategy of selecting a positive integer k < n, 
interviewing and then rejecting the ûrst k applicants, and hiring the ûrst applicant 
thereafter who has a higher score than all preceding applicants. If it turns out that 
the best-qualiûed applicant was among the ûrst k interviewed, then you hire the nth 
applicant4the last one interviewed. We formalize this strategy in the procedure 
ONLINE-MAXIMUM.k; n/, which returns the index of the candidate you wish to 
hire. 

ONLINE-MAXIMUM.k; n/ 
1 best-score D 1 
2 for i D 1 to k 
3 if score.i/ > best-score 
4 best-score D score.i/ 
5 for i D k C 1 to n 
6 if score.i/ > best-score 
7 return i 
8 return n 

If we determine, for each possible value of k, the probability that you hire 
the most qualiûed applicant, then you can choose the best possible k and imple- 
ment the strategy with that value. For the moment, assume that k is ûxed. Let 
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M.j / D max fscore.i/ W 1 හ i හ j g denote the maximum score among applicants 
1 through j . Let S be the event that you succeed in choosing the best-qualiûed 
applicant, and let S i be the event that you succeed when the best-qualiûed appli- 
cant is the i th one interviewed. Since the various S i are disjoint, we have that 
Pr fS g D 

P n 
i D1 Pr fS i g. Noting that you never succeed when the best-qualiûed 

applicant is one of the ûrst k, we have that Pr fS i g D 0 for i D 1; 2; : : : ; k. Thus, 
we obtain 

Pr fS g D 
n X 

i DkC1 

Pr fS i g : (5.14) 

We now compute Pr fS i g. In order to succeed when the best-qualiûed applicant 
is the i th one, two things must happen. First, the best-qualiûed applicant must be in 
position i , an event which we denote by B i . Second, the algorithm must not select 
any of the applicants in positions k C 1 through i  1, which happens only if, for 
each j such that k C 1 හ j හ i  1, line 6 ûnds that score.j / < best-score. (Be- 
cause scores are unique, we can ignore the possibility of score.j / D best-score.) 
In other words, all of the values score.k C 1/ through score.i  1/ must be less 
than M.k/. If any are greater than M.k/, the algorithm instead returns the index 
of the ûrst one that is greater. We use O i to denote the event that none of the ap- 
plicants in position k C 1 through i  1 are chosen. Fortunately, the two events B i 
and O i are independent. The event O i depends only on the relative ordering of the 
values in positions 1 through i  1, whereas B i depends only on whether the value 
in position i is greater than the values in all other positions. The ordering of the 
values in positions 1 through i  1 does not affect whether the value in position i 
is greater than all of them, and the value in position i does not affect the ordering 
of the values in positions 1 through i  1. Thus, we can apply equation (C.17) on 
page 1188 to obtain 

Pr fS i g D Pr fB i \ O i g D Pr fB i g Pr fO i g : 

We have Pr fB i g D 1=n since the maximum is equally likely to be in any one of the 
n positions. For event O i to occur, the maximum value in positions 1 through i  1, 
which is equally likely to be in any of these i  1 positions, must be in one of the 
ûrst k positions. Consequently, Pr fO i g D k=.i  1/ and Pr fS i g D k=.n.i  1//. 
Using equation (5.14), we have 

Pr fS g D 
n X 

i DkC1 

Pr fS i g 

D 
n X 

i DkC1 

k 
n.i  1/ 
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D 
k 
n 

n X 

i DkC1 

1 
i  1 

D 
k 
n 

n1 X 

i Dk 

1 
i 
: 

We approximate by integrals to bound this summation from above and below. By 
the inequalities (A.19) on page 1150, we have Z n 

k 

1 
x 
dx හ 

n1 X 

i Dk 

1 
i 

හ 
Z n1 

k1 

1 
x 
dx : 

Evaluating these deûnite integrals gives us the bounds 
k 
n 
.ln n  ln k/ හ Pr fS g හ 

k 
n 
.ln.n  1/  ln.k  1// ; 

which provide a rather tight bound for Pr fS g. Because you wish to maximize your 
probability of success, let us focus on choosing the value of k that maximizes the 
lower bound on Pr fS g. (Besides, the lower-bound expression is easier to maximize 
than the upper-bound expression.) Differentiating the expression .k=n/.ln n ln k/ 
with respect to k, we obtain 
1 
n 
.ln n  ln k  1/ : 

Setting this derivative equal to 0, we see that you maximize the lower bound on 
the probability when ln k D ln n  1 D ln.n=e/ or, equivalently, when k D n=e. 
Thus, if you implement our strategy with k D n=e, you succeed in hiring the 
best-qualiûed applicant with probability at least 1=e. 

Exercises 
5.4-1 
How many people must there be in a room before the probability that someone 
has the same birthday as you do is at least 1=2? How many people must there be 
before the probability that at least two people have a birthday on July 4 is greater 
than 1=2? 
5.4-2 
How many people must there be in a room before the probability that two people 
have the same birthday is at least 0:99? For that many people, what is the expected 
number of pairs of people who have the same birthday? 
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5.4-3 
You toss balls into b bins until some bin contains two balls. Each toss is indepen- 
dent, and each ball is equally likely to end up in any bin. What is the expected 
number of ball tosses? 

? 5.4-4 
For the analysis of the birthday paradox, is it important that the birthdays be mutu- 
ally independent, or is pairwise independence sufûcient? Justify your answer. 

? 5.4-5 
How many people should be invited to a party in order to make it likely that there 
are three people with the same birthday? 

? 5.4-6 
What is the probability that a k-string (deûned on page 1179) over a set of size n 
forms a k-permutation? How does this question relate to the birthday paradox? 

? 5.4-7 
You toss n balls into n bins, where each toss is independent and the ball is equally 
likely to end up in any bin. What is the expected number of empty bins? What is 
the expected number of bins with exactly one ball? 

? 5.4-8 
Sharpen the lower bound on streak length by showing that in n üips of a fair coin, 
the probability is at least 1  1=n that a streak of length lg n  2 lg lg n consecutive 
heads occurs. 

Problems 

5-1 Probabilistic counting 
With a b-bit counter, we can ordinarily only count up to 2 b  1. With R. Morris’s 
probabilistic counting, we can count up to a much larger value at the expense of 
some loss of precision. 

We let a counter value of i represent a count of n i for i D 0; 1; : : : ; 2 b  1, where 
the n i form an increasing sequence of nonnegative values. We assume that the ini- 
tial value of the counter is 0, representing a count of n 0 D 0. The I NCREMENT 
operation works on a counter containing the value i in a probabilistic manner. If 
i D 2 b  1, then the operation reports an overüow error. Otherwise, the I NCRE- 
MENT operation increases the counter by 1 with probability 1=.n i C1  n i /, and it 
leaves the counter unchanged with probability 1  1=.n i C1  n i /. 
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If we select n i D i for all i  0, then the counter is an ordinary one. More 
interesting situations arise if we select, say, n i D 2 i 1 for i > 0 or n i D F i (the 
i th Fibonacci number4see equation (3.31) on page 69). 

For this problem, assume that n 2 b 1 is large enough that the probability of an 
overüow error is negligible. 
a. Show that the expected value represented by the counter after n I NCREMENT 

operations have been performed is exactly n. 

b. The analysis of the variance of the count represented by the counter depends 
on the sequence of the n i . Let us consider a simple case: n i D 100i for 
all i  0. Estimate the variance in the value represented by the register after n 
I NCREMENT operations have been performed. 

5-2 Searching an unsorted array 
This problem examines three algorithms for searching for a value x in an unsorted 
array A consisting of n elements. 

Consider the following randomized strategy: pick a random index i into A. If 
AŒi� D x , then terminate; otherwise, continue the search by picking a new random 
index into A. Continue picking random indices into A until you ûnd an index j 
such that AŒj � D x or until every element of A has been checked. This strategy 
may examine a given element more than once, because it picks from the whole set 
of indices each time. 
a. Write pseudocode for a procedure RANDOM-SEARCH to implement the strat- 

egy above. Be sure that your algorithm terminates when all indices into A have 
been picked. 

b. Suppose that there is exactly one index i such that AŒi� D x . What is the 
expected number of indices into A that must be picked before x is found and 
RANDOM-SEARCH terminates? 

c. Generalizing your solution to part (b), suppose that there are k  1 indices i 
such that AŒi� D x . What is the expected number of indices into A that must 
be picked before x is found and RANDOM-SEARCH terminates? Your answer 
should be a function of n and k. 

d. Suppose that there are no indices i such that AŒi� D x . What is the expected 
number of indices into A that must be picked before all elements of A have 
been checked and RANDOM-SEARCH terminates? 

Now consider a deterministic linear search algorithm. The algorithm, which we 
call DETERMINISTIC-SEARCH, searches A for x in order, considering AŒ1�;AŒ2�; 
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AŒ3�; : : : ; AŒn� until either it ûnds AŒi� D x or it reaches the end of the array. 
Assume that all possible permutations of the input array are equally likely. 
e. Suppose that there is exactly one index i such that AŒi� D x . What is the 

average-case running time of DETERMINISTIC-SEARCH? What is the worst- 
case running time of DETERMINISTIC-SEARCH? 

f. Generalizing your solution to part (e), suppose that there are k  1 indices i 
such that AŒi� D x . What is the average-case running time of DETERMINISTIC- 
SEARCH? What is the worst-case running time of DETERMINISTIC-S EARCH? 
Your answer should be a function of n and k. 

g. Suppose that there are no indices i such that AŒi� D x . What is the average-case 
running time of DETERMINISTIC-SEARCH? What is the worst-case running 
time of DETERMINISTIC-SEARCH? 

Finally, consider a randomized algorithm SCRAMBLE-SEARCH that ûrst randomly 
permutes the input array and then runs the deterministic linear search given above 
on the resulting permuted array. 
h. Letting k be the number of indices i such that AŒi� D x , give the worst-case and 

expected running times of SCRAMBLE-SEARCH for the cases in which k D 0 
and k D 1. Generalize your solution to handle the case in which k  1. 

i. Which of the three searching algorithms would you use? Explain your answer. 

Chapter notes 

Bollob´ as [65], Hofri [223], and Spencer [420] contain a wealth of advanced prob- 
abilistic techniques. The advantages of randomized algorithms are discussed and 
surveyed by Karp [249] and Rabin [372]. The textbook by Motwani and Raghavan 
[336] gives an extensive treatment of randomized algorithms. 

The RANDOMLY-PERMUTE procedure is by Durstenfeld [128], based on an ear- 
lier procedure by Fisher and Yates [143, p. 34]. 

Several variants of the hiring problem have been widely studied. These problems 
are more commonly referred to as <secretary problems.= Examples of work in this 
area are the paper by Ajtai, Meggido, and Waarts [11] and another by Kleinberg 
[258], which ties the secretary problem to online ad auctions. 
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Introduction 

This part presents several algorithms that solve the following sorting problem: 
Input: A sequence of n numbers ha 1 ; a 2 ; : : : ; a n i. 
Output: A permutation (reordering) ha 0 1 ; a 0 2 ; : : : ; a 0 n i of the input sequence such 

that a 0 1 හ a 0 2 හ    හ a 0 n . 
The input sequence is usually an n-element array, although it may be represented 
in some other fashion, such as a linked list. 

The structure of the data 
In practice, the numbers to be sorted are rarely isolated values. Each is usually part 
of a collection of data called a record. Each record contains a key, which is the 
value to be sorted. The remainder of the record consists of satellite data, which are 
usually carried around with the key. In practice, when a sorting algorithm permutes 
the keys, it must permute the satellite data as well. If each record includes a large 
amount of satellite data, it often pays to permute an array of pointers to the records 
rather than the records themselves in order to minimize data movement. 

In a sense, it is these implementation details that distinguish an algorithm from 
a full-blown program. A sorting algorithm describes the method to determine the 
sorted order, regardless of whether what’s being sorted are individual numbers or 
large records containing many bytes of satellite data. Thus, when focusing on the 
problem of sorting, we typically assume that the input consists only of numbers. 
Translating an algorithm for sorting numbers into a program for sorting records 
is conceptually straightforward, although in a given engineering situation other 
subtleties may make the actual programming task a challenge. 
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Why sorting? 
Many computer scientists consider sorting to be the most fundamental problem in 
the study of algorithms. There are several reasons: 
 Sometimes an application inherently needs to sort information. For example, 

in order to prepare customer statements, banks need to sort checks by check 
number. 

 Algorithms often use sorting as a key subroutine. For example, a program that 
renders graphical objects which are layered on top of each other might have 
to sort the objects according to an <above= relation so that it can draw these 
objects from bottom to top. We will see numerous algorithms in this text that 
use sorting as a subroutine. 

 We can draw from among a wide variety of sorting algorithms, and they employ 
a rich set of techniques. In fact, many important techniques used throughout 
algorithm design appear in sorting algorithms that have been developed over 
the years. In this way, sorting is also a problem of historical interest. 

 We can prove a nontrivial lower bound for sorting (as we’ll do in Chapter 8). 
Since the best upper bounds match the lower bound asymptotically, we can con- 
clude that certain of our sorting algorithms are asymptotically optimal. More- 
over, we can use the lower bound for sorting to prove lower bounds for various 
other problems. 

 Many engineering issues come to the fore when implementing sorting algo- 
rithms. The fastest sorting program for a particular situation may depend on 
many factors, such as prior knowledge about the keys and satellite data, the 
memory hierarchy (caches and virtual memory) of the host computer, and the 
software environment. Many of these issues are best dealt with at the algorith- 
mic level, rather than by <tweaking= the code. 

Sorting algorithms 
We introduced two algorithms that sort n real numbers in Chapter 2. Insertion sort 
takes ‚.n 2 / time in the worst case. Because its inner loops are tight, however, it is 
a fast sorting algorithm for small input sizes. Moreover, unlike merge sort, it sorts 
in place, meaning that at most a constant number of elements of the input array 
are ever stored outside the array, which can be advantageous for space efûciency. 
Merge sort has a better asymptotic running time, ‚.n lg n/, but the MERGE proce- 
dure it uses does not operate in place. (We’ll see a parallelized version of merge 
sort in Section 26.3.) 
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This part introduces two more algorithms that sort arbitrary real numbers. Heap- 
sort, presented in Chapter 6, sorts n numbers in place in O.n lg n/ time. It uses an 
important data structure, called a heap, which can also implement a priority queue. 
Quicksort, in Chapter 7, also sorts n numbers in place, but its worst-case running 

time is ‚.n 2 /. Its expected running time is ‚.n lg n/, however, and it generally 
outperforms heapsort in practice. Like insertion sort, quicksort has tight code, and 
so the hidden constant factor in its running time is small. It is a popular algorithm 
for sorting large arrays. 

Insertion sort, merge sort, heapsort, and quicksort are all comparison sorts: they 
determine the sorted order of an input array by comparing elements. Chapter 8 be- 
gins by introducing the decision-tree model in order to study the performance limi- 
tations of comparison sorts. Using this model, we prove a lower bound of �.n lg n/ 
on the worst-case running time of any comparison sort on n inputs, thus showing 
that heapsort and merge sort are asymptotically optimal comparison sorts. 
Chapter 8 then goes on to show that we might be able to beat this lower bound 

of �.n lg n/ if an algorithm can gather information about the sorted order of the 
input by means other than comparing elements. The counting sort algorithm, for 
example, assumes that the input numbers belong to the set f0; 1; : : : ; kg. By using 
array indexing as a tool for determining relative order, counting sort can sort n 
numbers in ‚.k C n/ time. Thus, when k D O.n/, counting sort runs in time that 
is linear in the size of the input array. A related algorithm, radix sort, can be used 
to extend the range of counting sort. If there are n integers to sort, each integer 
has d digits, and each digit can take on up to k possible values, then radix sort can 
sort the numbers in ‚.d.n C k// time. When d is a constant and k is O.n/, radix 
sort runs in linear time. A third algorithm, bucket sort, requires knowledge of the 
probabilistic distribution of numbers in the input array. It can sort n real numbers 
uniformly distributed in the half-open interval Œ0; 1/ in average-case O.n/ time. 

The table on the following page summarizes the running times of the sorting al- 
gorithms from Chapters 2 and 638. As usual, n denotes the number of items to sort. 
For counting sort, the items to sort are integers in the set f0; 1; : : : ; kg. For radix 
sort, each item is a d -digit number, where each digit takes on k possible values. For 
bucket sort, we assume that the keys are real numbers uniformly distributed in the 
half-open interval Œ0; 1/. The rightmost column gives the average-case or expected 
running time, indicating which one it gives when it differs from the worst-case run- 
ning time. We omit the average-case running time of heapsort because we do not 
analyze it in this book. 
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Worst-case Average-case/expected 
Algorithm running time running time 
Insertion sort ‚.n 2 / ‚.n 2 / 
Merge sort ‚.n lg n/ ‚.n lg n/ 
Heapsort O.n lg n/ 4 
Quicksort ‚.n 2 / ‚.n lg n/ (expected) 
Counting sort ‚.k C n/ ‚.k C n/ 
Radix sort ‚.d.n C k// ‚.d.n C k// 
Bucket sort ‚.n 2 / ‚.n/ (average-case) 

Order statistics 
The i th order statistic of a set of n numbers is the i th smallest number in the set. 
You can, of course, select the i th order statistic by sorting the input and indexing 
the i th element of the output. With no assumptions about the input distribution, 
this method runs in �.n lg n/ time, as the lower bound proved in Chapter 8 shows. 
Chapter 9 shows how to ûnd the i th smallest element in O.n/ time, even when 

the elements are arbitrary real numbers. We present a randomized algorithm with 
tight pseudocode that runs in ‚.n 2 / time in the worst case, but whose expected 
running time is O.n/. We also give a more complicated algorithm that runs in 
O.n/ worst-case time. 

Background 

Although most of this part does not rely on difûcult mathematics, some sections 
do require mathematical sophistication. In particular, analyses of quicksort, bucket 
sort, and the order-statistic algorithm use probability, which is reviewed in Ap- 
pendix C, and the material on probabilistic analysis and randomized algorithms in 
Chapter 5. 
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This chapter introduces another sorting algorithm: heapsort. Like merge sort, but 
unlike insertion sort, heapsort’s running time is O.n lg n/. Like insertion sort, but 
unlike merge sort, heapsort sorts in place: only a constant number of array elements 
are stored outside the input array at any time. Thus, heapsort combines the better 
attributes of the two sorting algorithms we have already discussed. 

Heapsort also introduces another algorithm design technique: using a data struc- 
ture, in this case one we call a <heap,= to manage information. Not only is the heap 
data structure useful for heapsort, but it also makes an efûcient priority queue. The 
heap data structure will reappear in algorithms in later chapters. 

The term <heap= was originally coined in the context of heapsort, but it has since 
come to refer to <garbage-collected storage,= such as the programming languages 
Java and Python provide. Please don’t be confused. The heap data structure is not 
garbage-collected storage. This book is consistent in using the term <heap= to refer 
to the data structure, not the storage class. 

6.1 Heaps 

The (binary) heap data structure is an array object that we can view as a nearly 
complete binary tree (see Section B.5.3), as shown in Figure 6.1. Each node of 
the tree corresponds to an element of the array. The tree is completely ûlled on 
all levels except possibly the lowest, which is ûlled from the left up to a point. 
An array AŒ1 W n� that represents a heap is an object with an attribute A: heap-size, 
which represents how many elements in the heap are stored within array A. That 
is, although AŒ1 W n� may contain numbers, only the elements in AŒ1 W A: heap-size�, 
where 0 හ A: heap-size හ n, are valid elements of the heap. If A: heap-size D 0, 
then the heap is empty. The root of the tree is AŒ1�, and given the index i of a node, 
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Figure 6.1 A max-heap viewed as (a) a binary tree and (b) an array. The number within the circle at 
each node in the tree is the value stored at that node. The number above a node is the corresponding 
index in the array. Above and below the array are lines showing parent-child relationships, with 
parents always to the left of their children. The tree has height 3, and the node at index 4 (with 
value 8) has height 1. 

there’s a simple way to compute the indices of its parent, left child, and right child 
with the one-line procedures PARENT, LEFT, and RIGHT. 

PARENT.i/ 
1 return bi=2c 

LEFT.i/ 
1 return 2i 

RIGHT.i/ 
1 return 2i C 1 

On most computers, the LEFT procedure can compute 2i in one instruction by 
simply shifting the binary representation of i left by one bit position. Similarly, the 
RIGHT procedure can quickly compute 2i C 1 by shifting the binary representation 
of i left by one bit position and then adding 1. The PARENT procedure can compute 
bi=2c by shifting i right one bit position. Good implementations of heapsort often 
implement these procedures as macros or inline procedures. 
There are two kinds of binary heaps: max-heaps and min-heaps. In both kinds, 

the values in the nodes satisfy a heap property, the speciûcs of which depend on 
the kind of heap. In a max-heap, the max-heap property is that for every node i 
other than the root, 
AŒPARENT.i/�  AŒi� ; 
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that is, the value of a node is at most the value of its parent. Thus, the largest 
element in a max-heap is stored at the root, and the subtree rooted at a node contains 
values no larger than that contained at the node itself. A min-heap is organized in 
the opposite way: the min-heap property is that for every node i other than the 
root, 
AŒPARENT.i/� හ AŒi� : 

The smallest element in a min-heap is at the root. 
The heapsort algorithm uses max-heaps. Min-heaps commonly implement prior- 

ity queues, which we discuss in Section 6.5. We’ll be precise in specifying whether 
we need a max-heap or a min-heap for any particular application, and when prop- 
erties apply to either max-heaps or min-heaps, we just use the term <heap.= 
Viewing a heap as a tree, we deûne the height of a node in a heap to be the 

number of edges on the longest simple downward path from the node to a leaf, and 
we deûne the height of the heap to be the height of its root. Since a heap of n ele- 
ments is based on a complete binary tree, its height is ‚.lg n/ (see Exercise 6.1-2). 
As we’ll see, the basic operations on heaps run in time at most proportional to the 
height of the tree and thus take O.lg n/ time. The remainder of this chapter presents 
some basic procedures and shows how they are used in a sorting algorithm and a 
priority-queue data structure. 
 The MAX-HEAPIFY procedure, which runs in O.lg n/ time, is the key to main- 

taining the max-heap property. 
 The BUILD-MAX-HEAP procedure, which runs in linear time, produces a max- 

heap from an unordered input array. 
 The HEAPSORT procedure, which runs in O.n lg n/ time, sorts an array in 

place. 
 The procedures MAX-HEAP-I NSERT, MAX-HEAP-EXTRACT-MAX, MAX- 

HEAP-I NCREASE-KEY, and MAX-HEAP-MAXIMUM allow the heap data 
structure to implement a priority queue. They run in O.lg n/ time plus the 
time for mapping between objects being inserted into the priority queue and 
indices in the heap. 

Exercises 
6.1-1 
What are the minimum and maximum numbers of elements in a heap of height h? 
6.1-2 
Show that an n-element heap has height blg nc. 
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6.1-3 
Show that in any subtree of a max-heap, the root of the subtree contains the largest 
value occurring anywhere in that subtree. 
6.1-4 
Where in a max-heap might the smallest element reside, assuming that all elements 
are distinct? 
6.1-5 
At which levels in a max-heap might the kth largest element reside, for 2 හ k හ 
bn=2c, assuming that all elements are distinct? 
6.1-6 
Is an array that is in sorted order a min-heap? 
6.1-7 
Is the array with values h33; 19; 20; 15; 13; 10; 2; 13; 16; 12i a max-heap? 
6.1-8 
Show that, with the array representation for storing an n-element heap, the leaves 
are the nodes indexed by bn=2c C 1; bn=2c C 2; : : : ; n. 

6.2 Maintaining the heap property 

The procedure MAX-HEAPIFY on the facing page maintains the max-heap prop- 
erty. Its inputs are an array A with the heap-size attribute and an index i into the 
array. When it is called, MAX-HEAPIFY assumes that the binary trees rooted at 
LEFT.i/ and RIGHT.i/ are max-heaps, but that AŒi� might be smaller than its chil- 
dren, thus violating the max-heap property. MAX-HEAPIFY lets the value at AŒi� 
<üoat down= in the max-heap so that the subtree rooted at index i obeys the max- 
heap property. 
Figure 6.2 illustrates the action of MAX-HEAPIFY. Each step determines the 

largest of the elements AŒi�, AŒLEFT.i/�, and AŒRIGHT.i/� and stores the index of 
the largest element in largest . If AŒi� is largest, then the subtree rooted at node i is 
already a max-heap and nothing else needs to be done. Otherwise, one of the two 
children contains the largest element. Positions i and largest swap their contents, 
which causes node i and its children to satisfy the max-heap property. The node in- 
dexed by largest , however, just had its value decreased, and thus the subtree rooted 
at largest might violate the max-heap property. Consequently, MAX-HEAPIFY 
calls itself recursively on that subtree. 
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Figure 6.2 The action of MAX-HEAPIFY.A; 2/, where A: heap-size D 10. The node that poten- 
tially violates the max-heap property is shown in blue. (a) The initial conûguration, with AŒ2� at 
node i D 2 violating the max-heap property since it is not larger than both children. The max-heap 
property is restored for node 2 in (b) by exchanging AŒ2� with AŒ4�, which destroys the max-heap 
property for node 4. The recursive call MAX-HEAPIFY.A; 4/ now has i D 4. After AŒ4� and AŒ9� 
are swapped, as shown in (c), node 4 is ûxed up, and the recursive call MAX-HEAPIFY.A; 9/ yields 
no further change to the data structure. 

MAX-HEAPIFY .A; i/ 
1 l D LEFT.i/ 
2 r D RIGHT.i/ 
3 if l හ A: heap-size and AŒl� > AŒi � 
4 largest D l 
5 else largest D i 
6 if r හ A: heap-size and AŒr� > AŒlargest � 
7 largest D r 
8 if largest ¤ i 
9 exchange AŒi� with AŒlargest � 
10 MAX-HEAPIFY .A; largest / 
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To analyze MAX-HEAPIFY, let T .n/ be the worst-case running time that the 
procedure takes on a subtree of size at most n. For a tree rooted at a given node i , 
the running time is the ‚.1/ time to ûx up the relationships among the elements 
AŒi�, AŒLEFT.i/�, and AŒRIGHT.i/�, plus the time to run MAX-HEAPIFY on a 
subtree rooted at one of the children of node i (assuming that the recursive call oc- 
curs). The children’s subtrees each have size at most 2n=3 (see Exercise 6.2-2), and 
therefore we can describe the running time of MAX-HEAPIFY by the recurrence 
T .n/ හ T .2n=3/ C ‚.1/ : (6.1) 
The solution to this recurrence, by case 2 of the master theorem (Theorem 4.1 on 
page 102), is T .n/ D O.lg n/. Alternatively, we can characterize the running time 
of MAX-HEAPIFY on a node of height h as O.h/. 

Exercises 
6.2-1 
Using Figure 6.2 as a model, illustrate the operation of MAX-HEAPIFY .A; 3/ on 
the array A D h27; 17; 3; 16; 13; 10; 1; 5; 7; 12; 4; 8; 9; 0i. 
6.2-2 
Show that each child of the root of an n-node heap is the root of a subtree containing 
at most 2n=3 nodes. What is the smallest constant ˛ such that each subtree has at 
most ˛n nodes? How does that affect the recurrence (6.1) and its solution? 
6.2-3 
Starting with the procedure MAX-HEAPIFY, write pseudocode for the procedure 
MIN-HEAPIFY .A; i/, which performs the corresponding manipulation on a min- 
heap. How does the running time of MIN-HEAPIFY compare with that of MAX- 
HEAPIFY? 
6.2-4 
What is the effect of calling MAX-HEAPIFY .A; i/ when the element AŒi� is larger 
than its children? 
6.2-5 
What is the effect of calling MAX-HEAPIFY .A; i/ for i > A: heap-size=2? 
6.2-6 
The code for MAX-HEAPIFY is quite efûcient in terms of constant factors, except 
possibly for the recursive call in line 10, for which some compilers might produce 
inefûcient code. Write an efûcient MAX-HEAPIFY that uses an iterative control 
construct (a loop) instead of recursion. 
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6.2-7 
Show that the worst-case running time of MAX-HEAPIFY on a heap of size n 
is �.lg n/. (Hint: For a heap with n nodes, give node values that cause MAX- 
HEAPIFY to be called recursively at every node on a simple path from the root 
down to a leaf.) 

6.3 Building a heap 

The procedure BUILD-MAX-HEAP converts an array AŒ1 W n� into a max-heap by 
calling MAX-HEAPIFY in a bottom-up manner. Exercise 6.1-8 says that the ele- 
ments in the subarray AŒbn=2c C 1 W n� are all leaves of the tree, and so each is 
a 1-element heap to begin with. BUILD-MAX-HEAP goes through the remain- 
ing nodes of the tree and runs MAX-HEAPIFY on each one. Figure 6.3 shows an 
example of the action of BUILD-MAX-HEAP. 

BUILD-MAX-HEAP .A; n/ 
1 A: heap-size D n 
2 for i D bn=2c downto 1 
3 MAX-HEAPIFY .A; i/ 

To show why BUILD-MAX-HEAP works correctly, we use the following loop 
invariant: 

At the start of each iteration of the for loop of lines 233, each node i C 1; 
i C 2; : : : ; n is the root of a max-heap. 

We need to show that this invariant is true prior to the ûrst loop iteration, that each 
iteration of the loop maintains the invariant, that the loop terminates, and that the 
invariant provides a useful property to show correctness when the loop terminates. 
Initialization: Prior to the ûrst iteration of the loop, i D bn=2c. Each node 

bn=2c C 1; bn=2c C 2; : : : ; n is a leaf and is thus the root of a trivial max-heap. 
Maintenance: To see that each iteration maintains the loop invariant, observe 

that the children of node i are numbered higher than i . By the loop invariant, 
therefore, they are both roots of max-heaps. This is precisely the condition 
required for the call MAX-HEAPIFY .A; i/ to make node i a max-heap root. 
Moreover, the MAX-HEAPIFY call preserves the property that nodes i C 1; 
i C 2; : : : ; n are all roots of max-heaps. Decrementing i in the for loop update 
reestablishes the loop invariant for the next iteration. 
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Figure 6.3 The operation of BUILD-MAX-HEAP, showing the data structure before the call to 
MAX-HEAPIFY in line 3 of BUILD-MAX-HEAP. The node indexed by i in each iteration is shown 
in blue. (a) A 10-element input array A and the binary tree it represents. The loop index i refers 
to node 5 before the call MAX-HEAPIFY.A; i/. (b) The data structure that results. The loop in- 
dex i for the next iteration refers to node 4. (c)–(e) Subsequent iterations of the for loop in 
BUILD-MAX-HEAP. Observe that whenever MAX-HEAPIFY is called on a node, the two subtrees 
of that node are both max-heaps. (f) The max-heap after BUILD-MAX-HEAP ûnishes. 
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Termination: The loop makes exactly bn=2c iterations, and so it terminates. At 
termination, i D 0. By the loop invariant, each node 1; 2; : : : ; n is the root of a 
max-heap. In particular, node 1 is. 

We can compute a simple upper bound on the running time of BUILD-MAX- 
HEAP as follows. Each call to MAX-HEAPIFY costs O.lg n/ time, and BUILD- 
MAX-HEAP makes O.n/ such calls. Thus, the running time is O.n lg n/. This 
upper bound, though correct, is not as tight as it can be. 

We can derive a tighter asymptotic bound by observing that the time for MAX- 
HEAPIFY to run at a node varies with the height of the node in the tree, and that the 
heights of most nodes are small. Our tighter analysis relies on the properties that 
an n-element heap has height blg nc (see Exercise 6.1-2) and at most Û 

n=2 hC1 
 

nodes of any height h (see Exercise 6.3-4). 
The time required by MAX-HEAPIFY when called on a node of height h 

is O.h/. Letting c be the constant implicit in the asymptotic notation, we can 
express the total cost of BUILD-MAX-HEAP as being bounded from above by P blg nc 

hD0 

Û 
n=2 hC1 

 
ch. As Exercise 6.3-2 shows, we have Û n=2 hC1 

  1=2 for 
0 හ h හ blg nc. Since dx e හ 2x for any x  1=2, we have Û n=2 hC1 

 හ n=2 h . We 
thus obtain 
blg nc X 

hD0 

å 
n 
2 hC1 

æ 
ch 

හ 
blg nc X 

hD0 

n 
2 h 
ch 

D cn 
blg nc X 

hD0 

h 
2 h 

හ cn 
1 X 

hD0 

h 
2 h 

හ cn  1=2 
.1  1=2/ 2 (by equation (A.11) on page 1142 with x D 1=2) 

D O.n/ : 

Hence, we can build a max-heap from an unordered array in linear time. 
To build a min-heap, use the procedure BUILD-MIN-HEAP, which is the same as 

BUILD-MAX-HEAP but with the call to MAX-HEAPIFY in line 3 replaced by a call 
to MIN-HEAPIFY (see Exercise 6.2-3). BUILD-MIN-HEAP produces a min-heap 
from an unordered linear array in linear time. 
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Exercises 
6.3-1 
Using Figure 6.3 as a model, illustrate the operation of BUILD-MAX-HEAP on the 
array A D h5; 3; 17; 10; 84; 19; 6; 22; 9i. 
6.3-2 
Show that Û n=2 hC1 

  1=2 for 0 හ h හ blg nc. 
6.3-3 
Why does the loop index i in line 2 of BUILD-MAX-HEAP decrease from bn=2c 
to 1 rather than increase from 1 to bn=2c? 
6.3-4 
Show that there are at most Û n=2 hC1 

 nodes of height h in any n-element heap. 

6.4 The heapsort algorithm 

The heapsort algorithm, given by the procedure HEAPSORT, starts by calling the 
BUILD-MAX-HEAP procedure to build a max-heap on the input array AŒ1 W n�. 
Since the maximum element of the array is stored at the root AŒ1�, HEAPSORT can 
place it into its correct ûnal position by exchanging it with AŒn�. If the procedure 
then discards node n from the heap4and it can do so by simply decrementing 
A: heap-size4the children of the root remain max-heaps, but the new root element 
might violate the max-heap property. To restore the max-heap property, the pro- 
cedure just calls MAX-HEAPIFY .A; 1/, which leaves a max-heap in AŒ1 W n  1�. 
The HEAPSORT procedure then repeats this process for the max-heap of size n  1 
down to a heap of size 2. (See Exercise 6.4-2 for a precise loop invariant.) 

HEAPSORT .A; n/ 
1 BUILD-MAX-HEAP .A; n/ 
2 for i D n downto 2 
3 exchange AŒ1� with AŒi� 
4 A: heap-size D A: heap-size  1 
5 MAX-HEAPIFY .A; 1/ 

Figure 6.4 shows an example of the operation of HEAPSORT after line 1 has built 
the initial max-heap. The ûgure shows the max-heap before the ûrst iteration of 
the for loop of lines 235 and after each iteration. 
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Figure 6.4 The operation of HEAPSORT. (a) The max-heap data structure just after BUILD-MAX- 
HEAP has built it in line 1. (b)–(j) The max-heap just after each call of MAX-HEAPIFY in line 5, 
showing the value of i at that time. Only blue nodes remain in the heap. Tan nodes contain the largest 
values in the array, in sorted order. (k) The resulting sorted array A. 
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The HEAPSORT procedure takes O.n lg n/ time, since the call to BUILD-MAX- 
HEAP takes O.n/ time and each of the n  1 calls to MAX-HEAPIFY takes O.lg n/ 
time. 

Exercises 
6.4-1 
Using Figure 6.4 as a model, illustrate the operation of HEAPSORT on the array 
A D h5; 13; 2; 25; 7; 17; 20; 8; 4i. 
6.4-2 
Argue the correctness of HEAPSORT using the following loop invariant: 

At the start of each iteration of the for loop of lines 235, the subarray AŒ1 W i � 
is a max-heap containing the i smallest elements of AŒ1 W n�, and the subar- 
ray AŒi C 1 W n� contains the n  i largest elements of AŒ1 W n�, sorted. 

6.4-3 
What is the running time of HEAPSORT on an array A of length n that is already 
sorted in increasing order? How about if the array is already sorted in decreasing 
order? 
6.4-4 
Show that the worst-case running time of HEAPSORT is �.n lg n/. 

? 6.4-5 
Show that when all the elements of A are distinct, the best-case running time of 
HEAPSORT is �.n lg n/. 

6.5 Priority queues 

In Chapter 8, we will see that any comparison-based sorting algorithm requires 
�.n lg n/ comparisons and hence �.n lg n/ time. Therefore, heapsort is asymp- 
totically optimal among comparison-based sorting algorithms. Yet, a good imple- 
mentation of quicksort, presented in Chapter 7, usually beats it in practice. Never- 
theless, the heap data structure itself has many uses. In this section, we present one 
of the most popular applications of a heap: as an efûcient priority queue. As with 
heaps, priority queues come in two forms: max-priority queues and min-priority 
queues. We’ll focus here on how to implement max-priority queues, which are 
in turn based on max-heaps. Exercise 6.5-3 asks you to write the procedures for 
min-priority queues. 
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A priority queue is a data structure for maintaining a set S of elements, each 
with an associated value called a key. A max-priority queue supports the following 
operations: 
I NSERT.S; x; k/ inserts the element x with key k into the set S , which is equivalent 

to the operation S D S [ fx g. 
MAXIMUM.S/ returns the element of S with the largest key. 
EXTRACT-MAX.S/ removes and returns the element of S with the largest key. 
I NCREASE-KEY .S; x; k/ increases the value of element x ’s key to the new value k, 

which is assumed to be at least as large as x ’s current key value. 
Among their other applications, you can use max-priority queues to schedule 

jobs on a computer shared among multiple users. The max-priority queue keeps 
track of the jobs to be performed and their relative priorities. When a job is ûn- 
ished or interrupted, the scheduler selects the highest-priority job from among 
those pending by calling EXTRACT-MAX. The scheduler can add a new job to 
the queue at any time by calling I NSERT. 

Alternatively, a min-priority queue supports the operations I NSERT, MINIMUM, 
EXTRACT-MIN, and DECREASE-KEY. A min-priority queue can be used in an 
event-driven simulator. The items in the queue are events to be simulated, each 
with an associated time of occurrence that serves as its key. The events must be 
simulated in order of their time of occurrence, because the simulation of an event 
can cause other events to be simulated in the future. The simulation program calls 
EXTRACT-MIN at each step to choose the next event to simulate. As new events are 
produced, the simulator inserts them into the min-priority queue by calling I NSERT. 
We’ll see other uses for min-priority queues, highlighting the DECREASE-KEY 
operation, in Chapters 21 and 22. 

When you use a heap to implement a priority queue within a given application, 
elements of the priority queue correspond to objects in the application. Each ob- 
ject contains a key. If the priority queue is implemented by a heap, you need to 
determine which application object corresponds to a given heap element, and vice 
versa. Because the heap elements are stored in an array, you need a way to map 
application objects to and from array indices. 
One way to map between application objects and heap elements uses handles, 

which are additional information stored in the objects and heap elements that give 
enough information to perform the mapping. Handles are often implemented to 
be opaque to the surrounding code, thereby maintaining an abstraction barrier be- 
tween the application and the priority queue. For example, the handle within an 
application object might contain the corresponding index into the heap array. But 
since only the code for the priority queue accesses this index, the index is entirely 
hidden from the application code. Because heap elements change locations within 
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the array during heap operations, an actual implementation of the priority queue, 
upon relocating a heap element, must also update the array indices in the corre- 
sponding handles. Conversely, each element in the heap might contain a pointer 
to the corresponding application object, but the heap element knows this pointer 
as only an opaque handle and the application maps this handle to an application 
object. Typically, the worst-case overhead for maintaining handles is O.1/ per 
access. 

As an alternative to incorporating handles in application objects, you can store 
within the priority queue a mapping from application objects to array indices in the 
heap. The advantage of doing so is that the mapping is contained entirely within 
the priority queue, so that the application objects need no further embellishment. 
The disadvantage lies in the additional cost of establishing and maintaining the 
mapping. One option for the mapping is a hash table (see Chapter 11). 1 The added 
expected time for a hash table to map an object to an array index is just O.1/, 
though the worst-case time can be as bad as ‚.n/. 
Let’s see how to implement the operations of a max-priority queue using a max- 

heap. In the previous sections, we treated the array elements as the keys to be 
sorted, implicitly assuming that any satellite data moved with the corresponding 
keys. When a heap implements a priority queue, we instead treat each array ele- 
ment as a pointer to an object in the priority queue, so that the object is analogous 
to the satellite data when sorting. We further assume that each such object has an 
attribute key, which determines where in the heap the object belongs. For a heap 
implemented by an array A, we refer to AŒi�: key. 

The procedure MAX-HEAP-MAXIMUM on the facing page implements the 
MAXIMUM operation in ‚.1/ time, and MAX-HEAP-EXTRACT-MAX implements 
the operation EXTRACT-MAX. MAX-HEAP-EXTRACT-MAX is similar to the for 
loop body (lines 335) of the HEAPSORT procedure. We implicitly assume that 
MAX-HEAPIFY compares priority-queue objects based on their key attributes. We 
also assume that when MAX-HEAPIFY exchanges elements in the array, it is ex- 
changing pointers and also that it updates the mapping between objects and ar- 
ray indices. The running time of MAX-HEAP-EXTRACT-MAX is O.lg n/, since 
it performs only a constant amount of work on top of the O.lg n/ time for 
MAX-HEAPIFY , plus whatever overhead is incurred within MAX-HEAPIFY for 
mapping priority-queue objects to array indices. 

The procedure MAX-HEAP-I NCREASE-KEY on page 176 implements the 
I NCREASE-KEY operation. It ûrst veriûes that the new key k will not cause the 
key in the object x to decrease, and if there is no problem, it gives x the new key 
value. The procedure then ûnds the index i in the array corresponding to object x , 

1 In Python, dictionaries are implemented with hash tables. 
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MAX-HEAP-MAXIMUM.A/ 
1 if A: heap-size < 1 
2 error <heap underüow= 
3 return AŒ1� 

MAX-HEAP-EXTRACT-MAX .A/ 
1 max D MAX-HEAP-MAXIMUM.A/ 
2 AŒ1� D AŒA: heap-size� 
3 A: heap-size D A: heap-size  1 
4 MAX-HEAPIFY .A; 1/ 
5 return max 

so that AŒi� is x . Because increasing the key of AŒi� might violate the max-heap 
property, the procedure then, in a manner reminiscent of the insertion loop (lines 
537) of I NSERTION-SORT on page 19, traverses a simple path from this node to- 
ward the root to ûnd a proper place for the newly increased key . As MAX-HEAP- 
I NCREASE-KEY traverses this path, it repeatedly compares an element’s key to 
that of its parent, exchanging pointers and continuing if the element’s key is larger, 
and terminating if the element’s key is smaller, since the max-heap property now 
holds. (See Exercise 6.5-7 for a precise loop invariant.) Like MAX-HEAPIFY when 
used in a priority queue, MAX-HEAP-I NCREASE-KEY updates the information 
that maps objects to array indices when array elements are exchanged. Figure 6.5 
shows an example of a MAX-HEAP-I NCREASE-KEY operation. In addition to 
the overhead for mapping priority queue objects to array indices, the running time 
of MAX-HEAP-I NCREASE-KEY on an n-element heap is O.lg n/, since the path 
traced from the node updated in line 3 to the root has length O.lg n/. 

The procedure MAX-HEAP-I NSERT on the next page implements the I NSERT 
operation. It takes as inputs the array A implementing the max-heap, the new 
object x to be inserted into the max-heap, and the size n of array A. The procedure 
ûrst veriûes that the array has room for the new element. It then expands the 
max-heap by adding to the tree a new leaf whose key is 1. Then it calls MAX- 
HEAP-I NCREASE-KEY to set the key of this new element to its correct value and 
maintain the max-heap property. The running time of MAX-HEAP-I NSERT on an 
n-element heap is O.lg n/ plus the overhead for mapping priority queue objects to 
indices. 
In summary, a heap can support any priority-queue operation on a set of size n in 

O.lg n/ time, plus the overhead for mapping priority queue objects to array indices. 
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MAX-HEAP-I NCREASE-KEY .A; x; k/ 
1 if k < x: key 
2 error <new key is smaller than current key= 
3 x: key D k 
4 ûnd the index i in array A where object x occurs 
5 while i > 1 and AŒPARENT.i/�: key < AŒi�: key 
6 exchange AŒi� with AŒPARENT.i/�, updating the information that maps 

priority queue objects to array indices 
7 i D PARENT.i/ 

MAX-HEAP-I NSERT .A; x; n/ 
1 if A: heap-size == n 
2 error <heap overüow= 
3 A: heap-size D A: heap-size C 1 
4 k D x: key 
5 x: key D 1 
6 AŒA: heap-size� D x 
7 map x to index heap-size in the array 
8 MAX-HEAP-I NCREASE-KEY .A; x; k/ 

Exercises 
6.5-1 
Suppose that the objects in a max-priority queue are just keys. Illustrate the opera- 
tion of MAX-HEAP-EXTRACT-MAX on the heap A D h15; 13; 9; 5; 12; 8; 7; 4; 0; 
6; 2; 1i. 
6.5-2 
Suppose that the objects in a max-priority queue are just keys. Illustrate the opera- 
tion of MAX-HEAP-I NSERT .A; 10/ on the heap A D h15; 13; 9; 5; 12; 8; 7; 4; 0; 6; 
2; 1i. 
6.5-3 
Write pseudocode to implement a min-priority queue with a min-heap by writing 
the procedures MIN-HEAP-MINIMUM, MIN-HEAP-EXTRACT-MIN, MIN-HEAP- 
DECREASE-KEY, and MIN-HEAP-I NSERT. 
6.5-4 
Write pseudocode for the procedure MAX-HEAP-DECREASE-KEY .A; x; k/ in a 
max-heap. What is the running time of your procedure? 
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Figure 6.5 The operation of MAX-HEAP-I NCREASE-KEY. Only the key of each element in the 
priority queue is shown. The node indexed by i in each iteration is shown in blue. (a) The max-heap 
of Figure 6.4(a) with i indexing the node whose key is about to be increased. (b) This node has its 
key increased to 15. (c) After one iteration of the while loop of lines 537, the node and its parent 
have exchanged keys, and the index i moves up to the parent. (d) The max-heap after one more 
iteration of the while loop. At this point, AŒPARENT.i/�  AŒi�. The max-heap property now holds 
and the procedure terminates. 

6.5-5 
Why does MAX-HEAP-I NSERT bother setting the key of the inserted object to 1 
in line 5 given that line 8 will set the object’s key to the desired value? 
6.5-6 
Professor Uriah suggests replacing the while loop of lines 537 in MAX-HEAP- 
I NCREASE-KEY by a call to MAX-HEAPIFY. Explain the üaw in the professor’s 
idea. 
6.5-7 
Argue the correctness of MAX-HEAP-I NCREASE-KEY using the following loop 
invariant: 
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At the start of each iteration of the while loop of lines 537: 
a. If both nodes PARENT.i/ and LEFT.i/ exist, then AŒPARENT.i/�: key  
AŒLEFT.i/�: key. 

b. If both nodes PARENT.i/ and RIGHT.i/ exist, then AŒPARENT.i/�: key  
AŒRIGHT.i/�: key. 

c. The subarray AŒ1 W A: heap-size� satisûes the max-heap property, except 
that there may be one violation, which is that AŒi�: key may be greater 
than AŒPARENT.i/�: key. 

You may assume that the subarray AŒ1 W A: heap-size� satisûes the max-heap prop- 
erty at the time MAX-HEAP-I NCREASE-KEY is called. 
6.5-8 
Each exchange operation on line 6 of MAX-HEAP-I NCREASE-KEY typically re- 
quires three assignments, not counting the updating of the mapping from objects 
to array indices. Show how to use the idea of the inner loop of I NSERTION-SORT 
to reduce the three assignments to just one assignment. 
6.5-9 
Show how to implement a ûrst-in, ûrst-out queue with a priority queue. Show 
how to implement a stack with a priority queue. (Queues and stacks are deûned in 
Section 10.1.3.) 
6.5-10 
The operation MAX-HEAP-DELETE .A; x/ deletes the object x from max-heap A. 
Give an implementation of MAX-HEAP-DELETE for an n-element max-heap that 
runs in O.lg n/ time plus the overhead for mapping priority queue objects to array 
indices. 
6.5-11 
Give an O.n lg k/-time algorithm to merge k sorted lists into one sorted list, 
where n is the total number of elements in all the input lists. (Hint: Use a min- 
heap for k-way merging.) 

Problems 

6-1 Building a heap using insertion 
One way to build a heap is by repeatedly calling MAX-HEAP-I NSERT to insert the 
elements into the heap. Consider the procedure BUILD-MAX-HEAP 0 on the facing 
page. It assumes that the objects being inserted are just the heap elements. 
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BUILD-MAX-HEAP 0 .A; n/ 
1 A: heap-size D 1 
2 for i D 2 to n 
3 MAX-HEAP-I NSERT .A;AŒi �; n/ 

a. Do the procedures BUILD-MAX-HEAP and BUILD-MAX-HEAP 0 always create 
the same heap when run on the same input array? Prove that they do, or provide 
a counterexample. 

b. Show that in the worst case, BUILD-MAX-HEAP 0 requires ‚.n lg n/ time to 
build an n-element heap. 

6-2 Analysis of d -ary heaps 
A d -ary heap is like a binary heap, but (with one possible exception) nonleaf nodes 
have d children instead of two children. In all parts of this problem, assume that 
the time to maintain the mapping between objects and heap elements is O.1/ per 
operation. 
a. Describe how to represent a d -ary heap in an array. 

b. Using ‚-notation, express the height of a d -ary heap of n elements in terms of 
n and d . 

c. Give an efûcient implementation of EXTRACT-MAX in a d -ary max-heap. An- 
alyze its running time in terms of d and n. 

d. Give an efûcient implementation of I NCREASE-KEY in a d -ary max-heap. An- 
alyze its running time in terms of d and n. 

e. Give an efûcient implementation of I NSERT in a d -ary max-heap. Analyze its 
running time in terms of d and n. 

6-3 Young tableaus 
An m  n Young tableau is an m  n matrix such that the entries of each row are 
in sorted order from left to right and the entries of each column are in sorted order 
from top to bottom. Some of the entries of a Young tableau may be 1, which we 
treat as nonexistent elements. Thus, a Young tableau can be used to hold r හ mn 
ûnite numbers. 
a. Draw a 4  4 Young tableau containing the elements f9; 16; 3; 2; 4; 8; 5; 14; 12g . 
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b. Argue that an m  n Young tableau Y is empty if Y Œ1; 1� D 1. Argue that Y 
is full (contains mn elements) if Y Œm; n� < 1. 

c. Give an algorithm to implement EXTRACT-MIN on a nonempty m  n Young 
tableau that runs in O.m C n/ time. Your algorithm should use a recur- 
sive subroutine that solves an m  n problem by recursively solving either 
an .m  1/  n or an m  .n  1/ subproblem. (Hint: Think about MAX- 
HEAPIFY.) Explain why your implementation of EXTRACT-MIN runs in 
O.m C n/ time. 

d. Show how to insert a new element into a nonfull m  n Young tableau in 
O.m C n/ time. 

e. Using no other sorting method as a subroutine, show how to use an n  n Young 
tableau to sort n 2 numbers in O.n 3 / time. 

f. Give an O.m C n/-time algorithm to determine whether a given number is 
stored in a given m  n Young tableau. 

Chapter notes 

The heapsort algorithm was invented by Williams [456], who also described how 
to implement a priority queue with a heap. The BUILD-MAX-HEAP procedure was 
suggested by Floyd [145]. Schaffer and Sedgewick [395] showed that in the best 
case, the number of times elements move in the heap during heapsort is approxi- 
mately .n=2/ lg n and that the average number of moves is approximately n lg n. 
We use min-heaps to implement min-priority queues in Chapters 15, 21, and 22. 

Other, more complicated, data structures give better time bounds for certain min- 
priority queue operations. Fredman and Tarjan [156] developed Fibonacci heaps, 
which support I NSERT and DECREASE-KEY in O.1/ amortized time (see Chap- 
ter 16). That is, the average worst-case running time for these operations is O.1/. 
Brodal, Lagogiannis, and Tarjan [73] subsequently devised strict Fibonacci heaps, 
which make these time bounds the actual running times. If the keys are unique 
and drawn from the set f0; 1; : : : ; n  1g of nonnegative integers, van Emde Boas 
trees [440, 441] support the operations I NSERT, DELETE, SEARCH, MINIMUM, 
MAXIMUM, PREDECESSOR, and SUCCESSOR in O.lg lg n/ time. 

If the data are b-bit integers, and the computer memory consists of addressable 
b-bit words, Fredman and Willard [157] showed how to implement MINIMUM in 
O.1/ time and I NSERT and EXTRACT-MIN in O. 

p 
lg n/ time. Thorup [436] has 
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improved the O. p lg n/ bound to O.lg lg n/ time by using randomized hashing, 
requiring only linear space. 

An important special case of priority queues occurs when the sequence of 
EXTRACT-MIN operations is monotone, that is, the values returned by succes- 
sive EXTRACT-MIN operations are monotonically increasing over time. This case 
arises in several important applications, such as Dijkstra’s single-source shortest- 
paths algorithm, which we discuss in Chapter 22, and in discrete-event simula- 
tion. For Dijkstra’s algorithm it is particularly important that the DECREASE-KEY 
operation be implemented efûciently. For the monotone case, if the data are in- 
tegers in the range 1; 2; : : : ; C , Ahuja, Mehlhorn, Orlin, and Tarjan [8] describe 
how to implement EXTRACT-MIN and I NSERT in O.lg C/ amortized time (Chap- 
ter 16 presents amortized analysis) and DECREASE-KEY in O.1/ time, using a data 
structure called a radix heap. The O.lg C/ bound can be improved to O. p lg C/ 
using Fibonacci heaps in conjunction with radix heaps. Cherkassky, Goldberg, 
and Silverstein [90] further improved the bound to O.lg 1=3C C/ expected time by 
combining the multilevel bucketing structure of Denardo and Fox [112] with the 
heap of Thorup mentioned earlier. Raman [375] further improved these results to 
obtain a bound of O 

ã min ̊  lg 1=4C C; lg 1=3C n 
ä , for any ûxed � > 0. 

Many other variants of heaps have been proposed. Brodal [72] surveys some of 
these developments. 
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The quicksort algorithm has a worst-case running time of ‚.n 2 / on an input array 
of n numbers. Despite this slow worst-case running time, quicksort is often the 
best practical choice for sorting because it is remarkably efûcient on average: its 
expected running time is ‚.n lg n/ when all numbers are distinct, and the constant 
factors hidden in the ‚.n lg n/ notation are small. Unlike merge sort, it also has 
the advantage of sorting in place (see page 158), and it works well even in virtual- 
memory environments. 
Our study of quicksort is broken into four sections. Section 7.1 describes the 

algorithm and an important subroutine used by quicksort for partitioning. Because 
the behavior of quicksort is complex, we’ll start with an intuitive discussion of 
its performance in Section 7.2 and analyze it precisely at the end of the chapter. 
Section 7.3 presents a randomized version of quicksort. When all elements are 
distinct, 1 this randomized algorithm has a good expected running time and no par- 
ticular input elicits its worst-case behavior. (See Problem 7-2 for the case in which 
elements may be equal.) Section 7.4 analyzes the randomized algorithm, showing 
that it runs in ‚.n 2 / time in the worst case and, assuming distinct elements, in 
expected O.n lg n/ time. 

1 You can enforce the assumption that the values in an array A are distinct at the cost of ‚.n/ 
additional space and only constant overhead in running time by converting each input value AŒi� to 
an ordered pair .AŒi�; i/ with .AŒi�; i/ < .AŒj �; j / if AŒi� < AŒj � or if AŒi� D AŒj � and i < j . 
There are also more practical variants of quicksort that work well when elements are not distinct. 
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7.1 Description of quicksort 

Quicksort, like merge sort, applies the divide-and-conquer method introduced in 
Section 2.3.1. Here is the three-step divide-and-conquer process for sorting a sub- 
array AŒp W r�: 
Divide by partitioning (rearranging) the array AŒp W r� into two (possibly empty) 

subarrays AŒp W q  1� (the low side) and AŒq C 1 W r� (the high side) such 
that each element in the low side of the partition is less than or equal to the 
pivot AŒq�, which is, in turn, less than or equal to each element in the high side. 
Compute the index q of the pivot as part of this partitioning procedure. 

Conquer by calling quicksort recursively to sort each of the subarrays AŒp W q  1� 
and AŒq C 1 W r�. 

Combine by doing nothing: because the two subarrays are already sorted, no work 
is needed to combine them. All elements in AŒp W q  1� are sorted and less than 
or equal to AŒq�, and all elements in AŒq C 1 W r� are sorted and greater than or 
equal to the pivot AŒq�. The entire subarray AŒp W r� cannot help but be sorted! 
The QUICKSORT procedure implements quicksort. To sort an entire n-element 

array AŒ1 W n�, the initial call is QUICKSORT.A; 1; n/. 

QUICKSORT.A; p; r/ 
1 if p < r 
2 // Partition the subarray around the pivot, which ends up in AŒq�. 
3 q D PARTITION.A; p; r/ 
4 QUICKSORT.A; p; q  1/ // recursively sort the low side 
5 QUICKSORT.A; q C 1; r/ // recursively sort the high side 

Partitioning the array 
The key to the algorithm is the PARTITION procedure on the next page, which 
rearranges the subarray AŒp W r� in place, returning the index of the dividing point 
between the two sides of the partition. 
Figure 7.1 shows how PARTITION works on an 8-element array. PARTITION 

always selects the element x D AŒr� as the pivot. As the procedure runs, each 
element falls into exactly one of four regions, some of which may be empty. At 
the start of each iteration of the for loop in lines 336, the regions satisfy certain 
properties, shown in Figure 7.2. We state these properties as a loop invariant: 
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PARTITION.A; p; r/ 
1 x D AŒr� // the pivot 
2 i D p  1 // highest index into the low side 
3 for j D p to r  1 // process each element other than the pivot 
4 if AŒj � හ x // does this element belong on the low side? 
5 i D i C 1 // index of a new slot in the low side 
6 exchange AŒi� with AŒj � // put this element there 
7 exchange AŒi C 1� with AŒr� // pivot goes just to the right of the low side 
8 return i C 1 // new index of the pivot 

At the beginning of each iteration of the loop of lines 336, for any array 
index k, the following conditions hold: 
1. if p හ k හ i , then AŒk� හ x (the tan region of Figure 7.2); 
2. if i C 1 හ k හ j  1, then AŒk� > x (the blue region); 
3. if k D r , then AŒk� D x (the yellow region). 

We need to show that this loop invariant is true prior to the ûrst iteration, that 
each iteration of the loop maintains the invariant, that the loop terminates, and that 
correctness follows from the invariant when the loop terminates. 
Initialization: Prior to the ûrst iteration of the loop, we have i D p  1 and 
j D p. Because no values lie between p and i and no values lie between i C 1 
and j  1, the ûrst two conditions of the loop invariant are trivially satisûed. 
The assignment in line 1 satisûes the third condition. 

Maintenance: As Figure 7.3 shows, we consider two cases, depending on the 
outcome of the test in line 4. Figure 7.3(a) shows what happens when AŒj � > x: 
the only action in the loop is to increment j . After j has been incremented, the 
second condition holds for AŒj  1� and all other entries remain unchanged. 
Figure 7.3(b) shows what happens when AŒj � හ x : the loop increments i , 
swaps AŒi� and AŒj �, and then increments j . Because of the swap, we now 
have that AŒi� හ x , and condition 1 is satisûed. Similarly, we also have that 
AŒj  1� > x , since the item that was swapped into AŒj  1� is, by the loop 
invariant, greater than x . 

Termination: Since the loop makes exactly r  p iterations, it terminates, where- 
upon j D r . At that point, the unexamined subarray AŒj W r  1� is empty, and 
every entry in the array belongs to one of the other three sets described by the 
invariant. Thus, the values in the array have been partitioned into three sets: 
those less than or equal to x (the low side), those greater than x (the high side), 
and a singleton set containing x (the pivot). 
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Figure 7.1 The operation of PARTITION on a sample array. Array entry AŒr� becomes the pivot 
element x. Tan array elements all belong to the low side of the partition, with values at most x. 
Blue elements belong to the high side, with values greater than x. White elements have not yet been 
put into either side of the partition, and the yellow element is the pivot x. (a) The initial array and 
variable settings. None of the elements have been placed into either side of the partition. (b) The 
value 2 is <swapped with itself= and put into the low side. (c)–(d) The values 8 and 7 are placed into 
to high side. (e) The values 1 and 8 are swapped, and the low side grows. (f) The values 3 and 7 are 
swapped, and the low side grows. (g)–(h) The high side of the partition grows to include 5 and 6, 
and the loop terminates. (i) Line 7 swaps the pivot element so that it lies between the two sides of 
the partition, and line 8 returns the pivot’s new index. 

The ûnal two lines of PARTITION ûnish up by swapping the pivot with the left- 
most element greater than x , thereby moving the pivot into its correct place in 
the partitioned array, and then returning the pivot’s new index. The output of 
PARTITION now satisûes the speciûcations given for the divide step. In fact, it 
satisûes a slightly stronger condition: after line 3 of QUICKSORT, AŒq� is strictly 
less than every element of AŒq C 1 W r�. 
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≤ x > x unknown 
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Figure 7.2 The four regions maintained by the procedure PARTITION on a subarray AŒp W r�. The 
tan values in AŒp W i � are all less than or equal to x, the blue values in AŒi C 1 W j  1� are all greater 
than x, the white values in AŒj W r  1� have unknown relationships to x, and AŒr� D x. 
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Figure 7.3 The two cases for one iteration of procedure PARTITION. (a) If AŒj � > x , the only 
action is to increment j , which maintains the loop invariant. (b) If AŒj � හ x, index i is incremented, 
AŒi� and AŒj � are swapped, and then j is incremented. Again, the loop invariant is maintained. 

Exercise 7.1-3 asks you to show that the running time of PARTITION on a sub- 
array AŒp W r� of n D r  p C 1 elements is ‚.n/. 

Exercises 
7.1-1 
Using Figure 7.1 as a model, illustrate the operation of PARTITION on the array 
A D h13; 19; 9; 5; 12; 8; 7; 4; 21; 2; 6; 11i. 
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7.1-2 
What value of q does PARTITION return when all elements in the subarray AŒp W r� 
have the same value? Modify PARTITION so that q D b.p C r/=2c when all 
elements in the subarray AŒp W r� have the same value. 
7.1-3 
Give a brief argument that the running time of PARTITION on a subarray of size n 
is ‚.n/. 
7.1-4 
Modify QUICKSORT to sort into monotonically decreasing order. 

7.2 Performance of quicksort 

The running time of quicksort depends on how balanced each partitioning is, which 
in turn depends on which elements are used as pivots. If the two sides of a parti- 
tion are about the same size4the partitioning is balanced4then the algorithm runs 
asymptotically as fast as merge sort. If the partitioning is unbalanced, however, it 
can run asymptotically as slowly as insertion sort. To allow you to gain some intu- 
ition before diving into a formal analysis, this section informally investigates how 
quicksort performs under the assumptions of balanced versus unbalanced partition- 
ing. 
But ûrst, let’s brieüy look at the maximum amount of memory that quicksort re- 

quires. Although quicksort sorts in place according to the deûnition on page 158, 
the amount of memory it uses4aside from the array being sorted4is not constant. 
Since each recursive call requires a constant amount of space on the runtime stack, 
outside of the array being sorted, quicksort requires space proportional to the max- 
imum depth of the recursion. As we’ll see now, that could be as bad as ‚.n/ in the 
worst case. 

Worst-case partitioning 
The worst-case behavior for quicksort occurs when the partitioning produces one 
subproblem with n  1 elements and one with 0 elements. (See Section 7.4.1.) 
Let us assume that this unbalanced partitioning arises in each recursive call. The 
partitioning costs ‚.n/ time. Since the recursive call on an array of size 0 just 
returns without doing anything, T .0/ D ‚.1/, and the recurrence for the running 
time is 
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T .n/ D T .n  1/ C T .0/ C ‚.n/ 
D T .n  1/ C ‚.n/ : 

By summing the costs incurred at each level of the recursion, we obtain an 
arithmetic series (equation (A.3) on page 1141), which evaluates to ‚.n 2 /. In- 
deed, the substitution method can be used to prove that the recurrence T .n/ D 
T .n  1/ C ‚.n/ has the solution T .n/ D ‚.n 2 /. (See Exercise 7.2-1.) 

Thus, if the partitioning is maximally unbalanced at every recursive level of the 
algorithm, the running time is ‚.n 2 /. The worst-case running time of quicksort is 
therefore no better than that of insertion sort. Moreover, the ‚.n 2 / running time 
occurs when the input array is already completely sorted4a situation in which 
insertion sort runs in O.n/ time. 

Best-case partitioning 
In the most even possible split, PARTITION produces two subproblems, each of 
size no more than n=2, since one is of size b.n  1/=2c හ n=2 and one of size 
d.n  1/=2e  1 හ n=2. In this case, quicksort runs much faster. An upper bound 
on the running time can then be described by the recurrence 
T .n/ D 2T .n=2/ C ‚.n/ : 

By case 2 of the master theorem (Theorem 4.1 on page 102), this recurrence has the 
solution T .n/ D ‚.n lg n/. Thus, if the partitioning is equally balanced at every 
level of the recursion, an asymptotically faster algorithm results. 

Balanced partitioning 
As the analyses in Section 7.4 will show, the average-case running time of quicksort 
is much closer to the best case than to the worst case. By appreciating how the 
balance of the partitioning affects the recurrence describing the running time, we 
can gain an understanding of why. 

Suppose, for example, that the partitioning algorithm always produces a 9-to-1 
proportional split, which at ûrst blush seems quite unbalanced. We then obtain the 
recurrence 
T .n/ D T .9n=10/ C T .n=10/ C ‚.n/ ; 

on the running time of quicksort. Figure 7.4 shows the recursion tree for this re- 
currence, where for simplicity the ‚.n/ driving function has been replaced by n, 
which won’t affect the asymptotic solution of the recurrence (as Exercise 4.7-1 
on page 118 justiûes). Every level of the tree has cost n, until the recursion bot- 
toms out in a base case at depth log 10 n D ‚.lg n/, and then the levels have cost 
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Figure 7.4 A recursion tree for QUICKSORT in which PARTITION always produces a 9-to-1 split, 
yielding a running time of O.n lg n/. Nodes show subproblem sizes, with per-level costs on the right. 

at most n. The recursion terminates at depth log 10=9 n D ‚.lg n/. Thus, with a 
9-to-1 proportional split at every level of recursion, which intuitively seems highly 
unbalanced, quicksort runs in O.n lg n/ time4asymptotically the same as if the 
split were right down the middle. Indeed, even a 99-to-1 split yields an O.n lg n/ 
running time. In fact, any split of constant proportionality yields a recursion tree of 
depth ‚.lg n/, where the cost at each level is O.n/. The running time is therefore 
O.n lg n/ whenever the split has constant proportionality. The ratio of the split 
affects only the constant hidden in the O-notation. 

Intuition for the average case 
To develop a clear notion of the expected behavior of quicksort, we must assume 
something about how its inputs are distributed. Because quicksort determines the 
sorted order using only comparisons between input elements, its behavior depends 
on the relative ordering of the values in the array elements given as the input, not 
on the particular values in the array. As in the probabilistic analysis of the hiring 
problem in Section 5.2, assume that all permutations of the input numbers are 
equally likely and that the elements are distinct. 

When quicksort runs on a random input array, the partitioning is highly unlikely 
to happen in the same way at every level, as our informal analysis has assumed. 
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n 

0 n31 

(n31)/2 3 1 (n31)/2 

n 

(n31)/2 

(a) (b) 

(n31)/2 

Θ(n) Θ(n) 

Figure 7.5 (a) Two levels of a recursion tree for quicksort. The partitioning at the root costs n 
and produces a <bad= split: two subarrays of sizes 0 and n  1. The partitioning of the subarray of 
size n  1 costs n  1 and produces a <good= split: subarrays of size .n  1/=2  1 and .n  1/=2. 
(b) A single level of a recursion tree that is well balanced. In both parts, the partitioning cost for the 
subproblems shown with blue shading is ‚.n/. Yet the subproblems remaining to be solved in (a), 
shown with tan shading, are no larger than the corresponding subproblems remaining to be solved 
in (b). 

We expect that some of the splits will be reasonably well balanced and that some 
will be fairly unbalanced. For example, Exercise 7.2-6 asks you to show that about 
80% of the time PARTITION produces a split that is at least as balanced as 9 to 1, 
and about 20% of the time it produces a split that is less balanced than 9 to 1. 

In the average case, PARTITION produces a mix of <good= and <bad= splits. In a 
recursion tree for an average-case execution of PARTITION, the good and bad splits 
are distributed randomly throughout the tree. Suppose for the sake of intuition that 
the good and bad splits alternate levels in the tree, and that the good splits are best- 
case splits and the bad splits are worst-case splits. Figure 7.5(a) shows the splits 
at two consecutive levels in the recursion tree. At the root of the tree, the cost is n 
for partitioning, and the subarrays produced have sizes n  1 and 0: the worst case. 
At the next level, the subarray of size n  1 undergoes best-case partitioning into 
subarrays of size .n  1/=2  1 and .n  1/=2. Let’s assume that the base-case cost 
is 1 for the subarray of size 0. 

The combination of the bad split followed by the good split produces three sub- 
arrays of sizes 0, .n  1/=2  1, and .n  1/=2 at a combined partitioning cost of 
‚.n/ C ‚.n  1/ D ‚.n/. This situation is at most a constant factor worse than 
that in Figure 7.5(b), namely, where a single level of partitioning produces two 
subarrays of size .n  1/=2, at a cost of ‚.n/. Yet this latter situation is balanced! 
Intuitively, the ‚.n  1/ cost of the bad split in Figure 7.5(a) can be absorbed 
into the ‚.n/ cost of the good split, and the resulting split is good. Thus, the run- 
ning time of quicksort, when levels alternate between good and bad splits, is like 
the running time for good splits alone: still O.n lg n/, but with a slightly larger 
constant hidden by the O-notation. We’ll analyze the expected running time of a 
randomized version of quicksort rigorously in Section 7.4.2. 
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Exercises 
7.2-1 
Use the substitution method to prove that the recurrence T .n/ D T .n  1/ C ‚.n/ 
has the solution T .n/ D ‚.n 2 /, as claimed at the beginning of Section 7.2. 
7.2-2 
What is the running time of QUICKSORT when all elements of array A have the 
same value? 
7.2-3 
Show that the running time of QUICKSORT is ‚.n 2 / when the array A contains 
distinct elements and is sorted in decreasing order. 
7.2-4 
Banks often record transactions on an account in order of the times of the trans- 
actions, but many people like to receive their bank statements with checks listed 
in order by check number. People usually write checks in order by check num- 
ber, and merchants usually cash them with reasonable dispatch. The problem of 
converting time-of-transaction ordering to check-number ordering is therefore the 
problem of sorting almost-sorted input. Explain persuasively why the procedure 
I NSERTION-SORT might tend to beat the procedure QUICKSORT on this problem. 
7.2-5 
Suppose that the splits at every level of quicksort are in the constant proportion ˛ 
to ˇ, where ˛ C ˇ D 1 and 0 < ˛ හ ˇ < 1. Show that the minimum depth of a 
leaf in the recursion tree is approximately log 1=˛ n and that the maximum depth is 
approximately log 1=ˇ n. (Don’t worry about integer round-off.) 
7.2-6 
Consider an array with distinct elements and for which all permutations of the ele- 
ments are equally likely. Argue that for any constant 0 < ˛ හ 1=2, the probability 
is approximately 1  2˛ that PARTITION produces a split at least as balanced as 
1  ˛ to ˛. 

7.3 A randomized version of quicksort 

In exploring the average-case behavior of quicksort, we have assumed that all per- 
mutations of the input numbers are equally likely. This assumption does not al- 
ways hold, however, as, for example, in the situation laid out in the premise for 
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Exercise 7.2-4. Section 5.3 showed that judicious randomization can sometimes 
be added to an algorithm to obtain good expected performance over all inputs. For 
quicksort, randomization yields a fast and practical algorithm. Many software li- 
braries provide a randomized version of quicksort as their algorithm of choice for 
sorting large data sets. 
In Section 5.3, the RANDOMIZED-HIRE-ASSISTANT procedure explicitly per- 

mutes its input and then runs the deterministic HIRE-ASSISTANT procedure. We 
could do the same for quicksort as well, but a different randomization technique 
yields a simpler analysis. Instead of always using AŒr� as the pivot, a randomized 
version randomly chooses the pivot from the subarray AŒp W r�, where each element 
in AŒp W r� has an equal probability of being chosen. It then exchanges that element 
with AŒr� before partitioning. Because the pivot is chosen randomly, we expect the 
split of the input array to be reasonably well balanced on average. 

The changes to PARTITION and QUICKSORT are small. The new partition- 
ing procedure, RANDOMIZED-PARTITION, simply swaps before performing the 
partitioning. The new quicksort procedure, RANDOMIZED-QUICKSORT, calls 
RANDOMIZED-PARTITION instead of PARTITION. We’ll analyze this algorithm 
in the next section. 

RANDOMIZED-PARTITION .A; p; r/ 
1 i D RANDOM.p; r/ 
2 exchange AŒr� with AŒi� 
3 return PARTITION.A; p; r/ 

RANDOMIZED-QUICKSORT .A; p; r/ 
1 if p < r 
2 q D RANDOMIZED-PARTITION .A; p; r/ 
3 RANDOMIZED-QUICKSORT .A; p; q  1/ 
4 RANDOMIZED-QUICKSORT .A; q C 1; r/ 

Exercises 
7.3-1 
Why do we analyze the expected running time of a randomized algorithm and not 
its worst-case running time? 
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7.3-2 
When RANDOMIZED-QUICKSORT runs, how many calls are made to the random- 
number generator RANDOM in the worst case? How about in the best case? Give 
your answer in terms of ‚-notation. 

7.4 Analysis of quicksort 

Section 7.2 gave some intuition for the worst-case behavior of quicksort and for 
why we expect the algorithm to run quickly. This section analyzes the behavior of 
quicksort more rigorously. We begin with a worst-case analysis, which applies to 
either QUICKSORT or RANDOMIZED-QUICKSORT, and conclude with an analysis 
of the expected running time of RANDOMIZED-QUICKSORT. 

7.4.1 Worst-case analysis 
We saw in Section 7.2 that a worst-case split at every level of recursion in quicksort 
produces a ‚.n 2 / running time, which, intuitively, is the worst-case running time 
of the algorithm. We now prove this assertion. 
We’ll use the substitution method (see Section 4.3) to show that the running 

time of quicksort is O.n 2 /. Let T .n/ be the worst-case time for the procedure 
QUICKSORT on an input of size n. Because the procedure PARTITION produces 
two subproblems with total size n  1, we obtain the recurrence 
T .n/ D max fT .q/ C T .n  1  q/ W 0 හ q හ n  1g C ‚.n/ ; (7.1) 
We guess that T .n/ හ cn 2 for some constant c > 0. Substituting this guess into 
recurrence (7.1) yields 
T .n/ හ max ̊  

cq 2 C c.n  1  q/ 2 W 0 හ q හ n  1 
 C ‚.n/ 

D c  max ̊  
q 2 C .n  1  q/ 2 W 0 හ q හ n  1 

 C ‚.n/ : 

Let’s focus our attention on the maximization. For q D 0; 1; : : : ; n  1, we have 
q 2 C .n  1  q/ 2 D q 2 C .n  1/ 2  2q.n  1/ C q 2 

D .n  1/ 2 C 2q.q  .n  1// 
හ .n  1/ 2 

because q හ n  1 implies that 2q.q  .n  1// හ 0. Thus every term in the 
maximization is bounded by .n  1/ 2 . 

Continuing with our analysis of T .n/, we obtain 
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T .n/ හ c.n  1/ 2 C ‚.n/ 
හ cn 2  c.2n  1/ C ‚.n/ 
හ cn 2 ; 

by picking the constant c large enough that the c.2n  1/ term dominates the ‚.n/ 
term. Thus T .n/ D O.n 2 /. Section 7.2 showed a speciûc case where quicksort 
takes �.n 2 / time: when partitioning is maximally unbalanced. Thus, the worst- 
case running time of quicksort is ‚.n 2 /. 

7.4.2 Expected running time 
We have already seen the intuition behind why the expected running time of 
RANDOMIZED-QUICKSORT is O.n lg n/: if, in each level of recursion, the split 
induced by RANDOMIZED-PARTITION puts any constant fraction of the elements 
on one side of the partition, then the recursion tree has depth ‚.lg n/ and O.n/ 
work is performed at each level. Even if we add a few new levels with the most un- 
balanced split possible between these levels, the total time remains O.n lg n/. We 
can analyze the expected running time of RANDOMIZED-QUICKSORT precisely 
by ûrst understanding how the partitioning procedure operates and then using this 
understanding to derive an O.n lg n/ bound on the expected running time. This 
upper bound on the expected running time, combined with the ‚.n lg n/ best-case 
bound we saw in Section 7.2, yields a ‚.n lg n/ expected running time. We assume 
throughout that the values of the elements being sorted are distinct. 

Running time and comparisons 
The QUICKSORT and RANDOMIZED-QUICKSORT procedures differ only in how 
they select pivot elements. They are the same in all other respects. We can there- 
fore analyze RANDOMIZED-QUICKSORT by considering the QUICKSORT and 
PARTITION procedures, but with the assumption that pivot elements are selected 
randomly from the subarray passed to RANDOMIZED-PARTITION. Let’s start by 
relating the asymptotic running time of QUICKSORT to the number of times ele- 
ments are compared (all in line 4 of PARTITION), understanding that this analysis 
also applies to RANDOMIZED-QUICKSORT. Note that we are counting the number 
of times that array elements are compared, not comparisons of indices. 

Lemma 7.1 
The running time of QUICKSORT on an n-element array is O.n C X/, where X is 
the number of element comparisons performed. 
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Proof The running time of QUICKSORT is dominated by the time spent in the 
PARTITION procedure. Each time PARTITION is called, it selects a pivot ele- 
ment, which is never included in any future recursive calls to QUICKSORT and 
PARTITION. Thus, there can be at most n calls to PARTITION over the entire ex- 
ecution of the quicksort algorithm. Each time QUICKSORT calls PARTITION, it 
also recursively calls itself twice, so there are at most 2n calls to the QUICKSORT 
procedure itself. 
One call to PARTITION takes O.1/ time plus an amount of time that is propor- 

tional to the number of iterations of the for loop in lines 336. Each iteration of this 
for loop performs one comparison in line 4, comparing the pivot element to an- 
other element of the array A. Therefore, the total time spent in the for loop across 
all executions is proportional to X . Since there are at most n calls to PARTITION 
and the time spent outside the for loop is O.1/ for each call, the total time spent 
in PARTITION outside of the for loop is O.n/. Thus the total time for quicksort is 
O.n C X/. 

Our goal for analyzing RANDOMIZED-QUICKSORT, therefore, is to compute 
the expected value E ŒX� of the random variable X denoting the total number of 
comparisons performed in all calls to PARTITION. To do so, we must understand 
when the quicksort algorithm compares two elements of the array and when it does 
not. For ease of analysis, let’s index the elements of the array A by their position 
in the sorted output, rather than their position in the input. That is, although the 
elements in A may start out in any order, we’ll refer to them by ´ 1 ; ´ 2 ; : : : ; ´ n , 
where ´ 1 < ´ 2 <    < ´ n , with strict inequality because we assume that all 
elements are distinct. We denote the set f´ i ; ´ i C1 ; : : : ; ´ j g by Z ij . 

The next lemma characterizes when two elements are compared. 

Lemma 7.2 
During the execution of RANDOMIZED-QUICKSORT on an array of n distinct ele- 
ments ´ 1 < ´ 2 <    < ´ n , an element ´ i is compared with an element ´ j , where 
i < j , if and only if one of them is chosen as a pivot before any other element in 
the set Z ij . Moreover, no two elements are ever compared twice. 

Proof Let’s look at the ûrst time that an element x 2 Z ij is chosen as a pivot 
during the execution of the algorithm. There are three cases to consider. If x is 
neither ´ i nor ´ j 4that is, ´ i < x < ´ j 4then ´ i and ´ j are not compared at any 
subsequent time, because they fall into different sides of the partition around x . 
If x D ´ i , then PARTITION compares ´ i with every other item in Z ij . Similarly, 
if x D ´ j , then PARTITION compares ´ j with every other item in Z ij . Thus, 
´ i and ´ j are compared if and only if the ûrst element to be chosen as a pivot 
from Z ij is either ´ i or ´ j . In the latter two cases, where one of ´ i and ´ j is chosen 



196 Chapter 7 Quicksort 

as a pivot, since the pivot is removed from future comparisons, it is never compared 
again with the other element. 

As an example of this lemma, consider an input to quicksort of the numbers 1 
through 10 in some arbitrary order. Suppose that the ûrst pivot element is 7. Then 
the ûrst call to PARTITION separates the numbers into two sets: f1; 2; 3; 4; 5; 6g and 
f8; 9; 10g. In the process, the pivot element 7 is compared with all other elements, 
but no number from the ûrst set (e.g., 2) is or ever will be compared with any 
number from the second set (e.g., 9). The values 7 and 9 are compared because 7 
is the ûrst item from Z 7;9 to be chosen as a pivot. In contrast, 2 and 9 are never 
compared because the ûrst pivot element chosen from Z 2;9 is 7. 

The next lemma gives the probability that two elements are compared. 

Lemma 7.3 
Consider an execution of the procedure RANDOMIZED-QUICKSORT on an array 
of n distinct elements ´ 1 < ´ 2 <    < ´ n . Given two arbitrary elements ´ i and ´ j 
where i < j , the probability that they are compared is 2=.j  i C 1/. 

Proof Let’s look at the tree of recursive calls that RANDOMIZED-QUICKSORT 
makes, and consider the sets of elements provided as input to each call. Initially, the 
root set contains all the elements of Z ij , since the root set contains every element 
in A. The elements belonging to Z ij all stay together for each recursive call of 
RANDOMIZED-QUICKSORT until PARTITION chooses some element x 2 Z ij as a 
pivot. From that point on, the pivot x appears in no subsequent input set. The ûrst 
time that RANDOMIZED-SELECT chooses a pivot x 2 Z ij from a set containing 
all the elements of Z ij , each element in Z ij is equally likely to be x because the 
pivot is chosen uniformly at random. Since jZ ij j D j  i C 1, the probability is 
1=.j  i C 1/ that any given element in Z ij is the ûrst pivot chosen from Z ij . Thus, 
by Lemma 7.2, we have 
Pr f´ i is compared with ´ j g D Pr f´ i or ´ j is the ûrst pivot chosen from Z ij g 

D Pr f´ i is the ûrst pivot chosen from Z ij g 
C Pr f´ j is the ûrst pivot chosen from Z ij g 

D 
2 

j  i C 1 
; 

where the second line follows from the ûrst because the two events are mutually 
exclusive. 

We can now complete the analysis of randomized quicksort. 
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Theorem 7.4 
The expected running time of RANDOMIZED-QUICKSORT on an input of n distinct 
elements is O.n lg n/. 

Proof The analysis uses indicator random variables (see Section 5.2). Let the n 
distinct elements be ´ 1 < ´ 2 <    < ´ n , and for 1 හ i < j හ n, deûne the 
indicator random variable X ij D I f´ i is compared with ´ j g. From Lemma 7.2, 
each pair is compared at most once, and so we can express X as follows: 

X D 
n1 X 

i D1 

n X 

j Di C1 

X ij : 

By taking expectations of both sides and using linearity of expectation (equa- 
tion (C.24) on page 1192) and Lemma 5.1 on page 130, we obtain 

E ŒX� D E 
" 
n1 X 

i D1 

n X 

j Di C1 

X ij 

# 

D 
n1 X 

i D1 

n X 

j Di C1 

E ŒX ij � (by linearity of expectation) 

D 
n1 X 

i D1 

n X 

j Di C1 

Pr f´ i is compared with ´ j g (by Lemma 5.1) 

D 
n1 X 

i D1 

n X 

j Di C1 

2 
j  i C 1 

(by Lemma 7.3) . 

We can evaluate this sum using a change of variables (k D j  i ) and the bound 
on the harmonic series in equation (A.9) on page 1142: 

E ŒX� D 
n1 X 

i D1 

n X 

j Di C1 

2 
j  i C 1 

D 
n1 X 

i D1 

ni X 

kD1 

2 
k C 1 

< 
n1 X 

i D1 

n X 

kD1 

2 
k 

D 
n1 X 

i D1 

O.lg n/ 

D O.n lg n/ : 
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This bound and Lemma 7.1 allow us to conclude that the expected running time 
of RANDOMIZED-QUICKSORT is O.n lg n/ (assuming that the element values are 
distinct). 

Exercises 
7.4-1 
Show that the recurrence 
T .n/ D max fT .q/ C T .n  q  1/ W 0 හ q හ n  1g C ‚.n/ 

has a lower bound of T .n/ D �.n 2 /. 
7.4-2 
Show that quicksort’s best-case running time is �.n lg n/. 
7.4-3 
Show that the expression q 2 C .n  q  1/ 2 achieves its maximum value over 
q D 0; 1; : : : ; n  1 when q D 0 or q D n  1. 
7.4-4 
Show that RANDOMIZED-QUICKSORT’s expected running time is �.n lg n/. 
7.4-5 
Coarsening the recursion, as we did in Problem 2-1 for merge sort, is a common 
way to improve the running time of quicksort in practice. We modify the base 
case of the recursion so that if the array has fewer than k elements, the subarray is 
sorted by insertion sort, rather than by continued recursive calls to quicksort. Argue 
that the randomized version of this sorting algorithm runs in O.nk C n lg.n=k// 
expected time. How should you pick k, both in theory and in practice? 

? 7.4-6 
Consider modifying the PARTITION procedure by randomly picking three elements 
from subarray AŒp W r� and partitioning about their median (the middle value of the 
three elements). Approximate the probability of getting worse than an ˛-to-.1  ̨ / 
split, as a function of ˛ in the range 0 < ˛ < 1=2. 
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Problems 

7-1 Hoare partition correctness 
The version of PARTITION given in this chapter is not the original partitioning al- 
gorithm. Here is the original partitioning algorithm, which is due to C. A. R. Hoare. 

HOARE-PARTITION .A; p; r/ 
1 x D AŒp� 
2 i D p  1 
3 j D r C 1 
4 while TRUE 
5 repeat 
6 j D j  1 
7 until AŒj � හ x 
8 repeat 
9 i D i C 1 
10 until AŒi�  x 
11 if i < j 
12 exchange AŒi� with AŒj � 
13 else return j 

a. Demonstrate the operation of HOARE-PARTITION on the array A D h13; 19; 
9; 5; 12; 8; 7; 4; 11; 2; 6; 21i, showing the values of the array and the indices i 
and j after each iteration of the while loop in lines 4313. 

b. Describe how the PARTITION procedure in Section 7.1 differs from HOARE- 
PARTITION when all elements in AŒp W r� are equal. Describe a practical advan- 
tage of HOARE-PARTITION over PARTITION for use in quicksort. 

The next three questions ask you to give a careful argument that the procedure 
HOARE-PARTITION is correct. Assuming that the subarray AŒp W r� contains at 
least two elements, prove the following: 
c. The indices i and j are such that the procedure never accesses an element of A 

outside the subarray AŒp W r�. 

d. When HOARE-PARTITION terminates, it returns a value j such that p හ j < r . 

e. Every element of AŒp W j � is less than or equal to every element of AŒj C 1 W r� 
when HOARE-PARTITION terminates. 



200 Chapter 7 Quicksort 

The PARTITION procedure in Section 7.1 separates the pivot value (originally 
in AŒr�) from the two partitions it forms. The HOARE-PARTITION procedure, on 
the other hand, always places the pivot value (originally in AŒp�) into one of the 
two partitions AŒp W j � and AŒj C 1 W r�. Since p හ j < r , neither partition is 
empty. 
f. Rewrite the QUICKSORT procedure to use HOARE-PARTITION. 

7-2 Quicksort with equal element values 
The analysis of the expected running time of randomized quicksort in Section 7.4.2 
assumes that all element values are distinct. This problem examines what happens 
when they are not. 
a. Suppose that all element values are equal. What is randomized quicksort’s 

running time in this case? 

b. The PARTITION procedure returns an index q such that each element of 
AŒp W q  1� is less than or equal to AŒq� and each element of AŒq C 1 W r� is 
greater than AŒq�. Modify the PARTITION procedure to produce a procedure 
PARTITION 0 .A; p; r/, which permutes the elements of AŒp W r� and returns two 
indices q and t , where p හ q හ t හ r , such that 
 all elements of AŒq W t � are equal, 
 each element of AŒp W q  1� is less than AŒq�, and 
 each element of AŒt C 1 W r� is greater than AŒq�. 
Like PARTITION, your PARTITION 0 procedure should take ‚.r  p/ time. 

c. Modify the RANDOMIZED-PARTITION procedure to call PARTITION 0 , and 
name the new procedure RANDOMIZED-PARTITION 0 . Then modify the 
QUICKSORT procedure to produce a procedure QUICKSORT 0 .A; p; r/ that calls 
RANDOMIZED-PARTITION 0 and recurses only on partitions where elements are 
not known to be equal to each other. 

d. Using QUICKSORT 0 , adjust the analysis in Section 7.4.2 to avoid the assumption 
that all elements are distinct. 

7-3 Alternative quicksort analysis 
An alternative analysis of the running time of randomized quicksort focuses on 
the expected running time of each individual recursive call to RANDOMIZED- 
QUICKSORT, rather than on the number of comparisons performed. As in the 
analysis of Section 7.4.2, assume that the values of the elements are distinct. 
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a. Argue that, given an array of size n, the probability that any particular element 
is chosen as the pivot is 1=n. Use this probability to deûne indicator random 
variables X i D I fi th smallest element is chosen as the pivotg. What is E ŒX i �? 

b. Let T .n/ be a random variable denoting the running time of quicksort on an 
array of size n. Argue that 

E ŒT .n/� D E 
" 

n X 

qD1 

X q .T .q  1/ C T .n  q/ C ‚.n// 

# 

: (7.2) 

c. Show how to rewrite equation (7.2) as 

E ŒT .n/� D 
2 
n 

n1 X 

qD1 

E ŒT .q/� C ‚.n/ : (7.3) 

d. Show that 
n1 X 

qD1 

q lg q හ 
n 2 

2 
lg n  

n 2 

8 
(7.4) 

for n  2. (Hint: Split the summation into two parts, one summation for q D 
1; 2; : : : ; dn=2e  1 and one summation for q D dn=2e ; : : : ; n  1.) 

e. Using the bound from equation (7.4), show that the recurrence in equation (7.3) 
has the solution E ŒT .n/� D O.n lg n/. (Hint: Show, by substitution, that 
E ŒT .n/� හ an lg n for sufûciently large n and for some positive constant a.) 

7-4 Stooge sort 
Professors Howard, Fine, and Howard have proposed a deceptively simple sorting 
algorithm, named stooge sort in their honor, appearing on the following page. 
a. Argue that the call STOOGE-SORT.A; 1; n/ correctly sorts the array AŒ1 W n�. 

b. Give a recurrence for the worst-case running time of STOOGE-SORT and a tight 
asymptotic (‚-notation) bound on the worst-case running time. 

c. Compare the worst-case running time of STOOGE-SORT with that of insertion 
sort, merge sort, heapsort, and quicksort. Do the professors deserve tenure? 
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STOOGE-SORT.A; p; r/ 
1 if AŒp� > AŒr� 
2 exchange AŒp� with AŒr� 
3 if p C 1 < r 
4 k D b.r  p C 1/=3c // round down 
5 STOOGE-SORT.A; p; r  k/ // ûrst two-thirds 
6 STOOGE-SORT.A; p C k; r/ // last two-thirds 
7 STOOGE-SORT.A; p; r  k/ // ûrst two-thirds again 

7-5 Stack depth for quicksort 
The QUICKSORT procedure of Section 7.1 makes two recursive calls to itself. After 
QUICKSORT calls PARTITION, it recursively sorts the low side of the partition 
and then it recursively sorts the high side of the partition. The second recursive 
call in QUICKSORT is not really necessary, because the procedure can instead use 
an iterative control structure. This transformation technique, called tail-recursion 
elimination, is provided automatically by good compilers. Applying tail-recursion 
elimination transforms QUICKSORT into the TRE-QUICKSORT procedure. 

TRE-QUICKSORT .A; p; r/ 
1 while p < r 
2 // Partition and then sort the low side. 
3 q D PARTITION.A; p; r/ 
4 TRE-QUICKSORT.A; p; q  1/ 
5 p D q C 1 

a. Argue that TRE-QUICKSORT .A; 1; n/ correctly sorts the array AŒ1 W n�. 
Compilers usually execute recursive procedures by using a stack that contains per- 
tinent information, including the parameter values, for each recursive call. The 
information for the most recent call is at the top of the stack, and the information 
for the initial call is at the bottom. When a procedure is called, its information is 
pushed onto the stack, and when it terminates, its information is popped. Since 
we assume that array parameters are represented by pointers, the information for 
each procedure call on the stack requires O.1/ stack space. The stack depth is the 
maximum amount of stack space used at any time during a computation. 
b. Describe a scenario in which TRE-QUICKSORT’s stack depth is ‚.n/ on an 
n-element input array. 
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c. Modify TRE-QUICKSORT so that the worst-case stack depth is ‚.lg n/. Main- 
tain the O.n lg n/ expected running time of the algorithm. 

7-6 Median-of-3 partition 
One way to improve the RANDOMIZED-QUICKSORT procedure is to partition 
around a pivot that is chosen more carefully than by picking a random element 
from the subarray. A common approach is the median-of-3 method: choose the 
pivot as the median (middle element) of a set of 3 elements randomly selected 
from the subarray. (See Exercise 7.4-6.) For this problem, assume that the n ele- 
ments in the input subarray AŒp W r� are distinct and that n  3. Denote the sorted 
version of AŒp W r� by ´ 1 ; ´ 2 ; : : : ; ´ n . Using the median-of-3 method to choose the 
pivot element x , deûne p i D Pr fx D ´ i g. 
a. Give an exact formula for p i as a function of n and i for i D 2; 3; : : : ; n  1. 

(Observe that p 1 D p n D 0.) 

b. By what amount does the median-of-3 method increase the likelihood of choos- 
ing the pivot to be x D ´ b.nC1/=2c , the median of AŒp W r�, compared with the 
ordinary implementation? Assume that n ! 1, and give the limiting ratio of 
these probabilities. 

c. Suppose that we deûne a <good= split to mean choosing the pivot as x D ´ i , 
where n=3 හ i හ 2n=3. By what amount does the median-of-3 method in- 
crease the likelihood of getting a good split compared with the ordinary imple- 
mentation? (Hint: Approximate the sum by an integral.) 

d. Argue that in the �.n lg n/ running time of quicksort, the median-of-3 method 
affects only the constant factor. 

7-7 Fuzzy sorting of intervals 
Consider a sorting problem in which you do not know the numbers exactly. In- 
stead, for each number, you know an interval on the real line to which it belongs. 
That is, you are given n closed intervals of the form Œa i ; b i �, where a i හ b i . The 
goal is to fuzzy-sort these intervals: to produce a permutation hi 1 ; i 2 ; : : : ; i n i of 
the intervals such that for j D 1; 2; : : : ; n, there exist c j 2 Œa i j ; b i j � satisfying 
c 1 හ c 2 හ    හ c n . 
a. Design a randomized algorithm for fuzzy-sorting n intervals. Your algorithm 

should have the general structure of an algorithm that quicksorts the left end- 
points (the a i values), but it should take advantage of overlapping intervals to 
improve the running time. (As the intervals overlap more and more, the prob- 
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lem of fuzzy-sorting the intervals becomes progressively easier. Your algorithm 
should take advantage of such overlapping, to the extent that it exists.) 

b. Argue that your algorithm runs in ‚.n lg n/ expected time in general, but runs 
in ‚.n/ expected time when all of the intervals overlap (i.e., when there exists a 
value x such that x 2 Œa i ; b i � for all i ). Your algorithm should not be checking 
for this case explicitly, but rather, its performance should naturally improve as 
the amount of overlap increases. 

Chapter notes 

Quicksort was invented by Hoare [219], and his version of PARTITION appears in 
Problem 7-1. Bentley [51, p. 117] attributes the PARTITION procedure given in 
Section 7.1 to N. Lomuto. The analysis in Section 7.4 based on an analysis due 
to Motwani and Raghavan [336]. Sedgewick [401] and Bentley [51] provide good 
references on the details of implementation and how they matter. 
McIlroy [323] shows how to engineer a <killer adversary= that produces an array 

on which virtually any implementation of quicksort takes ‚.n 2 / time. 



8 Sorting in Linear Time 

We have now seen a handful of algorithms that can sort n numbers in O.n lg n/ 
time. Whereas merge sort and heapsort achieve this upper bound in the worst case, 
quicksort achieves it on average. Moreover, for each of these algorithms, we can 
produce a sequence of n input numbers that causes the algorithm to run in �.n lg n/ 
time. 

These algorithms share an interesting property: the sorted order they determine 
is based only on comparisons between the input elements. We call such sorting 
algorithms comparison sorts. All the sorting algorithms introduced thus far are 
comparison sorts. 
In Section 8.1, we’ll prove that any comparison sort must make �.n lg n/ com- 

parisons in the worst case to sort n elements. Thus, merge sort and heapsort are 
asymptotically optimal, and no comparison sort exists that is faster by more than a 
constant factor. 
Sections 8.2, 8.3, and 8.4 examine three sorting algorithms4counting sort, radix 

sort, and bucket sort4that run in linear time on certain types of inputs. Of course, 
these algorithms use operations other than comparisons to determine the sorted 
order. Consequently, the �.n lg n/ lower bound does not apply to them. 

8.1 Lower bounds for sorting 

A comparison sort uses only comparisons between elements to gain order infor- 
mation about an input sequence ha 1 ; a 2 ; : : : ; a n i. That is, given two elements a i 
and a j , it performs one of the tests a i < a j , a i හ a j , a i D a j , a i  a j , or a i > a j 
to determine their relative order. It may not inspect the values of the elements or 
gain order information about them in any other way. 

Since we are proving a lower bound, we assume without loss of generality in 
this section that all the input elements are distinct. After all, a lower bound for 
distinct elements applies when elements may or may not be distinct. Consequently, 
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〈1,2,3〉 1:3 〈2,1,3〉 2:3 

〈1,3,2〉 〈3,1,2〉 〈3,2,1〉 
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≤ > 

≤ > 
〈2,3,1〉 

Figure 8.1 The decision tree for insertion sort operating on three elements. An internal node 
(shown in blue) annotated by i :j indicates a comparison between a i and a j . A leaf annotated by the 
permutation h�.1/; �.2/; : : : ; �.n/ i indicates the ordering a .1/ හ a .2/ හ    හ a .n/ . The high- 
lighted path indicates the decisions made when sorting the input sequence ha 1 D 6;a 2 D 8;a 3 D 5i. 
Going left from the root node, labeled 1:2, indicates that a 1 හ a 2 . Going right from the node labeled 
2:3 indicates that a 2 > a 3 . Going right from the node labeled 1:3 indicates that a 1 > a 3 . Therefore, 
we have the ordering a 3 හ a 1 හ a 2 , as indicated in the leaf labeled h3; 1; 2i. Because the three input 
elements have 3Š D 6 possible permutations, the decision tree must have at least 6 leaves. 

comparisons of the form a i D a j are useless, which means that we can assume 
that no comparisons for exact equality occur. Moreover, the comparisons a i හ a j , 
a i  a j , a i > a j , and a i < a j are all equivalent in that they yield identical 
information about the relative order of a i and a j . We therefore assume that all 
comparisons have the form a i හ a j . 

The decision-tree model 
We can view comparison sorts abstractly in terms of decision trees. A decision 
tree is a full binary tree (each node is either a leaf or has both children) that repre- 
sents the comparisons between elements that are performed by a particular sorting 
algorithm operating on an input of a given size. Control, data movement, and all 
other aspects of the algorithm are ignored. Figure 8.1 shows the decision tree cor- 
responding to the insertion sort algorithm from Section 2.1 operating on an input 
sequence of three elements. 

A decision tree has each internal node annotated by i :j for some i and j in the 
range 1 හ i; j හ n, where n is the number of elements in the input sequence. 
We also annotate each leaf by a permutation h�.1/; �.2/; : : : ; �.n/ i. (See Sec- 
tion C.1 for background on permutations.) Indices in the internal nodes and the 
leaves always refer to the original positions of the array elements at the start of the 
sorting algorithm. The execution of the comparison sorting algorithm corresponds 
to tracing a simple path from the root of the decision tree down to a leaf. Each 
internal node indicates a comparison a i හ a j . The left subtree then dictates sub- 
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sequent comparisons once we know that a i හ a j , and the right subtree dictates 
subsequent comparisons when a i > a j . Arriving at a leaf, the sorting algorithm 
has established the ordering a .1/ හ a .2/ හ    හ a .n/ . Because any correct sort- 
ing algorithm must be able to produce each permutation of its input, each of the nŠ 
permutations on n elements must appear as at least one of the leaves of the decision 
tree for a comparison sort to be correct. Furthermore, each of these leaves must be 
reachable from the root by a downward path corresponding to an actual execution 
of the comparison sort. (We call such leaves <reachable.=) Thus, we consider only 
decision trees in which each permutation appears as a reachable leaf. 

A lower bound for the worst case 
The length of the longest simple path from the root of a decision tree to any of 
its reachable leaves represents the worst-case number of comparisons that the cor- 
responding sorting algorithm performs. Consequently, the worst-case number of 
comparisons for a given comparison sort algorithm equals the height of its decision 
tree. A lower bound on the heights of all decision trees in which each permutation 
appears as a reachable leaf is therefore a lower bound on the running time of any 
comparison sort algorithm. The following theorem establishes such a lower bound. 

Theorem 8.1 
Any comparison sort algorithm requires �.n lg n/ comparisons in the worst case. 

Proof From the preceding discussion, it sufûces to determine the height of a 
decision tree in which each permutation appears as a reachable leaf. Consider 
a decision tree of height h with l reachable leaves corresponding to a comparison 
sort on n elements. Because each of the nŠ permutations of the input appears as 
one or more leaves, we have nŠ හ l . Since a binary tree of height h has no more 
than 2 h leaves, we have 
nŠ හ l හ 2 h ; 

which, by taking logarithms, implies 
h  lg.nŠ/ (since the lg function is monotonically increasing) 

D �.n lg n/ (by equation (3.28) on page 67) . 

Corollary 8.2 
Heapsort and merge sort are asymptotically optimal comparison sorts. 

Proof The O.n lg n/ upper bounds on the running times for heapsort and merge 
sort match the �.n lg n/ worst-case lower bound from Theorem 8.1. 
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Exercises 
8.1-1 
What is the smallest possible depth of a leaf in a decision tree for a comparison 
sort? 
8.1-2 
Obtain asymptotically tight bounds on lg.nŠ/ without using Stirling’s approxi- 
mation. Instead, evaluate the summation P n 

kD1 lg k using techniques from Sec- 
tion A.2. 
8.1-3 
Show that there is no comparison sort whose running time is linear for at least half 
of the nŠ inputs of length n. What about a fraction of 1=n of the inputs of length n? 
What about a fraction 1=2 n ? 
8.1-4 
You are given an n-element input sequence, and you know in advance that it is 
partly sorted in the following sense. Each element initially in position i such that 
i mod 4 D 0 is either already in its correct position, or it is one place away from 
its correct position. For example, you know that after sorting, the element initially 
in position 12 belongs in position 11, 12, or 13. You have no advance information 
about the other elements, in positions i where i mod 4 ¤ 0. Show that an �.n lg n/ 
lower bound on comparison-based sorting still holds in this case. 

8.2 Counting sort 

Counting sort assumes that each of the n input elements is an integer in the range 
0 to k, for some integer k. It runs in ‚.n C k/ time, so that when k D O.n/, 
counting sort runs in ‚.n/ time. 
Counting sort ûrst determines, for each input element x , the number of elements 

less than or equal to x . It then uses this information to place element x directly into 
its position in the output array. For example, if 17 elements are less than or equal 
to x , then x belongs in output position 17. We must modify this scheme slightly 
to handle the situation in which several elements have the same value, since we do 
not want them all to end up in the same position. 

The COUNTING-SORT procedure on the facing page takes as input an array 
AŒ1 W n�, the size n of this array, and the limit k on the nonnegative integer values 
in A. It returns its sorted output in the array BŒ1 W n� and uses an array CŒ0 W k� for 
temporary working storage. 



8.2 Counting sort 209 

COUNTING-SORT.A; n; k/ 
1 let BŒ1 W n� and CŒ0 W k� be new arrays 
2 for i D 0 to k 
3 CŒi� D 0 
4 for j D 1 to n 
5 CŒAŒj �� D CŒAŒj �� C 1 
6 // CŒi� now contains the number of elements equal to i . 
7 for i D 1 to k 
8 CŒi� D CŒi� C CŒi  1� 
9 // CŒi� now contains the number of elements less than or equal to i . 
10 // Copy A to B , starting from the end of A. 
11 for j D n downto 1 
12 BŒC ŒAŒj ��� D AŒj � 
13 CŒAŒj �� D CŒAŒj ��  1 // to handle duplicate values 
14 return B 

Figure 8.2 illustrates counting sort. After the for loop of lines 233 initializes the 
array C to all zeros, the for loop of lines 435 makes a pass over the array A to 
inspect each input element. Each time it ûnds an input element whose value is i , it 
increments CŒi�. Thus, after line 5, CŒi� holds the number of input elements equal 
to i for each integer i D 0; 1; : : : ; k. Lines 738 determine for each i D 0; 1; : : : ; k 
how many input elements are less than or equal to i by keeping a running sum of 
the array C . 

Finally, the for loop of lines 11313 makes another pass over A, but in reverse, 
to place each element AŒj � into its correct sorted position in the output array B . 
If all n elements are distinct, then when line 11 is ûrst entered, for each AŒj �, the 
value CŒAŒj �� is the correct ûnal position of AŒj � in the output array, since there 
are CŒAŒj �� elements less than or equal to AŒj �. Because the elements might not 
be distinct, the loop decrements CŒAŒj �� each time it places a value AŒj � into B . 
Decrementing CŒAŒj �� causes the previous element in A with a value equal to AŒj �, 
if one exists, to go to the position immediately before AŒj � in the output array B . 
How much time does counting sort require? The for loop of lines 233 takes ‚.k/ 

time, the for loop of lines 435 takes ‚.n/ time, the for loop of lines 738 takes ‚.k/ 
time, and the for loop of lines 11313 takes ‚.n/ time. Thus, the overall time is 
‚.k C n/. In practice, we usually use counting sort when we have k D O.n/, in 
which case the running time is ‚.n/. 

Counting sort can beat the lower bound of �.n lg n/ proved in Section 8.1 be- 
cause it is not a comparison sort. In fact, no comparisons between input elements 
occur anywhere in the code. Instead, counting sort uses the actual values of the 
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Figure 8.2 The operation of COUNTING-SORT on an input array AŒ1 W 8�, where each element of A 
is a nonnegative integer no larger than k D 5. (a) The array A and the auxiliary array C after line 5. 
(b) The array C after line 8. (c)–(e) The output array B and the auxiliary array C after one, two, and 
three iterations of the loop in lines 11313, respectively. Only the tan elements of array B have been 
ûlled in. (f) The ûnal sorted output array B. 

elements to index into an array. The �.n lg n/ lower bound for sorting does not 
apply when we depart from the comparison sort model. 

An important property of counting sort is that it is stable: elements with the same 
value appear in the output array in the same order as they do in the input array. That 
is, it breaks ties between two elements by the rule that whichever element appears 
ûrst in the input array appears ûrst in the output array. Normally, the property of 
stability is important only when satellite data are carried around with the element 
being sorted. Counting sort’s stability is important for another reason: counting 
sort is often used as a subroutine in radix sort. As we shall see in the next section, 
in order for radix sort to work correctly, counting sort must be stable. 

Exercises 
8.2-1 
Using Figure 8.2 as a model, illustrate the operation of COUNTING-SORT on the 
array A D h6; 0; 2; 0; 1; 3; 4; 6; 1; 3; 2i. 
8.2-2 
Prove that COUNTING-SORT is stable. 
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8.2-3 
Suppose that we were to rewrite the for loop header in line 11 of the COUNTING- 
SORT as 
11 for j D 1 to n 

Show that the algorithm still works properly, but that it is not stable. Then rewrite 
the pseudocode for counting sort so that elements with the same value are written 
into the output array in order of increasing index and the algorithm is stable. 
8.2-4 
Prove the following loop invariant for COUNTING-SORT: 

At the start of each iteration of the for loop of lines 11313, the last element 
in A with value i that has not yet been copied into B belongs in BŒC Œi ��. 

8.2-5 
Suppose that the array being sorted contains only integers in the range 0 to k and 
that there are no satellite data to move with those keys. Modify counting sort to 
use just the arrays A and C , putting the sorted result back into array A instead of 
into a new array B . 
8.2-6 
Describe an algorithm that, given n integers in the range 0 to k, preprocesses its 
input and then answers any query about how many of the n integers fall into a 
range Œa W b� in O.1/ time. Your algorithm should use ‚.n C k/ preprocessing 
time. 
8.2-7 
Counting sort can also work efûciently if the input values have fractional parts, but 
the number of digits in the fractional part is small. Suppose that you are given n 
numbers in the range 0 to k, each with at most d decimal (base 10) digits to the 
right of the decimal point. Modify counting sort to run in ‚.n C 10 d k/ time. 

8.3 Radix sort 

Radix sort is the algorithm used by the card-sorting machines you now ûnd only in 
computer museums. The cards have 80 columns, and in each column a machine can 
punch a hole in one of 12 places. The sorter can be mechanically <programmed= 
to examine a given column of each card in a deck and distribute the card into one 
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Figure 8.3 The operation of radix sort on seven 3-digit numbers. The leftmost column is the input. 
The remaining columns show the numbers after successive sorts on increasingly signiûcant digit 
positions. Tan shading indicates the digit position sorted on to produce each list from the previous 
one. 

of 12 bins depending on which place has been punched. An operator can then 
gather the cards bin by bin, so that cards with the ûrst place punched are on top of 
cards with the second place punched, and so on. 
For decimal digits, each column uses only 10 places. (The other two places are 

reserved for encoding nonnumeric characters.) A d -digit number occupies a ûeld 
of d columns. Since the card sorter can look at only one column at a time, the 
problem of sorting n cards on a d -digit number requires a sorting algorithm. 

Intuitively, you might sort numbers on their most significant (leftmost) digit, 
sort each of the resulting bins recursively, and then combine the decks in order. 
Unfortunately, since the cards in 9 of the 10 bins must be put aside to sort each of 
the bins, this procedure generates many intermediate piles of cards that you would 
have to keep track of. (See Exercise 8.3-6.) 
Radix sort solves the problem of card sorting4counterintuitively4by sorting on 

the least significant digit ûrst. The algorithm then combines the cards into a single 
deck, with the cards in the 0 bin preceding the cards in the 1 bin preceding the 
cards in the 2 bin, and so on. Then it sorts the entire deck again on the second-least 
signiûcant digit and recombines the deck in a like manner. The process continues 
until the cards have been sorted on all d digits. Remarkably, at that point the cards 
are fully sorted on the d -digit number. Thus, only d passes through the deck are 
required to sort. Figure 8.3 shows how radix sort operates on a <deck= of seven 
3-digit numbers. 

In order for radix sort to work correctly, the digit sorts must be stable. The sort 
performed by a card sorter is stable, but the operator must be careful not to change 
the order of the cards as they come out of a bin, even though all the cards in a bin 
have the same digit in the chosen column. 
In a typical computer, which is a sequential random-access machine, we some- 

times use radix sort to sort records of information that are keyed by multiple ûelds. 
For example, we might wish to sort dates by three keys: year, month, and day. We 
could run a sorting algorithm with a comparison function that, given two dates, 
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compares years, and if there is a tie, compares months, and if another tie occurs, 
compares days. Alternatively, we could sort the information three times with a 
stable sort: ûrst on day (the <least signiûcant= part), next on month, and ûnally on 
year. 

The code for radix sort is straightforward. The RADIX-SORT procedure assumes 
that each element in array AŒ1 W n� has d digits, where digit 1 is the lowest-order 
digit and digit d is the highest-order digit. 

RADIX-SORT.A; n; d/ 
1 for i D 1 to d 
2 use a stable sort to sort array AŒ1 W n� on digit i 

Although the pseudocode for RADIX-SORT does not specify which stable sort to 
use, COUNTING-SORT is commonly used. If you use COUNTING-SORT as the sta- 
ble sort, you can make RADIX-SORT a little more efûcient by revising COUNTING- 
SORT to take a pointer to the output array as a parameter, having RADIX-SORT 
preallocate this array, and alternating input and output between the two arrays in 
successive iterations of the for loop in RADIX-SORT. 

Lemma 8.3 
Given n d -digit numbers in which each digit can take on up to k possible values, 
RADIX-SORT correctly sorts these numbers in ‚.d.n C k// time if the stable sort 
it uses takes ‚.n C k/ time. 

Proof The correctness of radix sort follows by induction on the column being 
sorted (see Exercise 8.3-3). The analysis of the running time depends on the stable 
sort used as the intermediate sorting algorithm. When each digit lies in the range 0 
to k  1 (so that it can take on k possible values), and k is not too large, counting 
sort is the obvious choice. Each pass over n d -digit numbers then takes ‚.n C k/ 
time. There are d passes, and so the total time for radix sort is ‚.d.n C k//. 

When d is constant and k D O.n/, we can make radix sort run in linear time. 
More generally, we have some üexibility in how to break each key into digits. 

Lemma 8.4 
Given n b-bit numbers and any positive integer r හ b, RADIX-SORT correctly sorts 
these numbers in ‚..b=r/.n C 2 r // time if the stable sort it uses takes ‚.n C k/ 
time for inputs in the range 0 to k. 
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Proof For a value r හ b, view each key as having d D db=r e digits of r bits 
each. Each digit is an integer in the range 0 to 2 r  1, so that we can use counting 
sort with k D 2 r  1. (For example, we can view a 32-bit word as having four 8-bit 
digits, so that b D 32, r D 8, k D 2 r  1 D 255, and d D b=r D 4.) Each pass of 
counting sort takes ‚.n C k/ D ‚.n C 2 r / time and there are d passes, for a total 
running time of ‚.d.n C 2 r // D ‚..b=r/.n C 2 r //. 

Given n and b, what value of r හ b minimizes the expression .b=r/.n C 2 r /? 
As r decreases, the factor b=r increases, but as r increases so does 2 r . The answer 
depends on whether b < blg nc. If b < blg nc, then r හ b implies .nC2 r / D ‚.n/. 
Thus, choosing r D b yields a running time of .b=b/.n C 2 b / D ‚.n/, which is 
asymptotically optimal. If b  blg nc, then choosing r D blg nc gives the best 
running time to within a constant factor, which we can see as follows. 1 Choosing 
r D blg nc yields a running time of ‚.bn= lg n/. As r increases above blg nc, the 
2 r term in the numerator increases faster than the r term in the denominator, and so 
increasing r above blg nc yields a running time of �.bn= lg n/. If instead r were 
to decrease below blg nc, then the b=r term increases and the n C 2 r term remains 
at ‚.n/. 
Is radix sort preferable to a comparison-based sorting algorithm, such as quick- 

sort? If b D O.lg n/, as is often the case, and r  lg n, then radix sort’s running 
time is ‚.n/, which appears to be better than quicksort’s expected running time 
of ‚.n lg n/. The constant factors hidden in the ‚-notation differ, however. Al- 
though radix sort may make fewer passes than quicksort over the n keys, each 
pass of radix sort may take signiûcantly longer. Which sorting algorithm to prefer 
depends on the characteristics of the implementations, of the underlying machine 
(e.g., quicksort often uses hardware caches more effectively than radix sort), and 
of the input data. Moreover, the version of radix sort that uses counting sort as the 
intermediate stable sort does not sort in place, which many of the ‚.n lg n/-time 
comparison sorts do. Thus, when primary memory storage is at a premium, an 
in-place algorithm such as quicksort could be the better choice. 

Exercises 
8.3-1 
Using Figure 8.3 as a model, illustrate the operation of RADIX-SORT on the fol- 
lowing list of English words: COW, DOG, SEA, RUG, ROW, MOB, BOX, TAB, 
BAR, EAR, TAR, DIG, BIG, TEA, NOW, FOX. 

1 The choice of r D blg nc assumes that n > 1. If n හ 1, there is nothing to sort. 
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8.3-2 
Which of the following sorting algorithms are stable: insertion sort, merge sort, 
heapsort, and quicksort? Give a simple scheme that makes any comparison sort 
stable. How much additional time and space does your scheme entail? 
8.3-3 
Use induction to prove that radix sort works. Where does your proof need the 
assumption that the intermediate sort is stable? 
8.3-4 
Suppose that COUNTING-SORT is used as the stable sort within RADIX-SORT. If 
RADIX-SORT calls COUNTING-SORT d times, then since each call of COUNTING- 
SORT makes two passes over the data (lines 435 and 11313), altogether 2d passes 
over the data occur. Describe how to reduce the total number of passes to d C 1. 
8.3-5 
Show how to sort n integers in the range 0 to n 3  1 in O.n/ time. 

? 8.3-6 
In the ûrst card-sorting algorithm in this section, which sorts on the most signiûcant 
digit ûrst, exactly how many sorting passes are needed to sort d -digit decimal 
numbers in the worst case? How many piles of cards does an operator need to keep 
track of in the worst case? 

8.4 Bucket sort 

Bucket sort assumes that the input is drawn from a uniform distribution and has an 
average-case running time of O.n/. Like counting sort, bucket sort is fast because 
it assumes something about the input. Whereas counting sort assumes that the input 
consists of integers in a small range, bucket sort assumes that the input is generated 
by a random process that distributes elements uniformly and independently over 
the interval Œ0; 1/. (See Section C.2 for a deûnition of a uniform distribution.) 

Bucket sort divides the interval Œ0; 1/ into n equal-sized subintervals, or buckets, 
and then distributes the n input numbers into the buckets. Since the inputs are uni- 
formly and independently distributed over Œ0; 1/, we do not expect many numbers 
to fall into each bucket. To produce the output, we simply sort the numbers in each 
bucket and then go through the buckets in order, listing the elements in each. 

The BUCKET-SORT procedure on the next page assumes that the input is an 
array AŒ1 W n� and that each element AŒi� in the array satisûes 0 හ AŒi� < 1. The 
code requires an auxiliary array BŒ0 W n  1� of linked lists (buckets) and assumes 
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Figure 8.4 The operation of BUCKET-SORT for n D 10. (a) The input array AŒ1 W 10�. (b) The 
array BŒ0 W 9� of sorted lists (buckets) after line 7 of the algorithm, with slashes indicating the end of 
each bucket. Bucket i holds values in the half-open interval Œi=10; .i C 1/=10/. The sorted output 
consists of a concatenation of the lists BŒ0�; BŒ1�; : : : ; BŒ9� in order. 

that there is a mechanism for maintaining such lists. (Section 10.2 describes how 
to implement basic operations on linked lists.) Figure 8.4 shows the operation of 
bucket sort on an input array of 10 numbers. 

BUCKET-SORT.A; n/ 
1 let BŒ0 W n  1� be a new array 
2 for i D 0 to n  1 
3 make BŒi� an empty list 
4 for i D 1 to n 
5 insert AŒi� into list BŒbn  AŒi�c� 
6 for i D 0 to n  1 
7 sort list BŒi� with insertion sort 
8 concatenate the lists BŒ0�;BŒ1�; : : : ; BŒn  1� together in order 
9 return the concatenated lists 

To see that this algorithm works, consider two elements AŒi� and AŒj �. Assume 
without loss of generality that AŒi� හ AŒj �. Since bn  AŒi�c හ bn  AŒj �c, either 
element AŒi� goes into the same bucket as AŒj � or it goes into a bucket with a lower 
index. If AŒi� and AŒj � go into the same bucket, then the for loop of lines 637 puts 
them into the proper order. If AŒi� and AŒj � go into different buckets, then line 8 
puts them into the proper order. Therefore, bucket sort works correctly. 



8.4 Bucket sort 217 

To analyze the running time, observe that, together, all lines except line 7 take 
O.n/ time in the worst case. We need to analyze the total time taken by the n calls 
to insertion sort in line 7. 

To analyze the cost of the calls to insertion sort, let n i be the random variable 
denoting the number of elements placed in bucket BŒi�. Since insertion sort runs 
in quadratic time (see Section 2.2), the running time of bucket sort is 

T .n/ D ‚.n/ C 
n1 X 

i D0 

O.n 2 
i / : (8.1) 

We now analyze the average-case running time of bucket sort, by computing the 
expected value of the running time, where we take the expectation over the input 
distribution. Taking expectations of both sides and using linearity of expectation 
(equation (C.24) on page 1192), we have 

E ŒT .n/� D E 
" 

‚.n/ C 
n1 X 

i D0 

O.n 2 
i / 

# 

D ‚.n/ C 
n1 X 

i D0 

E í O.n 2 
i / 
î (by linearity of expectation) 

D ‚.n/ C 
n1 X 

i D0 

O 
ã E í n 2 

i 

îä (by equation (C.25) on page 1193) . (8.2) 

We claim that 
E í n 2 

i 

î D 2  1=n (8.3) 
for i D 0; 1; : : : ; n  1. It is no surprise that each bucket i has the same value 
of E Œn 2 

i �, since each value in the input array A is equally likely to fall in any 
bucket. 
To prove equation (8.3), view each random variable n i as the number of suc- 

cesses in n Bernoulli trials (see Section C.4). Success in a trial occurs when 
an element goes into bucket BŒi�, with a probability p D 1=n of success and 
q D 1  1=n of failure. A binomial distribution counts n i , the number of suc- 
cesses, in the n trials. By equations (C.41) and (C.44) on pages 119931200, we 
have E Œn i � D np D n.1=n/ D 1 and Var Œn i � D npq D 1  1=n. Equation (C.31) 
on page 1194 gives 
E í n 2 

i 

î D Var Œn i � C E 2 Œn i � 
D .1  1=n/ C 1 2 

D 2  1=n ; 
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which proves equation (8.3). Using this expected value in equation (8.2), we get 
that the average-case running time for bucket sort is ‚.n/ Cn  O.2 1=n/ D ‚.n/. 

Even if the input is not drawn from a uniform distribution, bucket sort may still 
run in linear time. As long as the input has the property that the sum of the squares 
of the bucket sizes is linear in the total number of elements, equation (8.1) tells us 
that bucket sort runs in linear time. 

Exercises 
8.4-1 
Using Figure 8.4 as a model, illustrate the operation of BUCKET-SORT on the array 
A D h:79; :13; :16; :64; :39; :20; :89; :53; :71; :42 i. 
8.4-2 
Explain why the worst-case running time for bucket sort is ‚.n 2 /. What simple 
change to the algorithm preserves its linear average-case running time and makes 
its worst-case running time O.n lg n/? 
8.4-3 
Let X be a random variable that is equal to the number of heads in two üips of a 
fair coin. What is E ŒX 2 �? What is E 2 ŒX�? 
8.4-4 
An array A of size n > 10 is ûlled in the following way. For each element AŒi�, 
choose two random variables x i and y i uniformly and independently from Œ0; 1/. 
Then set 
AŒi� D 

b10x i c 
10 

C 
y i 
n 
: 

Modify bucket sort so that it sorts the array A in O.n/ expected time. 
? 8.4-5 

You are given n points in the unit disk, p i D .x i ; y i /, such that 0 < x 2 
i C y 2 

i හ 1 
for i D 1; 2; : : : ; n. Suppose that the points are uniformly distributed, that is, the 
probability of ûnding a point in any region of the disk is proportional to the area 
of that region. Design an algorithm with an average-case running time of ‚.n/ to 
sort the n points by their distances d i D 

p 
x 2 
i C y 2 

i from the origin. (Hint: Design 
the bucket sizes in BUCKET-SORT to reüect the uniform distribution of the points 
in the unit disk.) 

? 8.4-6 
A probability distribution function P.x/ for a random variable X is deûned 
by P.x/ D Pr fX හ x g. Suppose that you draw a list of n random variables 
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X 1 ; X 2 ; : : : ; X n from a continuous probability distribution function P that is com- 
putable in O.1/ time (given y you can ûnd x such that P.x/ D y in O.1/ time). 
Give an algorithm that sorts these numbers in linear average-case time. 

Problems 

8-1 Probabilistic lower bounds on comparison sorting 
In this problem, you will prove a probabilistic �.n lg n/ lower bound on the run- 
ning time of any deterministic or randomized comparison sort on n distinct input 
elements. You’ll begin by examining a deterministic comparison sort A with deci- 
sion tree T A . Assume that every permutation of A’s inputs is equally likely. 
a. Suppose that each leaf of T A is labeled with the probability that it is reached 

given a random input. Prove that exactly nŠ leaves are labeled 1=nŠ and that the 
rest are labeled 0. 

b. Let D.T / denote the external path length of a decision tree T 4the sum of the 
depths of all the leaves of T . Let T be a decision tree with k > 1 leaves, 
and let LT and RT be the left and right subtrees of T . Show that D.T / D 
D.LT / C D.RT / C k. 

c. Let d.k/ be the minimum value of D.T / over all decision trees T with k > 1 
leaves. Show that d.k/ D min fd.i/ C d.k  i/ C k W 1 හ i හ k  1g. (Hint: 
Consider a decision tree T with k leaves that achieves the minimum. Let i 0 be 
the number of leaves in LT and k  i 0 the number of leaves in RT .) 

d. Prove that for a given value of k > 1 and i in the range 1 හ i හ k  1, the 
function i lg i C .k  i/ lg.k  i/ is minimized at i D k=2. Conclude that 
d.k/ D �.k lg k/. 

e. Prove that D.T A / D �.nŠ lg.nŠ//, and conclude that the average-case time to 
sort n elements is �.n lg n/. 

Now consider a randomized comparison sort B . We can extend the decision-tree 
model to handle randomization by incorporating two kinds of nodes: ordinary com- 
parison nodes and <randomization= nodes. A randomization node models a random 
choice of the form RANDOM.1; r/ made by algorithm B . The node has r children, 
each of which is equally likely to be chosen during an execution of the algorithm. 
f. Show that for any randomized comparison sort B , there exists a deterministic 

comparison sort A whose expected number of comparisons is no more than 
those made by B . 
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8-2 Sorting in place in linear time 
You have an array of n data records to sort, each with a key of 0 or 1. An algorithm 
for sorting such a set of records might possess some subset of the following three 
desirable characteristics: 
1. The algorithm runs in O.n/ time. 
2. The algorithm is stable. 
3. The algorithm sorts in place, using no more than a constant amount of storage 

space in addition to the original array. 
a. Give an algorithm that satisûes criteria 1 and 2 above. 

b. Give an algorithm that satisûes criteria 1 and 3 above. 

c. Give an algorithm that satisûes criteria 2 and 3 above. 

d. Can you use any of your sorting algorithms from parts (a)–(c) as the sorting 
method used in line 2 of RADIX-SORT, so that RADIX-SORT sorts n records 
with b-bit keys in O.bn/ time? Explain how or why not. 

e. Suppose that the n records have keys in the range from 1 to k. Show how to 
modify counting sort so that it sorts the records in place in O.n C k/ time. You 
may use O.k/ storage outside the input array. Is your algorithm stable? 

8-3 Sorting variable-length items 
a. You are given an array of integers, where different integers may have different 

numbers of digits, but the total number of digits over all the integers in the array 
is n. Show how to sort the array in O.n/ time. 

b. You are given an array of strings, where different strings may have different 
numbers of characters, but the total number of characters over all the strings 
is n. Show how to sort the strings in O.n/ time. (The desired order is the 
standard alphabetical order: for example, a < ab < b.) 

8-4 Water jugs 
You are given n red and n blue water jugs, all of different shapes and sizes. All the 
red jugs hold different amounts of water, as do all the blue jugs, and you cannot 
tell from the size of a jug how much water it holds. Moreover, for every jug of one 
color, there is a jug of the other color that holds the same amount of water. 

Your task is to group the jugs into pairs of red and blue jugs that hold the same 
amount of water. To do so, you may perform the following operation: pick a pair 
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of jugs in which one is red and one is blue, ûll the red jug with water, and then pour 
the water into the blue jug. This operation tells you whether the red jug or the blue 
jug can hold more water, or that they have the same volume. Assume that such 
a comparison takes one time unit. Your goal is to ûnd an algorithm that makes a 
minimum number of comparisons to determine the grouping. Remember that you 
may not directly compare two red jugs or two blue jugs. 
a. Describe a deterministic algorithm that uses ‚.n 2 / comparisons to group the 

jugs into pairs. 

b. Prove a lower bound of �.n lg n/ for the number of comparisons that an algo- 
rithm solving this problem must make. 

c. Give a randomized algorithm whose expected number of comparisons is 
O.n lg n/, and prove that this bound is correct. What is the worst-case num- 
ber of comparisons for your algorithm? 

8-5 Average sorting 
Suppose that, instead of sorting an array, we just require that the elements increase 
on average. More precisely, we call an n-element array A k-sorted if, for all 
i D 1; 2; : : : ; n  k, the following holds: P i Ck1 

j Di AŒj � 
k 

හ 
P i Ck 

j Di C1 AŒj � 
k 

: 

a. What does it mean for an array to be 1-sorted? 

b. Give a permutation of the numbers 1; 2; : : : ; 10 that is 2-sorted, but not sorted. 

c. Prove that an n-element array is k-sorted if and only if AŒi� හ AŒi C k� for all 
i D 1; 2; : : : ; n  k. 

d. Give an algorithm that k-sorts an n-element array in O.n lg.n=k// time. 
We can also show a lower bound on the time to produce a k-sorted array, when k 
is a constant. 
e. Show how to sort a k-sorted array of length n in O.n lg k/ time. (Hint: Use the 

solution to Exercise 6.5-11.) 

f. Show that when k is a constant, k-sorting an n-element array requires �.n lg n/ 
time. (Hint: Use the solution to part (e) along with the lower bound on compar- 
ison sorts.) 
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8-6 Lower bound on merging sorted lists 
The problem of merging two sorted lists arises frequently. We have seen a proce- 
dure for it as the subroutine MERGE in Section 2.3.1. In this problem, you will 
prove a lower bound of 2n  1 on the worst-case number of comparisons required 
to merge two sorted lists, each containing n items. First, you will show a lower 
bound of 2n  o.n/ comparisons by using a decision tree. 
a. Given 2n numbers, compute the number of possible ways to divide them into 

two sorted lists, each with n numbers. 
b. Using a decision tree and your answer to part (a), show that any algorithm that 

correctly merges two sorted lists must perform at least 2n  o.n/ comparisons. 
Now you will show a slightly tighter 2n  1 bound. 
c. Show that if two elements are consecutive in the sorted order and from different 

lists, then they must be compared. 
d. Use your answer to part (c) to show a lower bound of 2n  1 comparisons for 

merging two sorted lists. 

8-7 The 0-1 sorting lemma and columnsort 
A compare-exchange operation on two array elements AŒi� and AŒj �, where i < j , 
has the form 

COMPARE-EXCHANGE .A; i; j / 
1 if AŒi� > AŒj � 
2 exchange AŒi� with AŒj � 

After the compare-exchange operation, we know that AŒi� හ AŒj �. 
An oblivious compare-exchange algorithm operates solely by a sequence of 

prespeciûed compare-exchange operations. The indices of the positions compared 
in the sequence must be determined in advance, and although they can depend 
on the number of elements being sorted, they cannot depend on the values being 
sorted, nor can they depend on the result of any prior compare-exchange operation. 
For example, the COMPARE-EXCHANGE-I NSERTION-SORT procedure on the fac- 
ing page shows a variation of insertion sort as an oblivious compare-exchange algo- 
rithm. (Unlike the I NSERTION-SORT procedure on page 19, the oblivious version 
runs in ‚.n 2 / time in all cases.) 

The 0-1 sorting lemma provides a powerful way to prove that an oblivious 
compare-exchange algorithm produces a sorted result. It states that if an oblivi- 
ous compare-exchange algorithm correctly sorts all input sequences consisting of 
only 0s and 1s, then it correctly sorts all inputs containing arbitrary values. 
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COMPARE-EXCHANGE-I NSERTION-SORT .A; n/ 
1 for i D 2 to n 
2 for j D i  1 downto 1 
3 COMPARE-EXCHANGE .A; j; j C 1/ 

You will prove the 0-1 sorting lemma by proving its contrapositive: if an oblivi- 
ous compare-exchange algorithm fails to sort an input containing arbitrary values, 
then it fails to sort some 0-1 input. Assume that an oblivious compare-exchange 
algorithm X fails to correctly sort the array AŒ1 W n�. Let AŒp� be the smallest value 
in A that algorithm X puts into the wrong location, and let AŒq� be the value that 
algorithm X moves to the location into which AŒp� should have gone. Deûne an 
array BŒ1 W n� of 0s and 1s as follows: 

BŒi� D 

( 
0 if AŒi� හ AŒp� ; 
1 if AŒi� > AŒp� : 

a. Argue that AŒq� > AŒp�, so that BŒp� D 0 and BŒq� D 1. 

b. To complete the proof of the 0-1 sorting lemma, prove that algorithm X fails to 
sort array B correctly. 
Now you will use the 0-1 sorting lemma to prove that a particular sorting algo- 

rithm works correctly. The algorithm, columnsort, works on a rectangular array 
of n elements. The array has r rows and s columns (so that n D rs ), subject to 
three restrictions: 
 r must be even, 
 s must be a divisor of r , and 
 r  2s 2 . 
When columnsort completes, the array is sorted in column-major order: reading 
down each column in turn, from left to right, the elements monotonically increase. 

Columnsort operates in eight steps, regardless of the value of n. The odd steps 
are all the same: sort each column individually. Each even step is a ûxed permuta- 
tion. Here are the steps: 
1. Sort each column. 
2. Transpose the array, but reshape it back to r rows and s columns. In other 

words, turn the leftmost column into the top r=s rows, in order; turn the next 
column into the next r=s rows, in order; and so on. 
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10 14 5 
8 7 17 
12 1 6 
16 9 11 
4 15 2 
18 3 13 

(a) 

4 1 2 
8 3 5 
10 7 6 
12 9 11 
16 14 13 
18 15 17 

(b) 

4 8 10 
12 16 18 
1 3 7 
9 14 15 
2 5 6 
11 13 17 

(c) 

1 3 6 
2 5 7 
4 8 10 
9 13 15 
11 14 17 
12 16 18 

(d) 

1 4 11 
3 8 14 
6 10 17 
2 9 12 
5 13 16 
7 15 18 

(e) 

1 4 11 
2 8 12 
3 9 14 
5 10 16 
6 13 17 
7 15 18 

(f) 

5 10 16 
6 13 17 
7 15 18 

1 4 11 
2 8 12 
3 9 14 

(g) 

4 10 16 
5 11 17 
6 12 18 

1 7 13 
2 8 14 
3 9 15 

(h) 

1 7 13 
2 8 14 
3 9 15 
4 10 16 
5 11 17 
6 12 18 

(i) 

Figure 8.5 The steps of columnsort. (a) The input array with 6 rows and 3 columns. (This example 
does not obey the r  2s 2 requirement, but it works.) (b) After sorting each column in step 1. 
(c) After transposing and reshaping in step 2. (d) After sorting each column in step 3. (e) After 
performing step 4, which inverts the permutation from step 2 . (f) After sorting each column in 
step 5. (g) After shifting by half a column in step 6. (h) After sorting each column in step 7. (i) After 
performing step 8, which inverts the permutation from step 6. Steps 638 sort the bottom half of each 
column with the top half of the next column. After step 8, the array is sorted in column-major order. 

3. Sort each column. 
4. Perform the inverse of the permutation performed in step 2. 
5. Sort each column. 
6. Shift the top half of each column into the bottom half of the same column, and 

shift the bottom half of each column into the top half of the next column to the 
right. Leave the top half of the leftmost column empty. Shift the bottom half 
of the last column into the top half of a new rightmost column, and leave the 
bottom half of this new column empty. 

7. Sort each column. 
8. Perform the inverse of the permutation performed in step 6. 
You can think of steps 638 as a single step that sorts the bottom half of each column 
and the top half of the next column. Figure 8.5 shows an example of the steps 
of columnsort with r D 6 and s D 3. (Even though this example violates the 
requirement that r  2s 2 , it happens to work.) 
c. Argue that we can treat columnsort as an oblivious compare-exchange algo- 

rithm, even if we do not know what sorting method the odd steps use. 
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Although it might seem hard to believe that columnsort actually sorts, you will 
use the 0-1 sorting lemma to prove that it does. The 0-1 sorting lemma applies 
because we can treat columnsort as an oblivious compare-exchange algorithm. A 
couple of deûnitions will help you apply the 0-1 sorting lemma. We say that an 
area of an array is clean if we know that it contains either all 0s or all 1s or if it is 
empty. Otherwise, the area might contain mixed 0s and 1s, and it is dirty. From 
here on, assume that the input array contains only 0s and 1s, and that we can treat 
it as an array with r rows and s columns. 
d. Prove that after steps 133, the array consists of clean rows of 0s at the top, clean 

rows of 1s at the bottom, and at most s dirty rows between them. (One of the 
clean rows could be empty.) 

e. Prove that after step 4, the array, read in column-major order, starts with a clean 
area of 0s, ends with a clean area of 1s, and has a dirty area of at most s 2 

elements in the middle. (Again, one of the clean areas could be empty.) 

f. Prove that steps 538 produce a fully sorted 0-1 output. Conclude that column- 
sort correctly sorts all inputs containing arbitrary values. 

g. Now suppose that s does not divide r . Prove that after steps 133, the array 
consists of clean rows of 0s at the top, clean rows of 1s at the bottom, and at 
most 2s  1 dirty rows between them. (Once again, one of the clean areas could 
be empty.) How large must r be, compared with s , for columnsort to correctly 
sort when s does not divide r ? 

h. Suggest a simple change to step 1 that allows us to maintain the requirement 
that r  2s 2 even when s does not divide r , and prove that with your change, 
columnsort correctly sorts. 

Chapter notes 

The decision-tree model for studying comparison sorts was introduced by Ford 
and Johnson [150]. Knuth’s comprehensive treatise on sorting [261] covers many 
variations on the sorting problem, including the information-theoretic lower bound 
on the complexity of sorting given here. Ben-Or [46] studied lower bounds for 
sorting using generalizations of the decision-tree model. 
Knuth credits H. H. Seward with inventing counting sort in 1954, as well as with 

the idea of combining counting sort with radix sort. Radix sorting starting with the 
least signiûcant digit appears to be a folk algorithm widely used by operators of 
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mechanical card-sorting machines. According to Knuth, the ûrst published refer- 
ence to the method is a 1929 document by L. J. Comrie describing punched-card 
equipment. Bucket sorting has been in use since 1956, when the basic idea was 
proposed by Isaac and Singleton [235]. 
Munro and Raman [338] give a stable sorting algorithm that performs O.n 1C / 

comparisons in the worst case, where 0 < � හ 1 is any ûxed constant. Although 
any of the O.n lg n/-time algorithms make fewer comparisons, the algorithm by 
Munro and Raman moves data only O.n/ times and operates in place. 

The case of sorting n b-bit integers in o.n lg n/ time has been considered by 
many researchers. Several positive results have been obtained, each under slightly 
different assumptions about the model of computation and the restrictions placed 
on the algorithm. All the results assume that the computer memory is divided into 
addressable b-bit words. Fredman and Willard [157] introduced the fusion tree data 
structure and used it to sort n integers in O.n lg n= lg lg n/ time. This bound was 
later improved to O.n 

p lg n/ time by Andersson [17]. These algorithms require 
the use of multiplication and several precomputed constants. Andersson, Hagerup, 
Nilsson, and Raman [18] have shown how to sort n integers in O.n lg lg n/ time 
without using multiplication, but their method requires storage that can be un- 
bounded in terms of n. Using multiplicative hashing, we can reduce the storage 
needed to O.n/, but then the O.n lg lg n/ worst-case bound on the running time 
becomes an expected-time bound. Generalizing the exponential search trees of 
Andersson [17], Thorup [434] gave an O.n.lg lg n/ 2 /-time sorting algorithm that 
does not use multiplication or randomization, and it uses linear space. Combining 
these techniques with some new ideas, Han [207] improved the bound for sorting 
to O.n lg lg n lg lg lg n/ time. Although these algorithms are important theoretical 
breakthroughs, they are all fairly complicated and at the present time seem unlikely 
to compete with existing sorting algorithms in practice. 
The columnsort algorithm in Problem 8-7 is by Leighton [286]. 



9 Medians and Order Statistics 

The i th order statistic of a set of n elements is the i th smallest element. For 
example, the minimum of a set of elements is the ûrst order statistic (i D 1), 
and the maximum is the nth order statistic (i D n). A median, informally, is 
the <halfway point= of the set. When n is odd, the median is unique, occurring at 
i D .n C1/=2. When n is even, there are two medians, the lower median occurring 
at i D n=2 and the upper median occurring at i D n=2 C 1. Thus, regardless of 
the parity of n, medians occur at i D b.n C 1/=2c and i D d.n C 1/=2e. For 
simplicity in this text, however, we consistently use the phrase <the median= to 
refer to the lower median. 

This chapter addresses the problem of selecting the i th order statistic from a 
set of n distinct numbers. We assume for convenience that the set contains dis- 
tinct numbers, although virtually everything that we do extends to the situation in 
which a set contains repeated values. We formally specify the selection problem 
as follows: 
Input: A set A of n distinct numbers 1 and an integer i , with 1 හ i හ n. 
Output: The element x 2 A that is larger than exactly i  1 other elements of A. 
We can solve the selection problem in O.n lg n/ time simply by sorting the num- 
bers using heapsort or merge sort and then outputting the i th element in the sorted 
array. This chapter presents asymptotically faster algorithms. 
Section 9.1 examines the problem of selecting the minimum and maximum of 

a set of elements. More interesting is the general selection problem, which we 
investigate in the subsequent two sections. Section 9.2 analyzes a practical ran- 
domized algorithm that achieves an O.n/ expected running time, assuming dis- 

1 As in the footnote on page 182, you can enforce the assumption that the numbers are distinct by 
converting each input value AŒi� to an ordered pair .AŒi�; i/ with .AŒi�; i/ < .AŒj �; j / if either 
AŒi� < AŒj � or AŒi� D AŒj � and i < j . 
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tinct elements. Section 9.3 contains an algorithm of more theoretical interest that 
achieves the O.n/ running time in the worst case. 

9.1 Minimum and maximum 

How many comparisons are necessary to determine the minimum of a set of n 
elements? To obtain an upper bound of n  1 comparisons, just examine each 
element of the set in turn and keep track of the smallest element seen so far. The 
MINIMUM procedure assumes that the set resides in array AŒ1 W n�. 

MINIMUM.A; n/ 
1 min D AŒ1� 
2 for i D 2 to n 
3 if min > AŒi� 
4 min D AŒi� 
5 return min 

It’s no more difûcult to ûnd the maximum with n  1 comparisons. 
Is this algorithm for minimum the best we can do? Yes, because it turns out that 

there’s a lower bound of n  1 comparisons for the problem of determining the 
minimum. Think of any algorithm that determines the minimum as a tournament 
among the elements. Each comparison is a match in the tournament in which the 
smaller of the two elements wins. Since every element except the winner must 
lose at least one match, we can conclude that n  1 comparisons are necessary to 
determine the minimum. Hence the algorithm MINIMUM is optimal with respect 
to the number of comparisons performed. 

Simultaneous minimum and maximum 

Some applications need to ûnd both the minimum and the maximum of a set of n 
elements. For example, a graphics program may need to scale a set of .x; y/ data 
to ût onto a rectangular display screen or other graphical output device. To do 
so, the program must ûrst determine the minimum and maximum value of each 
coordinate. 
Of course, we can determine both the minimum and the maximum of n ele- 

ments using ‚.n/ comparisons. We simply ûnd the minimum and maximum in- 
dependently, using n  1 comparisons for each, for a total of 2n  2 D ‚.n/ 
comparisons. 
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Although 2n  2 comparisons is asymptotically optimal, it is possible to improve 
the leading constant. We can ûnd both the minimum and the maximum using at 
most 3 bn=2c comparisons. The trick is to maintain both the minimum and maxi- 
mum elements seen thus far. Rather than processing each element of the input by 
comparing it against the current minimum and maximum, at a cost of 2 compar- 
isons per element, process elements in pairs. Compare pairs of elements from the 
input ûrst with each other, and then compare the smaller with the current mini- 
mum and the larger to the current maximum, at a cost of 3 comparisons for every 
2 elements. 

How you set up initial values for the current minimum and maximum depends 
on whether n is odd or even. If n is odd, set both the minimum and maximum to 
the value of the ûrst element, and then process the rest of the elements in pairs. 
If n is even, perform 1 comparison on the ûrst 2 elements to determine the initial 
values of the minimum and maximum, and then process the rest of the elements in 
pairs as in the case for odd n. 
Let’s count the total number of comparisons. If n is odd, then 3 bn=2c com- 

parisons occur. If n is even, 1 initial comparison occurs, followed by another 
3.n  2/=2 comparisons, for a total of 3n=2  2. Thus, in either case, the total 
number of comparisons is at most 3 bn=2c. 

Exercises 
9.1-1 
Show that the second smallest of n elements can be found with n C dlg ne  2 
comparisons in the worst case. (Hint: Also ûnd the smallest element.) 
9.1-2 
Given n > 2 distinct numbers, you want to ûnd a number that is neither the min- 
imum nor the maximum. What is the smallest number of comparisons that you 
need to perform? 
9.1-3 
A racetrack can run races with ûve horses at a time to determine their relative 
speeds. For 25 horses, it takes six races to determine the fastest horse, assum- 
ing transitivity (see page 1159). What’s the minimum number of races it takes to 
determine the fastest three horses out of 25? 

? 9.1-4 
Prove the lower bound of d3n=2e  2 comparisons in the worst case to ûnd both 
the maximum and minimum of n numbers. (Hint: Consider how many numbers 
are potentially either the maximum or minimum, and investigate how a comparison 
affects these counts.) 
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9.2 Selection in expected linear time 

The general selection problem4ûnding the i th order statistic for any value of i 4 
appears more difûcult than the simple problem of ûnding a minimum. Yet, sur- 
prisingly, the asymptotic running time for both problems is the same: ‚.n/. This 
section presents a divide-and-conquer algorithm for the selection problem. The al- 
gorithm RANDOMIZED-SELECT is modeled after the quicksort algorithm of Chap- 
ter 7. Like quicksort it partitions the input array recursively. But unlike quicksort, 
which recursively processes both sides of the partition, RANDOMIZED-SELECT 
works on only one side of the partition. This difference shows up in the analysis: 
whereas quicksort has an expected running time of ‚.n lg n/, the expected running 
time of RANDOMIZED-SELECT is ‚.n/, assuming that the elements are distinct. 

RANDOMIZED-SELECT uses the procedure RANDOMIZED-PARTITION intro- 
duced in Section 7.3. Like RANDOMIZED-QUICKSORT, it is a randomized algo- 
rithm, since its behavior is determined in part by the output of a random-number 
generator. The RANDOMIZED-SELECT procedure returns the i th smallest element 
of the array AŒp W r�, where 1 හ i හ r  p C 1. 

RANDOMIZED-SELECT .A; p; r; i/ 
1 if p = = r 
2 return AŒp� // 1 හ i හ r  p C 1 when p == r means that i D 1 
3 q D RANDOMIZED-PARTITION .A; p; r/ 
4 k D q  p C 1 
5 if i == k 
6 return AŒq� // the pivot value is the answer 
7 elseif i < k 
8 return RANDOMIZED-SELECT .A; p; q  1; i/ 
9 else return RANDOMIZED-SELECT .A; q C 1; r; i  k/ 

Figure 9.1 illustrates how the RANDOMIZED-SELECT procedure works. Line 1 
checks for the base case of the recursion, in which the subarray AŒp W r� consists 
of just one element. In this case, i must equal 1, and line 2 simply returns AŒp� 
as the i th smallest element. Otherwise, the call to RANDOMIZED-PARTITION in 
line 3 partitions the array AŒp W r� into two (possibly empty) subarrays AŒp W q  1� 
and AŒq C 1 W r� such that each element of AŒp W q  1� is less than or equal to AŒq�, 
which in turn is less than each element of AŒq C 1 W r�. (Although our analysis 
assumes that the elements are distinct, the procedure still yields the correct result 
even if equal elements are present.) As in quicksort, we’ll refer to AŒq� as the pivot 
element. Line 4 computes the number k of elements in the subarray AŒp W q�, that is, 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
6 19 4 12 14 9 15 7 8 11 3 13 2 5 10 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
6 4 12 10 9 7 8 11 3 13 2 5 14 19 15 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
3 2 4 10 9 7 8 11 6 13 5 12 14 19 15 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
3 2 4 10 9 7 8 11 6 12 5 13 14 19 15 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
3 2 4 5 6 7 8 11 9 12 10 13 14 19 15 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
3 2 4 5 6 7 8 11 9 12 10 13 14 19 15 

partitioning p r i helpful? 

1 15 5 

1 no 

1 12 5 

2 yes 
4 12 2 

3 no 

4 11 2 

4 yes 
4 5 2 

5 yes 
5 5 1 

A .0/ 

A .1/ 

A .2/ 

A .3/ 

A .4/ 

A .5/ 

Figure 9.1 The action of RANDOMIZED-SELECT as successive partitionings narrow the subarray 
AŒp W r�, showing the values of the parameters p, r , and i at each recursive call. The subarray AŒp W r� 
in each recursive step is shown in tan, with the dark tan element selected as the pivot for the next 
partitioning. Blue elements are outside AŒp W r�. The answer is the tan element in the bottom array, 
where p D r D 5 and i D 1. The array designations A .0/ ; A .1/ ; : : : ; A .5/ , the partitioning numbers, 
and whether the partitioning is helpful are explained on the following page. 

the number of elements in the low side of the partition, plus 1 for the pivot element. 
Line 5 then checks whether AŒq� is the i th smallest element. If it is, then line 6 
returns AŒq�. Otherwise, the algorithm determines in which of the two subarrays 
AŒp W q  1� and AŒq C 1 W r� the i th smallest element lies. If i < k, then the desired 
element lies on the low side of the partition, and line 8 recursively selects it from 
the subarray. If i > k, however, then the desired element lies on the high side of 
the partition. Since we already know k values that are smaller than the i th smallest 
element of AŒp W r�4namely, the elements of AŒp W q�4the desired element is the 
.i  k/th smallest element of AŒq C 1 W r�, which line 9 ûnds recursively. The code 
appears to allow recursive calls to subarrays with 0 elements, but Exercise 9.2-1 
asks you to show that this situation cannot happen. 
The worst-case running time for RANDOMIZED-SELECT is ‚.n 2 /, even to 

ûnd the minimum, because it could be extremely unlucky and always partition 
around the largest remaining element before identifying the i th smallest when 
only one element remains. In this worst case, each recursive step removes only 
the pivot from consideration. Because partitioning n elements takes ‚.n/ time, 
the recurrence for the worst-case running time is the same as for QUICKSORT: 
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T .n/ D T .n  1/ C ‚.n/, with the solution T .n/ D ‚.n 2 /. We’ll see that the al- 
gorithm has a linear expected running time, however, and because it is randomized, 
no particular input elicits the worst-case behavior. 

To see the intuition behind the linear expected running time, suppose that each 
time the algorithm randomly selects a pivot element, the pivot lies somewhere 
within the second and third quartiles4the <middle half=4of the remaining ele- 
ments in sorted order. If the i th smallest element is less than the pivot, then all 
the elements greater than the pivot are ignored in all future recursive calls. These 
ignored elements include at least the uppermost quartile, and possibly more. Like- 
wise, if the i th smallest element is greater than the pivot, then all the elements 
less than the pivot4at least the ûrst quartile4are ignored in all future recursive 
calls. Either way, therefore, at least 1=4 of the remaining elements are ignored in 
all future recursive calls, leaving at most 3=4 of the remaining elements in play: 
residing in the subarray AŒp W r�. Since RANDOMIZED-PARTITION takes ‚.n/ 
time on a subarray of n elements, the recurrence for the worst-case running time 
is T .n/ D T .3n=4/ C ‚.n/. By case 3 of the master method (Theorem 4.1 on 
page 102), this recurrence has solution T .n/ D ‚.n/. 
Of course, the pivot does not necessarily fall into the middle half every time. 

Since the pivot is selected at random, the probability that it falls into the middle 
half is about 1=2 each time. We can view the process of selecting the pivot as a 
Bernoulli trial (see Section C.4) with success equating to the pivot residing in the 
middle half. Thus the expected number of trials needed for success is given by a 
geometric distribution: just two trials on average (equation (C.36) on page 1197). 
In other words, we expect that half of the partitionings reduce the number of ele- 
ments still in play by at least 3=4 and that half of the partitionings do not help as 
much. Consequently, the expected number of partitionings at most doubles from 
the case when the pivot always falls into the middle half. The cost of each extra 
partitioning is less than the one that preceded it, so that the expected running time 
is still ‚.n/. 
To make the above argument rigorous, we start by deûning the random vari- 

able A .j / as the set of elements of A that are still in play after j partitionings (that 
is, within the subarray AŒp W r� after j calls of RANDOMIZED-SELECT), so that 
A .0/ consists of all the elements in A. Since each partitioning removes at least 
one element4the pivot4from being in play, the sequence jA .0/ j; jA .1/ j; jA .2/ j; : : : 
strictly decreases. Set A .j 1/ is in play before the j th partitioning, and set A .j / 

remains in play afterward. For convenience, assume that the initial set A .0/ is the 
result of a 0th <dummy= partitioning. 
Let’s call the j th partitioning helpful if jA .j / j හ .3=4/jA .j 1/ j. Figure 9.1 

shows the sets A .j / and whether partitionings are helpful for an example array. 
A helpful partitioning corresponds to a successful Bernoulli trial. The following 
lemma shows that a partitioning is at least as likely to be helpful as not. 
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Lemma 9.1 
A partitioning is helpful with probability at least 1=2. 

Proof Whether a partitioning is helpful depends on the randomly chosen pivot. 
We discussed the <middle half= in the informal argument above. Let’s more pre- 
cisely deûne the middle half of an n-element subarray as all but the smallest 
dn=4e  1 and greatest dn=4e  1 elements (that is, all but the ûrst dn=4e  1 
and last dn=4e  1 elements if the subarray were sorted). We’ll prove that if the 
pivot falls into the middle half, then the pivot leads to a helpful partitioning, and 
we’ll also prove that the probability of the pivot falling into the middle half is at 
least 1=2. 

Regardless of where the pivot falls, either all the elements greater than it or all 
the elements less than it, along with the pivot itself, will no longer be in play after 
partitioning. If the pivot falls into the middle half, therefore, at least dn=4e  1 
elements less than the pivot or dn=4e  1 elements greater than the pivot, plus 
the pivot, will no longer be in play after partitioning. That is, at least dn=4e ele- 
ments will no longer be in play. The number of elements remaining in play will 
be at most n  dn=4e, which equals b3n=4c by Exercise 3.3-2 on page 70. Since 
b3n=4c හ 3n=4, the partitioning is helpful. 

To determine a lower bound on the probability that a randomly chosen pivot falls 
into the middle half, we determine an upper bound on the probability that it does 
not. That probability is 
2.dn=4e  1/ 

n 
හ 
2..n=4 C 1/  1/ 

n 
(by inequality (3.2) on page 64) 

D 
n=2 
n 

D 1=2 : 

Thus, the pivot has a probability of at least 1=2 of falling into the middle half, and 
so the probability is at least 1=2 that a partitioning is helpful. 

We can now bound the expected running time of RANDOMIZED-SELECT. 

Theorem 9.2 
The procedure RANDOMIZED-SELECT on an input array of n distinct elements has 
an expected running time of ‚.n/. 

Proof Since not every partitioning is necessarily helpful, let’s give each parti- 
tioning an index starting at 0 and denote by hh 0 ; h 1 ; h 2 ; : : : ; h m i the sequence 
of partitionings that are helpful, so that the h k th partitioning is helpful for k D 
0; 1; 2; : : : ;m. Although the number m of helpful partitionings is a random vari- 
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… … … 

generation 0 generation 1 generation k 

… … 

A .0/ 
A .1/ A .2/ A .h 1 1/ 

A .h 1 / 

A .h 1 C1/ 

A .h 1 C2/ 
A .h 2 1/ 

A .h 2 / 

A .h k 1/ 
A .h k / 

A .h k C1/ 

A .h k C2/ 
A .h kC1 1/ 

A .h kC1 / 

A .hm/ 

Figure 9.2 The sets within each generation in the proof of Theorem 9.2. Vertical lines represent the 
sets, with the height of each line indicating the size of the set, which equals the number of elements in 
play. Each generation starts with a set A .h k / , which is the result of a helpful partitioning. These sets 
are drawn in black and are at most 3=4 the size of the sets to their immediate left. Sets drawn in orange 
are not the ûrst within a generation. A generation may contain just one set. The sets in generation k 
are A .h k / ; A .h k C1/ ; : : : ; A .h kC1 1/ . The sets A .h k / are deûned so that jA .h k / j හ .3=4/jA .h k1 / j. 
If the partitioning gets all the way to generation h m , set A .h m / has at most one element in play. 

able, we can bound it, since after at most dlog 4=3 ne helpful partitionings, only one 
element remains in play. Consider the dummy 0th partitioning as helpful, so that 
h 0 D 0. Denote jA .h k / j by n k , where n 0 D jA .0/ j is the original problem size. 
Since the h k th partitioning is helpful and the sizes of the sets A .j / strictly decrease, 
we have n k D jA .h k / j හ .3=4/jA .h k 1/ j D .3=4/ n k1 for k D 1; 2; : : : ;m. By 
iterating n k හ .3=4/ n k1 , we have that n k හ .3=4/ k n 0 for k D 0; 1; 2; : : : ;m. 

As Figure 9.2 depicts, we break up the sequence of sets A .j / into m genera- 
tions consisting of consecutively partitioned sets, starting with the result A .h k / of 
a helpful partitioning and ending with the last set A .h kC1 1/ before the next help- 
ful partitioning, so that the sets in generation k are A .h k / ; A .h k C1/ ; : : : ; A .h kC1 1/ . 
Then for each set of elements A .j / in the kth generation, we have that jA .j / j හ 
jA .h k / j D n k හ .3=4/ k n 0 . 
Next, we deûne the random variable 

X k D h kC1  h k 

for k D 0; 1; 2; : : : ;m  1. That is, X k is the number of sets in the kth generation, 
so that the sets in the kth generation are A .h k / ; A .h k C1/ ; : : : ; A .h k CX k 1/ . 
By Lemma 9.1, the probability that a partitioning is helpful is at least 1=2. The 

probability is actually even higher, since a partitioning is helpful even if the pivot 
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does not fall into the middle half but the i th smallest element happens to lie in the 
smaller side of the partitioning. We’ll just use the lower bound of 1=2, however, 
and then equation (C.36) gives that E ŒX k � හ 2 for k D 0; 1; 2; : : : ;m  1. 
Let’s derive an upper bound on how many comparisons are made altogether dur- 

ing partitioning, since the running time is dominated by the comparisons. Since 
we are calculating an upper bound, assume that the recursion goes all the way un- 
til only one element remains in play. The j th partitioning takes the set A .j 1/ of 
elements in play, and it compares the randomly chosen pivot with all the other 
jA .j 1/ j  1 elements, so that the j th partitioning makes fewer than jA .j 1/ j 
comparisons. The sets in the kth generation have sizes jA .h k / j; jA .h k C1/ j; : : : ; 
jA .h k CX k 1/ j. Thus, the total number of comparisons during partitioning is less 
than 
m1 X 

kD0 

h k CX k 1 X 

j Dh k 

jA .j / j හ 
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Since E ŒX k � හ 2, we have that the expected total number of comparisons during 
partitioning is less than 
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D 8n 0 (by equation (A.7) on page 1142) . 
Since n 0 is the size of the original array A, we conclude that the expected num- 
ber of comparisons, and thus the expected running time, for RANDOMIZED- 
SELECT is O.n/. All n elements are examined in the ûrst call of RANDOMIZED- 
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PARTITION, giving a lower bound of �.n/. Hence the expected running time 
is ‚.n/. 

Exercises 
9.2-1 
Show that RANDOMIZED-SELECT never makes a recursive call to a 0-length array. 
9.2-2 
Write an iterative version of RANDOMIZED-SELECT. 
9.2-3 
Suppose that RANDOMIZED-SELECT is used to select the minimum element of the 
array A D h2; 3; 0; 5; 7; 9; 1; 8; 6; 4i. Describe a sequence of partitions that results 
in a worst-case performance of RANDOMIZED-SELECT. 
9.2-4 
Argue that the expected running time of RANDOMIZED-SELECT does not depend 
on the order of the elements in its input array AŒp W r�. That is, the expected running 
time is the same for any permutation of the input array AŒp W r�. (Hint: Argue by 
induction on the length n of the input array.) 

9.3 Selection in worst-case linear time 

We’ll now examine a remarkable and theoretically interesting selection algorithm 
whose running time is ‚.n/ in the worst case. Although the RANDOMIZED- 
SELECT algorithm from Section 9.2 achieves linear expected time, we saw that 
its running time in the worst case was quadratic. The selection algorithm presented 
in this section achieves linear time in the worst case, but it is not nearly as practical 
as RANDOMIZED-SELECT. It is mostly of theoretical interest. 
Like the expected linear-time RANDOMIZED-SELECT, the worst-case linear- 

time algorithm SELECT ûnds the desired element by recursively partitioning the 
input array. Unlike RANDOMIZED-SELECT, however, SELECT guarantees a good 
split by choosing a provably good pivot when partitioning the array. The cleverness 
in the algorithm is that it ûnds the pivot recursively. Thus, there are two invocations 
of SELECT: one to ûnd a good pivot, and a second to recursively ûnd the desired 
order statistic. 

The partitioning algorithm used by SELECT is like the deterministic partitioning 
algorithm PARTITION from quicksort (see Section 7.1), but modiûed to take the 
element to partition around as an additional input parameter. Like PARTITION, the 
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PARTITION-AROUND algorithm returns the index of the pivot. Since it’s so similar 
to PARTITION, the pseudocode for PARTITION-AROUND is omitted. 

The SELECT procedure takes as input a subarray AŒp W r ] of n D r  p C 1 
elements and an integer i in the range 1 හ i හ n. It returns the i th smallest element 
of A. The pseudocode is actually more understandable than it might appear at ûrst. 

SELECT.A; p; r; i/ 
1 while .r  p C 1/ mod 5 ¤ 0 
2 for j D p C 1 to r // put the minimum into AŒp� 
3 if AŒp� > AŒj � 
4 exchange AŒp� with AŒj � 
5 // If we want the minimum of AŒp W r�, we’re done. 
6 if i == 1 
7 return AŒp� 
8 // Otherwise, we want the .i  1/st element of AŒp C 1 W r�. 
9 p D p C 1 
10 i D i  1 
11 g D .r  p C 1/=5 // number of 5-element groups 
12 for j D p to p C g  1 // sort each group 
13 sort hAŒj �;AŒj C g�;AŒj C 2g�;AŒj C 3g�;AŒj C 4g�i in place 
14 // All group medians now lie in the middle ûfth of AŒp W r�. 
15 // Find the pivot x recursively as the median of the group medians. 
16 x D SELECT .A; p C 2g; p C 3g  1; dg=2e/ 
17 q D PARTITION-AROUND.A; p; r; x/ // partition around the pivot 
18 // The rest is just like lines 339 of RANDOMIZED-SELECT. 
19 k D q  p C 1 
20 if i == k 
21 return AŒq� // the pivot value is the answer 
22 elseif i < k 
23 return SELECT.A; p; q  1; i/ 
24 else return SELECT.A; q C 1; r; i  k/ 

The pseudocode starts by executing the while loop in lines 1310 to reduce the 
number r  p C 1 of elements in the subarray until it is divisible by 5. The while 
loop executes 0 to 4 times, each time rearranging the elements of AŒp W r� so that 
AŒp� contains the minimum element. If i D 1, which means that we actually want 
the minimum element, then the procedure simply returns it in line 7. Otherwise, 
SELECT eliminates the minimum from the subarray AŒp W r� and iterates to ûnd 
the .i  1/st element in AŒp C 1 W r�. Lines 9310 do so by incrementing p and 
decrementing i . If the while loop completes all of its iterations without returning a 
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x 

g 
dg=2e 

bg=2c C 1 

Figure 9.3 The relationships between elements (shown as circles) immediately after line 17 of the 
selection algorithm SELECT. There are g D .r  p C 1/=5 groups of 5 elements, each of which oc- 
cupies a column. For example, the leftmost column contains elements AŒp�, AŒp C g�, AŒp C 2g�, 
AŒp C 3g�, AŒp C 4g�, and the next column contains AŒp C 1�, AŒp C g C 1�, AŒp C 2g C 1�, 
AŒp C 3g C 1�, AŒp C 4g C 1�. The medians of the groups are red, and the pivot x is labeled. 
Arrows go from smaller elements to larger. The elements on the blue background are all known to 
be less than or equal to x and cannot fall into the high side of the partition around x. The elements 
on the yellow background are known to be greater than or equal to x and cannot fall into the low side 
of the partition around x. The pivot x belongs to both the blue and yellow regions and is shown on a 
green background. The elements on the white background could lie on either side of the partition. 

result, the procedure executes the core of the algorithm in lines 11324, assured that 
the number r  p C 1 of elements in AŒp W r� is evenly divisible by 5. 

The next part of the algorithm implements the following idea, illustrated in Fig- 
ure 9.3. Divide the elements in AŒp W r� into g D .r p C1/=5 groups of 5 elements 
each. The ûrst 5-element group is 
hAŒp�;AŒp C g�;AŒp C 2g�;AŒp C 3g�;AŒp C 4g�i ; 
the second is 
hAŒp C 1�;AŒp C g C 1�;AŒp C 2g C 1�;AŒp C 3g C 1�;AŒp C 4g C 1�i ; 
and so forth until the last, which is 
hAŒp C g  1�;AŒp C 2g  1�;AŒp C 3g  1�;AŒp C 4g  1�;AŒr�i : 
(Note that r D p C 5g  1.) Line 13 puts each group in order using, for example, 
insertion sort (Section 2.1), so that for j D p;p C 1; : : : ; p C g  1, we have 
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AŒj � හ AŒj C g� හ AŒj C 2g� හ AŒj C 3g� හ AŒj C 4g� : 

Each vertical column in Figure 9.3 depicts a sorted group of 5 elements. The 
median of each 5-element group is AŒj C 2g�, and thus all the 5-element medians, 
shown in red, lie in the range AŒp C 2g W p C 3g  1�. 
Next, line 16 determines the pivot x by recursively calling SELECT to ûnd the 

median (speciûcally, the dg=2eth smallest) of the g group medians. Line 17 uses 
the modiûed PARTITION-AROUND algorithm to partition the elements of AŒp W r� 
around x , returning the index q of x , so that AŒq� D x , elements in AŒp W q� are all 
at most x , and elements in AŒq W r� are greater than or equal to x . 

The remainder of the code mirrors that of RANDOMIZED-SELECT . If the pivot x 
is the i th largest, the procedure returns it. Otherwise, the procedure recursively 
calls itself on either AŒp W q  1� or AŒq C 1 W r�, depending on the value of i . 
Let’s analyze the running time of SELECT and see how the judicious choice of 

the pivot x plays into a guarantee on its worst-case running time. 

Theorem 9.3 
The running time of SELECT on an input of n elements is ‚.n/. 

Proof Deûne T .n/ as the worst-case time to run SELECT on any input subarray 
AŒp W r� of size at most n, that is, for which r  p C 1 හ n. By this deûnition, T .n/ 
is monotonically increasing. 
We ûrst determine an upper bound on the time spent outside the recursive calls 

in lines 16, 23, and 24. The while loop in lines 1310 executes 0 to 4 times, 
which is O.1/ times. Since the dominant time within the loop is the computa- 
tion of the minimum in lines 234, which takes ‚.n/ time, lines 1310 execute in 
O.1/  ‚.n/ D O.n/ time. The sorting of the 5-element groups in lines 12313 
takes ‚.n/ time because each 5-element group takes ‚.1/ time to sort (even using 
an asymptotically inefûcient sorting algorithm such as insertion sort), and there are 
g elements to sort, where n=5  1 < g හ n=5. Finally, the time to partition in 
line 17 is ‚.n/, as Exercise 7.1-3 on page 187 asks you to show. Because the re- 
maining bookkeeping only costs ‚.1/ time, the total amount of time spent outside 
of the recursive calls is O.n/ C ‚.n/ C ‚.n/ C ‚.1/ D ‚.n/. 
Now let’s determine the running time for the recursive calls. The recursive call 

to ûnd the pivot in line 16 takes T .g/ හ T .n=5/ time, since g හ n=5 and T .n/ 
monotonically increases. Of the two recursive calls in lines 23 and 24, at most 
one is executed. But we’ll see that no matter which of these two recursive calls 
to SELECT actually executes, the number of elements in the recursive call turns 
out to be at most 7n=10, and hence the worst-case cost for lines 23 and 24 is at 
most T .7n=10/. Let’s now show that the machinations with group medians and the 
choice of the pivot x as the median of the group medians guarantees this property. 
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Figure 9.3 helps to visualize what’s going on. There are g හ n=5 groups of 5 el- 
ements, with each group shown as a column sorted from bottom to top. The arrows 
show the ordering of elements within the columns. The columns are ordered from 
left to right with groups to the left of x ’s group having a group median less than x 
and those to the right of x ’s group having a group median greater than x . Although 
the relative order within each group matters, the relative order among groups to the 
left of x ’s column doesn’t really matter, and neither does the relative order among 
groups to the right of x ’s column. The important thing is that the groups to the 
left have group medians less than x (shown by the horizontal arrows entering x ), 
and that the groups to the right have group medians greater than x (shown by the 
horizontal arrows leaving x ). Thus, the yellow region contains elements that we 
know are greater than or equal to x , and the blue region contains elements that we 
know are less than or equal to x . 

These two regions each contain at least 3g=2 elements. The number of group 
medians in the yellow region is bg=2c C 1, and for each group median, two ad- 
ditional elements are greater than it, making a total of 3.bg=2c C 1/  3g=2 
elements. Similarly, the number of group medians in the blue region is dg=2e, and 
for each group median, two additional elements are less than it, making a total of 
3 dg=2e  3g=2. 

The elements in the yellow region cannot fall into the low side of the partition 
around x , and those in the blue region cannot fall into the high side. The elements 
in neither region4those lying on a white background4could fall into either side 
of the partition. But since the low side of the partition excludes the elements in the 
yellow region, and there are a total of 5g elements, we know that the low side of 
the partition can contain at most 5g  3g=2 D 7g=2 හ 7n=10 elements. Likewise, 
the high side of the partition excludes the elements in the blue region, and a similar 
calculation shows that it also contains at most 7n=10 elements. 
All of which leads to the following recurrence for the worst-case running time 

of SELECT: 
T .n/ හ T .n=5/ C T .7n=10/ C ‚.n/ : (9.1) 
We can show that T .n/ D O.n/ by substitution. 2 More speciûcally, we’ll prove 
that T .n/ හ cn for some suitably large constant c > 0 and all n > 0. Substituting 
this inductive hypothesis into the right-hand side of recurrence (9.1) and assuming 
that n  5 yields 

2 We could also use the Akra-Bazzi method from Section 4.7, which involves calculus, to solve this 
recurrence. Indeed, a similar recurrence (4.24) on page 117 was used to illustrate that method. 
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T .n/ හ c.n=5/ C c.7n=10/ C ‚.n/ 
හ 9cn=10 C ‚.n/ 
D cn  cn=10 C ‚.n/ 
හ cn 

if c is chosen large enough that c=10 dominates the upper-bound constant hidden by 
the ‚.n/. In addition to this constraint, we can pick c large enough that T .n/ හ cn 
for all n හ 4, which is the base case of the recursion within SELECT. The running 
time of SELECT is therefore O.n/ in the worst case, and because line 13 alone 
takes ‚.n/ time, the total time is ‚.n/. 

As in a comparison sort (see Section 8.1), SELECT and RANDOMIZED-SELECT 
determine information about the relative order of elements only by comparing ele- 
ments. Recall from Chapter 8 that sorting requires �.n lg n/ time in the compari- 
son model, even on average (see Problem 8-1). The linear-time sorting algorithms 
in Chapter 8 make assumptions about the type of the input. In contrast, the linear- 
time selection algorithms in this chapter do not require any assumptions about the 
input’s type, only that the elements are distinct and can be pairwise compared ac- 
cording to a linear order. The algorithms in this chapter are not subject to the 
�.n lg n/ lower bound, because they manage to solve the selection problem with- 
out sorting all the elements. Thus, solving the selection problem by sorting and 
indexing, as presented in the introduction to this chapter, is asymptotically inefû- 
cient in the comparison model. 

Exercises 
9.3-1 
In the algorithm SELECT, the input elements are divided into groups of 5. Show 
that the algorithm works in linear time if the input elements are divided into groups 
of 7 instead of 5. 
9.3-2 
Suppose that the preprocessing in lines 1310 of SELECT is replaced by a base case 
for n  n 0 , where n 0 is a suitable constant; that g is chosen as br  p C 1/=5c; 
and that the elements in AŒ5g W n� belong to no group. Show that although the 
recurrence for the running time becomes messier, it still solves to ‚.n/. 
9.3-3 
Show how to use SELECT as a subroutine to make quicksort run in O.n lg n/ time 
in the worst case, assuming that all elements are distinct. 
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Figure 9.4 Professor Olay needs to determine the position of the east-west oil pipeline that mini- 
mizes the total length of the north-south spurs. 

? 9.3-4 
Suppose that an algorithm uses only comparisons to ûnd the i th smallest element 
in a set of n elements. Show that it can also ûnd the i  1 smaller elements and 
the n  i larger elements without performing any additional comparisons. 
9.3-5 
Show how to determine the median of a 5-element set using only 6 comparisons. 
9.3-6 
You have a <black-box= worst-case linear-time median subroutine. Give a sim- 
ple, linear-time algorithm that solves the selection problem for an arbitrary order 
statistic. 
9.3-7 
Professor Olay is consulting for an oil company, which is planning a large pipeline 
running east to west through an oil ûeld of n wells. The company wants to connect 
a spur pipeline from each well directly to the main pipeline along a shortest route 
(either north or south), as shown in Figure 9.4. Given the x - and y -coordinates of 
the wells, how should the professor pick an optimal location of the main pipeline to 
minimize the total length of the spurs? Show how to determine an optimal location 
in linear time. 
9.3-8 
The kth quantiles of an n-element set are the k  1 order statistics that divide the 
sorted set into k equal-sized sets (to within 1). Give an O.n lg k/-time algorithm 
to list the kth quantiles of a set. 
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9.3-9 
Describe an O.n/-time algorithm that, given a set S of n distinct numbers and 
a positive integer k හ n, determines the k numbers in S that are closest to the 
median of S . 
9.3-10 
Let XŒ1 W n� and Y Œ1 W n� be two arrays, each containing n numbers already in sorted 
order. Give an O.lg n/-time algorithm to ûnd the median of all 2n elements in 
arrays X and Y . Assume that all 2n numbers are distinct. 

Problems 

9-1 Largest i numbers in sorted order 
You are given a set of n numbers, and you wish to ûnd the i largest in sorted order 
using a comparison-based algorithm. Describe the algorithm that implements each 
of the following methods with the best asymptotic worst-case running time, and 
analyze the running times of the algorithms in terms of n and i . 
a. Sort the numbers, and list the i largest. 

b. Build a max-priority queue from the numbers, and call EXTRACT-MAX i times. 

c. Use an order-statistic algorithm to ûnd the i th largest number, partition around 
that number, and sort the i largest numbers. 

9-2 Variant of randomized selection 
Professor Mendel has proposed simplifying RANDOMIZED-SELECT by eliminat- 
ing the check for whether i and k are equal. The simpliûed procedure is SIMPLER- 
RANDOMIZED-SELECT. 

SIMPLER-RANDOMIZED-SELECT .A; p; r; i/ 
1 if p == r 
2 return AŒp� // 1 හ i හ r  p C 1 means that i D 1 
3 q D RANDOMIZED-PARTITION .A; p; r/ 
4 k D q  p C 1 
5 if i හ k 
6 return SIMPLER-RANDOMIZED-SELECT .A; p; q; i/ 
7 else return SIMPLER-RANDOMIZED-SELECT .A; q C 1; r; i  k/ 
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a. Argue that in the worst case, SIMPLER-RANDOMIZED-SELECT never termi- 
nates. 

b. Prove that the expected running time of SIMPLER-RANDOMIZED-SELECT is 
still O.n/. 

9-3 Weighted median 
Consider n elements x 1 ; x 2 ; : : : ; x n with positive weights w 1 ; w 2 ; : : : ; w n such that P n 

i D1 w i D 1. The weighted (lower) median is an element x k satisfying 
X 

x i <x k 

w i < 
1 
2 

and X 

x i >x k 

w i හ 
1 
2 
: 

For example, consider the following elements x i and weights w i : 
i 1 2 3 4 5 6 7 
x i 3 8 2 5 4 1 6 
w i 0:12 0:35 0:025 0:08 0:15 0:075 0:2 

For these elements, the median is x 5 D 4, but the weighted median is x 7 D 6. To 
see why the weighted median is x 7 , observe that the elements less than x 7 are x 1 , 
x 3 , x 4 , x 5 , and x 6 , and the sum w 1 C w 3 C w 4 C w 5 C w 6 D 0:45, which is less 
than 1=2. Furthermore, only element x 2 is greater than x 7 , and w 2 D 0:35, which 
is no greater than 1=2. 
a. Argue that the median of x 1 ; x 2 ; : : : ; x n is the weighted median of the x i with 

weights w i D 1=n for i D 1; 2; : : : ; n. 

b. Show how to compute the weighted median of n elements in O.n lg n/ worst- 
case time using sorting. 

c. Show how to compute the weighted median in ‚.n/ worst-case time using a 
linear-time median algorithm such as SELECT from Section 9.3. 

The post-ofûce location problem is deûned as follows. The input is n points 
p 1 ; p 2 ; : : : ; p n with associated weights w 1 ; w 2 ; : : : ; w n . A solution is a point p 
(not necessarily one of the input points) that minimizes the sum P n 

i D1 w i d.p; p i /, 
where d.a; b/ is the distance between points a and b. 
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d. Argue that the weighted median is a best solution for the one-dimensional post- 
ofûce location problem, in which points are simply real numbers and the dis- 
tance between points a and b is d.a; b/ D ja  bj. 

e. Find the best solution for the two-dimensional post-ofûce location problem, in 
which the points are .x; y/ coordinate pairs and the distance between points 
a D .x 1 ; y 1 / and b D .x 2 ; y 2 / is the Manhattan distance given by d.a; b/ D 
jx 1  x 2 j C jy 1  y 2 j. 

9-4 Small order statistics 
Let’s denote by S.n/ the worst-case number of comparisons used by SELECT to 
select the i th order statistic from n numbers. Although S.n/ D ‚.n/, the constant 
hidden by the ‚-notation is rather large. When i is small relative to n, there is an 
algorithm that uses SELECT as a subroutine but makes fewer comparisons in the 
worst case. 
a. Describe an algorithm that uses U i .n/ comparisons to ûnd the i th smallest of n 

elements, where 

U i .n/ D 

( 
S.n/ if i  n=2 ; 
bn=2c C U i .dn=2e/ C S.2i/ otherwise : 

(Hint: Begin with bn=2c disjoint pairwise comparisons, and recurse on the set 
containing the smaller element from each pair.) 

b. Show that, if i < n=2, then U i .n/ D n C O.S.2i/ lg.n=i//. 

c. Show that if i is a constant less than n=2, then U i .n/ D n C O.lg n/. 

d. Show that if i D n=k for k  2, then U i .n/ D n C O.S.2n=k/ lg k/. 

9-5 Alternative analysis of randomized selection 
In this problem, you will use indicator random variables to analyze the proce- 
dure RANDOMIZED-SELECT in a manner akin to our analysis of RANDOMIZED- 
QUICKSORT in Section 7.4.2. 

As in the quicksort analysis, we assume that all elements are distinct, and we 
rename the elements of the input array A as ´ 1 ; ´ 2 ; : : : ; ´ n , where ´ i is the i th 
smallest element. Thus the call RANDOMIZED-SELECT .A; 1; n; i/ returns ´ i . 

For 1 හ j < k හ n, let 
X ij k D I f ́  j is compared with ´ k sometime during the execution of the algorithm 

to ûnd ´ i g : 
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a. Give an exact expression for E ŒX ij k �. (Hint: Your expression may have differ- 
ent values, depending on the values of i , j , and k.) 

b. Let X i denote the total number of comparisons between elements of array A 
when ûnding ´ i . Show that 

E ŒX i � හ 2 

 
i X 

j D1 

n X 

kDi 

1 
k  j C 1 

C 
n X 

kDi C1 

k  i  1 
k  i C 1 

C 
i 2 X 

j D1 

i  j  1 
i  j C 1 

! 

: 

c. Show that E ŒX i � හ 4n. 
d. Conclude that, assuming all elements of array A are distinct, RANDOMIZED- 

SELECT runs in O.n/ expected time. 

9-6 Select with groups of 3 
Exercise 9.3-1 asks you to show that the SELECT algorithm still runs in linear time 
if the elements are divided into groups of 7. This problem asks about dividing into 
groups of 3. 
a. Show that SELECT runs in linear time if you divide the elements into groups 

whose size is any odd constant greater than 3. 
b. Show that SELECT runs in O.n lg n/ time if you divide the elements into groups 

of size 3. 
Because the bound in part (b) is just an upper bound, we do not know whether 

the groups-of-3 strategy actually runs in O.n/ time. But by repeating the groups- 
of-3 idea on the middle group of medians, we can pick a pivot that guarantees O.n/ 
time. The SELECT3 algorithm on the next page determines the i th smallest of an 
input array of n > 1 distinct elements. 
c. Describe in English how the SELECT3 algorithm works. Include in your de- 

scription one or more suitable diagrams. 
d. Show that SELECT3 runs in O.n/ time in the worst case. 

Chapter notes 

The worst-case linear-time median-ûnding algorithm was devised by Blum, Floyd, 
Pratt, Rivest, and Tarjan [62]. The fast randomized version is due to Hoare [218]. 
Floyd and Rivest [147] have developed an improved randomized version that parti- 
tions around an element recursively selected from a small sample of the elements. 
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SELECT3 .A; p; r; i/ 
1 while .r  p C 1/ mod 9 ¤ 0 
2 for j D p C 1 to r // put the minimum into AŒp� 
3 if AŒp� > AŒj � 
4 exchange AŒp� with AŒj � 
5 // If we want the minimum of AŒp W r�, we’re done. 
6 if i == 1 
7 return AŒp� 
8 // Otherwise, we want the .i  1/st element of AŒp C 1 W r�. 
9 p D p C 1 
10 i D i  1 
11 g D .r  p C 1/=3 // number of 3-element groups 
12 for j D p to p C g  1 // run through the groups 
13 sort hAŒj �;AŒj C g�;AŒj C 2g�i in place 
14 // All group medians now lie in the middle third of AŒp W r�. 
15 g 0 D g=3 // number of 3-element subgroups 
16 for j D p C g to p C g C g 0  1 // sort the subgroups 
17 sort hAŒj �;AŒj C g 0 �; AŒj C 2g 0 �i in place 
18 // All subgroup medians now lie in the middle ninth of AŒp W r�. 
19 // Find the pivot x recursively as the median of the subgroup medians. 
20 x D SELECT3 .A; p C 4g 0 ; p C 5g 0  1; dg 0 =2e/ 
21 q D PARTITION-AROUND.A; p; r; x/ // partition around the pivot 
22 // The rest is just like lines 19324 of SELECT. 
23 k D q  p C 1 
24 if i == k 
25 return AŒq� // the pivot value is the answer 
26 elseif i < k 
27 return SELECT3 .A; p; q  1; i/ 
28 else return SELECT3 .A; q C 1; r; i  k/ 

It is still unknown exactly how many comparisons are needed to determine the 
median. Bent and John [48] gave a lower bound of 2n comparisons for median 
ûnding, and Sch¨ onhage, Paterson, and Pippenger [397] gave an upper bound of 3n. 
Dor and Zwick have improved on both of these bounds. Their upper bound [123] 
is slightly less than 2:95n, and their lower bound [124] is .2 C �/n, for a small 
positive constant � , thereby improving slightly on related work by Dor et al. [122]. 
Paterson [354] describes some of these results along with other related work. 
Problem 9-6 was inspired by a paper by Chen and Dumitrescu [84]. 



Part III Data Structures 



Introduction 

Sets are as fundamental to computer science as they are to mathematics. Whereas 
mathematical sets are unchanging, the sets manipulated by algorithms can grow, 
shrink, or otherwise change over time. We call such sets dynamic. The next four 
chapters present some basic techniques for representing ûnite dynamic sets and 
manipulating them on a computer. 

Algorithms may require several types of operations to be performed on sets. For 
example, many algorithms need only the ability to insert elements into, delete el- 
ements from, and test membership in a set. We call a dynamic set that supports 
these operations a dictionary. Other algorithms require more complicated opera- 
tions. For example, min-priority queues, which Chapter 6 introduced in the context 
of the heap data structure, support the operations of inserting an element into and 
extracting the smallest element from a set. The best way to implement a dynamic 
set depends upon the operations that you need to support. 

Elements of a dynamic set 
In a typical implementation of a dynamic set, each element is represented by an 
object whose attributes can be examined and manipulated given a pointer to the 
object. Some kinds of dynamic sets assume that one of the object’s attributes is 
an identifying key. If the keys are all different, we can think of the dynamic set as 
being a set of key values. The object may contain satellite data, which are carried 
around in other object attributes but are otherwise unused by the set implementa- 
tion. It may also have attributes that are manipulated by the set operations. These 
attributes may contain data or pointers to other objects in the set. 

Some dynamic sets presuppose that the keys are drawn from a totally ordered 
set, such as the real numbers, or the set of all words under the usual alphabetic 
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ordering. A total ordering allows us to deûne the minimum element of the set, for 
example, or to speak of the next element larger than a given element in a set. 

Operations on dynamic sets 
Operations on a dynamic set can be grouped into two categories: queries, which 
simply return information about the set, and modifying operations, which change 
the set. Here is a list of typical operations. Any speciûc application will usually 
require only a few of these to be implemented. 
SEARCH.S; k/ 

A query that, given a set S and a key value k, returns a pointer x to an element 
in S such that x: key D k, or NIL if no such element belongs to S . 

I NSERT.S; x/ 
A modifying operation that adds the element pointed to by x to the set S . We 
usually assume that any attributes in element x needed by the set implementa- 
tion have already been initialized. 

DELETE .S; x/ 
A modifying operation that, given a pointer x to an element in the set S , re- 
moves x from S . (Note that this operation takes a pointer to an element x , not 
a key value.) 

MINIMUM.S/ and MAXIMUM.S/ 
Queries on a totally ordered set S that return a pointer to the element of S with 
the smallest (for MINIMUM) or largest (for MAXIMUM) key. 

SUCCESSOR.S; x/ 
A query that, given an element x whose key is from a totally ordered set S , 
returns a pointer to the next larger element in S , or NIL if x is the maximum 
element. 

PREDECESSOR .S; x/ 
A query that, given an element x whose key is from a totally ordered set S , 
returns a pointer to the next smaller element in S , or NIL if x is the minimum 
element. 

In some situations, we can extend the queries SUCCESSOR and PREDECESSOR 
so that they apply to sets with nondistinct keys. For a set on n keys, the normal 
presumption is that a call to MINIMUM followed by n  1 calls to SUCCESSOR 
enumerates the elements in the set in sorted order. 

We usually measure the time taken to execute a set operation in terms of the size 
of the set. For example, Chapter 13 describes a data structure that can support any 
of the operations listed above on a set of size n in O.lg n/ time. 
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Of course, you can always choose to implement a dynamic set with an array. 
The advantage of doing so is that the algorithms for the dynamic-set operations 
are simple. The downside, however, is that many of these operations have a worst- 
case running time of ‚.n/. If the array is not sorted, I NSERT and DELETE can 
take ‚.1/ time, but the remaining operations take ‚.n/ time. If instead the ar- 
ray is maintained in sorted order, then MINIMUM, MAXIMUM, SUCCESSOR, and 
PREDECESSOR take ‚.1/ time; SEARCH takes O.lg n/ time if implemented with 
binary search; but I NSERT and DELETE take ‚.n/ time in the worst case. The data 
structures studied in this part improve on the array implementation for many of the 
dynamic-set operations. 

Overview of Part III 
Chapters 10313 describe several data structures that we can use to implement dy- 
namic sets. We’ll use many of these data structures later to construct efûcient algo- 
rithms for a variety of problems. We already saw another important data structure 
4the heap4in Chapter 6. 
Chapter 10 presents the essentials of working with simple data structures such 

as arrays, matrices, stacks, queues, linked lists, and rooted trees. If you have taken 
an introductory programming course, then much of this material should be familiar 
to you. 
Chapter 11 introduces hash tables, a widely used data structure supporting the 

dictionary operations I NSERT, DELETE, and SEARCH. In the worst case, hash ta- 
bles require ‚.n/ time to perform a SEARCH operation, but the expected time for 
hash-table operations is O.1/. We rely on probability to analyze hash-table opera- 
tions, but you can understand how the operations work even without probability. 
Binary search trees, which are covered in Chapter 12, support all the dynamic- 

set operations listed above. In the worst case, each operation takes ‚.n/ time on 
a tree with n elements. Binary search trees serve as the basis for many other data 
structures. 
Chapter 13 introduces red-black trees, which are a variant of binary search trees. 

Unlike ordinary binary search trees, red-black trees are guaranteed to perform well: 
operations take O.lg n/ time in the worst case. A red-black tree is a balanced search 
tree. Chapter 18 in Part V presents another kind of balanced search tree, called a 
B-tree. Although the mechanics of red-black trees are somewhat intricate, you can 
glean most of their properties from the chapter without studying the mechanics 
in detail. Nevertheless, you probably will ûnd walking through the code to be 
instructive. 
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In this chapter, we examine the representation of dynamic sets by simple data struc- 
tures that use pointers. Although you can construct many complex data structures 
using pointers, we present only the rudimentary ones: arrays, matrices, stacks, 
queues, linked lists, and rooted trees. 

10.1 Simple array-based data structures: arrays, matrices, stacks, queues 

10.1.1 Arrays 
We assume that, as in most programming languages, an array is stored as a con- 
tiguous sequence of bytes in memory. If the ûrst element of an array has index s 
(for example, in an array with 1-origin indexing, s D 1), the array starts at memory 
address a, and each array element occupies b bytes, then the i th element occupies 
bytes a C b.i  s/ through a C b.i  s C 1/  1. Since most of the arrays in this book 
are indexed starting at 1, and a few starting at 0, we can simplify these formulas a 
little. When s D 1, the i th element occupies bytes a C b.i  1/ through a C bi  1, 
and when s D 0, the i th element occupies bytes a C bi through a C b.i C 1/  1. 
Assuming that the computer can access all memory locations in the same amount 
of time (as in the RAM model described in Section 2.2), it takes constant time to 
access any array element, regardless of the index. 

Most programming languages require each element of a particular array to be 
the same size. If the elements of a given array might occupy different numbers 
of bytes, then the above formulas fail to apply, since the element size b is not a 
constant. In such cases, the array elements are usually objects of varying sizes, 
and what actually appears in each array element is a pointer to the object. The 
number of bytes occupied by a pointer is typically the same, no matter what the 
pointer references, so that to access an object in an array, the above formulas give 
the address of the pointer to the object and then the pointer must be followed to 
access the object itself. 
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1 2 3 4 5 6 

(a) 

1 4 2 5 3 6 

(b) 

1 2 3 
4 5 6 

(c) 

2 5 
3 6 

1 4 

(d) 

Figure 10.1 Four ways to store the 2  3 matrix M from equation (10.1). (a) In row-major order, 
in a single array. (b) In column-major order, in a single array. (c) In row-major order, with one array 
per row (tan) and a single array (blue) of pointers to the row arrays. (d) In column-major order, with 
one array per column (tan) and a single array (blue) of pointers to the column arrays. 

10.1.2 Matrices 
We typically represent a matrix or two-dimensional array by one or more one- 
dimensional arrays. The two most common ways to store a matrix are row-major 
and column-major order. Let’s consider an mn matrix4a matrix with m rows and 
n columns. In row-major order, the matrix is stored row by row, and in column- 
major order, the matrix is stored column by column. For example, consider the 
2  3 matrix 

M D 
Ï 
1 2 3 
4 5 6 

Ð 
: (10.1) 

Row-major order stores the two rows 1 2 3 and 4 5 6, whereas column-major 
order stores the three columns 1 4; 2 5; and 3 6. 
Parts (a) and (b) of Figure 10.1 show how to store this matrix using a single 

one-dimensional array. It’s stored in row-major order in part (a) and in column- 
major order in part (b). If the rows, columns, and the single array all are indexed 
starting at s , then MŒi; j �4the element in row i and column j 4is at array in- 
dex s C .n.i  s// C .j  s/ with row-major order and s C .m.j  s// C .i  s/ 
with column-major order. When s D 1, the single-array indices are n.i  1/ C j 
with row-major order and i C m.j  1/ with column-major order. When s D 0, 
the single-array indices are simpler: ni C j with row-major order and i C mj 
with column-major order. For the example matrix M with 1-origin indexing, ele- 
ment MŒ2; 1� is stored at index 3.2 1/ C1 D 4 in the single array using row-major 
order and at index 2 C 2.1  1/ D 2 using column-major order. 
Parts (c) and (d) of Figure 10.1 show multiple-array strategies for storing the 

example matrix. In part (c), each row is stored in its own array of length n, shown 
in tan. Another array, with m elements, shown in blue, points to the m row arrays. 
If we call the blue array A, then AŒi� points to the array storing the entries for row i 
of M , and array element AŒi�Œj � stores matrix element MŒi; j �. Part (d) shows the 
column-major version of the multiple-array representation, with n arrays, each of 
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length m, representing the n columns. Matrix element MŒi; j � is stored in array 
element AŒj �Œi �. 
Single-array representations are typically more efûcient on modern machines 

than multiple-array representations. But multiple-array representations can some- 
times be more üexible, for example, allowing for <ragged arrays,= in which the 
rows in the row-major version may have different lengths, or symmetrically for the 
column-major version, where columns may have different lengths. 
Occasionally, other schemes are used to store matrices. In the block representa- 

tion, the matrix is divided into blocks, and each block is stored contiguously. For 
example, a 4  4 matrix that is divided into 2  2 blocks, such as  
1 2 3 4 
5 6 7 8 
9 10 11 12 
13 14 15 16 

˘ 

might be stored in a single array in the order h1; 2; 5; 6; 3; 4; 7; 8; 9; 10; 13; 14; 11; 
12; 15; 16i. 

10.1.3 Stacks and queues 
Stacks and queues are dynamic sets in which the element removed from the set 
by the DELETE operation is prespeciûed. In a stack, the element deleted from 
the set is the one most recently inserted: the stack implements a last-in, ûrst-out, 
or LIFO, policy. Similarly, in a queue, the element deleted is always the one that 
has been in the set for the longest time: the queue implements a ûrst-in, ûrst-out, 
or FIFO, policy. There are several efûcient ways to implement stacks and queues 
on a computer. Here, you will see how to use an array with attributes to store them. 

Stacks 
The I NSERT operation on a stack is often called PUSH, and the DELETE opera- 
tion, which does not take an element argument, is often called POP. These names 
are allusions to physical stacks, such as the spring-loaded stacks of plates used 
in cafeterias. The order in which plates are popped from the stack is the reverse 
of the order in which they were pushed onto the stack, since only the top plate is 
accessible. 
Figure 10.2 shows how to implement a stack of at most n elements with an 

array SŒ1 W n�. The stack has attributes S: top, indexing the most recently inserted 
element, and S: size, equaling the size n of the array. The stack consists of elements 
SŒ1 W S: top�, where SŒ1� is the element at the bottom of the stack and SŒS: top� is 
the element at the top. 
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1 2 3 4 5 6 7 

S 15 6 2 9 
1 2 3 4 5 6 7 

S 15 6 2 9 17 3 
1 2 3 4 5 6 7 

S 15 6 2 9 17 3 

(a) (b) (c) 

S: top D 4 S: top D 6 S: top D 5 

Figure 10.2 An array implementation of a stack S . Stack elements appear only in the tan positions. 
(a) Stack S has 4 elements. The top element is 9. (b) Stack S after the calls PUSH.S; 17/ and 
PUSH.S; 3/. (c) Stack S after the call POP.S/ has returned the element 3, which is the one most 
recently pushed. Although element 3 still appears in the array, it is no longer in the stack. The top is 
element 17. 

When S: top D 0, the stack contains no elements and is empty. We can test 
whether the stack is empty with the query operation STAC K-EMPTY. Upon an 
attempt to pop an empty stack, the stack underüows, which is normally an error. If 
S: top exceeds S: size, the stack overüows. 

The procedures STAC K-EMPTY, PUSH, and POP implement each of the stack 
operations with just a few lines of code. Figure 10.2 shows the effects of the 
modifying operations PUSH and POP. Each of the three stack operations takes 
O.1/ time. 

STAC K-EMPTY .S/ 
1 if S: top = = 0 
2 return TRUE 
3 else return FALSE 

PUSH.S; x/ 
1 if S: top = = S: size 
2 error <overüow= 
3 else S: top D S: top C 1 
4 SŒS: top� D x 

POP.S/ 
1 if STAC K-EMPTY .S/ 
2 error <underüow= 
3 else S: top D S: top  1 
4 return SŒS: top C 1� 
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1 2 3 4 5 6 7 8 9 10 11 12 

Q (a) 15 6 9 8 4 

1 2 3 4 5 6 7 8 9 10 11 12 

Q (b) 15 6 9 8 4 3 5 17 

1 2 3 4 5 6 7 8 9 10 11 12 

Q (c) 15 6 9 8 4 3 5 17 

Q: head D 7 

Q: head D 7 Q: tail D 12 

Q: tail D 3 

Q: tail D 3 

Q: head D 8 

Figure 10.3 A queue implemented using an array QŒ1 W 12�. Queue elements appear only in the tan 
positions. (a) The queue has 5 elements, in locations QŒ7 W 11�. (b) The conûguration of the queue 
after the calls ENQUEUE.Q; 17/, ENQUEUE.Q; 3/, and ENQUEUE.Q; 5/. (c) The conûguration of 
the queue after the call DEQUEUE.Q/ returns the key value 15 formerly at the head of the queue. 
The new head has key 6. 

Queues 
We call the I NSERT operation on a queue ENQUEUE, and we call the DELETE 
operation DEQUEUE. Like the stack operation POP, DEQUEUE takes no element 
argument. The FIFO property of a queue causes it to operate like a line of cus- 
tomers waiting for service. The queue has a head and a tail. When an element is 
enqueued, it takes its place at the tail of the queue, just as a newly arriving cus- 
tomer takes a place at the end of the line. The element dequeued is always the one 
at the head of the queue, like the customer at the head of the line, who has waited 
the longest. 
Figure 10.3 shows one way to implement a queue of at most n  1 elements 

using an array QŒ1 W n�, with the attribute Q: size equaling the size n of the array. 
The queue has an attribute Q: head that indexes, or points to, its head. The attribute 
Q: tail indexes the next location at which a newly arriving element will be inserted 
into the queue. The elements in the queue reside in locations Q: head ;Q: head C 1; 
: : : ;Q: tail  1, where we <wrap around= in the sense that location 1 immediately 
follows location n in a circular order. When Q: head D Q: tail, the queue is empty. 
Initially, we have Q: head D Q: tail D 1. An attempt to dequeue an element from 
an empty queue causes the queue to underüow. When Q: head D Q: tail C1 or both 
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Q: head D 1 and Q: tail D Q: size, the queue is full, and an attempt to enqueue an 
element causes the queue to overüow. 

In the procedures ENQUEUE and DEQUEUE, we have omitted the error checking 
for underüow and overüow. (Exercise 10.1-5 asks you to supply these checks.) 
Figure 10.3 shows the effects of the ENQUEUE and DEQUEUE operations. Each 
operation takes O.1/ time. 

ENQUEUE.Q; x/ 
1 QŒQ: tail� D x 
2 if Q: tail == Q: size 
3 Q: tail D 1 
4 else Q: tail D Q: tail C 1 

DEQUEUE.Q/ 
1 x D QŒQ: head � 
2 if Q: head == Q: size 
3 Q: head D 1 
4 else Q: head D Q: head C 1 
5 return x 

Exercises 
10.1-1 
Consider an m  n matrix in row-major order, where both m and n are powers of 2 
and rows and columns are indexed from 0. We can represent a row index i in binary 
by the lg m bits hi lg m1 ; i lg m2 ; : : : ; i 0 i and a column index j in binary by the lg n 
bits hj lg n1 ; j lg n2 ; : : : ; j 0 i. Suppose that this matrix is a 2  2 block matrix, where 
each block has m=2 rows and n=2 columns, and it is to be represented by a single 
array with 0-origin indexing. Show how to construct the binary representation of 
the .lg m C lg n/-bit index into the single array from the binary representations of 
i and j . 
10.1-2 
Using Figure 10.2 as a model, illustrate the result of each operation in the sequence 
PUSH.S; 4/, PUSH.S; 1/, PUSH.S; 3/, POP.S/, PUSH.S; 8/, and POP.S/ on an 
initially empty stack S stored in array SŒ1 W 6� 
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10.1-3 
Explain how to implement two stacks in one array AŒ1 W n� in such a way that neither 
stack overüows unless the total number of elements in both stacks together is n. 
The PUSH and POP operations should run in O.1/ time. 
10.1-4 
Using Figure 10.3 as a model, illustrate the result of each operation in the 
sequence ENQUEUE.Q; 4/, ENQUEUE.Q; 1/, ENQUEUE.Q; 3/, DEQUEUE.Q/, 
ENQUEUE.Q; 8/, and DEQUEUE.Q/ on an initially empty queue Q stored in 
array QŒ1 W 6�. 
10.1-5 
Rewrite ENQUEUE and DEQUEUE to detect underüow and overüow of a queue. 
10.1-6 
Whereas a stack allows insertion and deletion of elements at only one end, and a 
queue allows insertion at one end and deletion at the other end, a deque (double- 
ended queue, pronounced like <deck=) allows insertion and deletion at both ends. 
Write four O.1/-time procedures to insert elements into and delete elements from 
both ends of a deque implemented by an array. 
10.1-7 
Show how to implement a queue using two stacks. Analyze the running time of the 
queue operations. 
10.1-8 
Show how to implement a stack using two queues. Analyze the running time of the 
stack operations. 

10.2 Linked lists 

A linked list is a data structure in which the objects are arranged in a linear order. 
Unlike an array, however, in which the linear order is determined by the array 
indices, the order in a linked list is determined by a pointer in each object. Since the 
elements of linked lists often contain keys that can be searched for, linked lists are 
sometimes called search lists. Linked lists provide a simple, üexible representation 
for dynamic sets, supporting (though not necessarily efûciently) all the operations 
listed on page 250. 
As shown in Figure 10.4, each element of a doubly linked list L is an object 

with an attribute key and two pointer attributes: next and prev. The object may 
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9 16 4 1 

prev key next 

(a) 

9 16 4 1 (b) 25 

9 4 1 (c) 25 

9 (d) 25 

36 16 

36 16 1 L: head 

L: head 

L: head 

L: head 

Figure 10.4 (a) A doubly linked list L representing the dynamic set f1; 4; 9; 16g. Each element in 
the list is an object with attributes for the key and pointers (shown by arrows) to the next and previous 
objects. The next attribute of the tail and the prev attribute of the head are NIL, indicated by a diagonal 
slash. The attribute L: head points to the head. (b) Following the execution of L IST-PREPEND.L; x/, 
where x: key D 25, the linked list has an object with key 25 as the new head. This new object points 
to the old head with key 9. (c) The result of calling L IST-I NSERT.x; y/, where x: key D 36 and y 
points to the object with key 9. (d) The result of the subsequent call L IST-DELETE.L; x/, where 
x points to the object with key 4. 

also contain other satellite data. Given an element x in the list, x: next points to its 
successor in the linked list, and x: prev points to its predecessor. If x: prev D NIL, 
the element x has no predecessor and is therefore the ûrst element, or head, of 
the list. If x: next D NIL, the element x has no successor and is therefore the last 
element, or tail, of the list. An attribute L: head points to the ûrst element of the 
list. If L: head D NIL, the list is empty. 

A list may have one of several forms. It may be either singly linked or doubly 
linked, it may be sorted or not, and it may be circular or not. If a list is singly 
linked, each element has a next pointer but not a prev pointer. If a list is sorted, the 
linear order of the list corresponds to the linear order of keys stored in elements 
of the list. The minimum element is then the head of the list, and the maximum 
element is the tail. If the list is unsorted, the elements can appear in any order. In 
a circular list, the prev pointer of the head of the list points to the tail, and the next 
pointer of the tail of the list points to the head. You can think of a circular list as a 
ring of elements. In the remainder of this section, we assume that the lists we are 
working with are unsorted and doubly linked. 
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Searching a linked list 
The procedure LIST-SEARCH .L; k/ ûnds the ûrst element with key k in list L 
by a simple linear search, returning a pointer to this element. If no object with 
key k appears in the list, then the procedure returns NIL. For the linked list in 
Figure 10.4(a), the call LIST-SEARCH .L; 4/ returns a pointer to the third element, 
and the call LIST-SEARCH .L; 7/ returns NIL. To search a list of n objects, the 
LIST-SEARCH procedure takes ‚.n/ time in the worst case, since it may have to 
search the entire list. 

LIST-SEARCH .L; k/ 
1 x D L: head 
2 while x ¤ NIL and x: key ¤ k 
3 x D x: next 
4 return x 

Inserting into a linked list 
Given an element x whose key attribute has already been set, the LIST-PREPEND 
procedure adds x to the front of the linked list, as shown in Figure 10.4(b). (Re- 
call that our attribute notation can cascade, so that L: head: prev denotes the prev 
attribute of the object that L: head points to.) The running time for LIST-PREPEND 
on a list of n elements is O.1/. 

LIST-PREPEND .L; x/ 
1 x: next D L: head 
2 x: prev D NIL 
3 if L: head ¤ NIL 
4 L: head: prev D x 
5 L: head D x 

You can insert anywhere within a linked list. As Figure 10.4(c) shows, if you 
have a pointer y to an object in the list, the LIST-I NSERT procedure on the facing 
page <splices= a new element x into the list, immediately following y , in O.1/ 
time. Since LIST-I NSERT never references the list object L, it is not supplied as a 
parameter. 
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LIST-I NSERT .x; y/ 
1 x: next D y: next 
2 x: prev D y 
3 if y: next ¤ NIL 
4 y: next: prev D x 
5 y: next D x 

Deleting from a linked list 
The procedure LIST-DELETE removes an element x from a linked list L. It must 
be given a pointer to x , and it then <‘splices= x out of the list by updating pointers. 
To delete an element with a given key, ûrst call L IST-SEARCH to retrieve a pointer 
to the element. Figure 10.4(d) shows how an element is deleted from a linked list. 
LIST-DELETE runs in O.1/ time, but to delete an element with a given key, the call 
to LIST-SEARCH makes the worst-case running time be ‚.n/. 

LIST-DELETE .L; x/ 
1 if x: prev ¤ NIL 
2 x: prev: next D x: next 
3 else L: head D x: next 
4 if x: next ¤ NIL 
5 x: next: prev D x: prev 

Insertion and deletion are faster operations on doubly linked lists than on arrays. 
If you want to insert a new ûrst element into an array or delete the ûrst element in 
an array, maintaining the relative order of all the existing elements, then each of the 
existing elements needs to be moved by one position. In the worst case, therefore, 
insertion and deletion take ‚.n/ time in an array, compared with O.1/ time for a 
doubly linked list. (Exercise 10.2-1 asks you to show that deleting an element from 
a singly linked list takes ‚.n/ time in the worst case.) If, however, you want to ûnd 
the kth element in the linear order, it takes just O.1/ time in an array regardless 
of k, but in a linked list, you’d have to traverse k elements, taking ‚.k/ time. 

Sentinels 
The code for LIST-DELETE is simpler if you ignore the boundary conditions at the 
head and tail of the list: 
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9 16 4 1 

9 16 4 1 25 
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(a) 

(b) 

(c) 

(d) 

9 16 4 25 (e) 36 L: nil 

L: nil 

L: nil 

L: nil 

L: nil 

Figure 10.5 A circular, doubly linked list with a sentinel. The sentinel L: nil, in blue, appears 
between the head and tail. The attribute L: head is no longer needed, since the head of the list 
is L: nil: next. (a) An empty list. (b) The linked list from Figure 10.4(a), with key 9 at the head and 
key 1 at the tail. (c) The list after executing LIST-I NSERT 0 .x;L: nil/, where x: key D 25. The new 
object becomes the head of the list. (d) The list after deleting the object with key 1. The new tail 
is the object with key 4. (e) The list after executing LIST-I NSERT 0 .x; y/, where x: key D 36 and y 
points to the object with key 9. 

LIST-DELETE 0 .x/ 
1 x: prev: next D x: next 
2 x: next : prev D x: prev 

A sentinel is a dummy object that allows us to simplify boundary conditions. 
In a linked list L, the sentinel is an object L: nil that represents NIL but has all 
the attributes of the other objects in the list. References to NIL are replaced by 
references to the sentinel L: nil. As shown in Figure 10.5, this change turns a 
regular doubly linked list into a circular, doubly linked list with a sentinel, in 
which the sentinel L: nil lies between the head and tail. The attribute L: nil: next 
points to the head of the list, and L: nil: prev points to the tail. Similarly, both the 
next attribute of the tail and the prev attribute of the head point to L: nil. Since 
L: nil: next points to the head, the attribute L: head is eliminated altogether, with 
references to it replaced by references to L: nil: next . Figure 10.5(a) shows that an 
empty list consists of just the sentinel, and both L: nil: next and L: nil: prev point 
to L: nil. 
To delete an element from the list, just use the two-line procedure LIST-DELETE 0 

from before. Just as LIST-I NSERT never references the list object L, neither does 
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LIST-DELETE 0 . You should never delete the sentinel L: nil unless you are deleting 
the entire list! 

The LIST-I NSERT 0 procedure inserts an element x into the list following ob- 
ject y . No separate procedure for prepending is necessary: to insert at the head of 
the list, let y be L: nil; and to insert at the tail, let y be L: nil: prev. Figure 10.5 
shows the effects of LIST-I NSERT 0 and LIST-DELETE 0 on a sample list. 

LIST-I NSERT 0 .x; y/ 
1 x: next D y: next 
2 x: prev D y 
3 y: next: prev D x 
4 y: next D x 

Searching a circular, doubly linked list with a sentinel has the same asymptotic 
running time as without a sentinel, but it is possible to decrease the constant factor. 
The test in line 2 of LIST-SEARCH makes two comparisons: one to check whether 
the search has run off the end of the list and, if not, one to check whether the key 
resides in the current element x . Suppose that you know that the key is somewhere 
in the list. Then you do not need to check whether the search runs off the end of 
the list, thereby eliminating one comparison in each iteration of the while loop. 

The sentinel provides a place to put the key before starting the search. The search 
starts at the head L: nil: next of list L, and it stops if it ûnds the key somewhere in 
the list. Now the search is guaranteed to ûnd the key, either in the sentinel or before 
reaching the sentinel. If the key is found before reaching the sentinel, then it really 
is in the element where the search stops. If, however, the search goes through all the 
elements in the list and ûnds the key only in the sentinel, then the key is not really 
in the list, and the search returns NIL. The procedure LIST-SEARCH 0 embodies this 
idea. (If your sentinel requires its key attribute to be NIL, then you might want to 
assign L: nil: key D NIL before line 5.) 

LIST-SEARCH 0 .L; k/ 
1 L: nil: key D k // store the key in the sentinel to guarantee it is in list 
2 x D L: nil: next // start at the head of the list 
3 while x: key ¤ k 
4 x D x: next 
5 if x == L: nil // found k in the sentinel 
6 return NIL // k was not really in the list 
7 else return x // found k in element x 
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Sentinels often simplify code and, as in searching a linked list, they might speed 
up code by a small constant factor, but they don’t typically improve the asymptotic 
running time. Use them judiciously. When there are many small lists, the extra 
storage used by their sentinels can represent signiûcant wasted memory. In this 
book, we use sentinels only when they signiûcantly simplify the code. 

Exercises 
10.2-1 
Explain why the dynamic-set operation I NSERT on a singly linked list can be im- 
plemented in O.1/ time, but the worst-case time for DELETE is ‚.n/. 
10.2-2 
Implement a stack using a singly linked list. The operations PUSH and POP should 
still take O.1/ time. Do you need to add any attributes to the list? 
10.2-3 
Implement a queue using a singly linked list. The operations ENQUEUE and 
DEQUEUE should still take O.1/ time. Do you need to add any attributes to the 
list? 
10.2-4 
The dynamic-set operation UNION takes two disjoint sets S 1 and S 2 as input, and 
it returns a set S D S 1 [ S 2 consisting of all the elements of S 1 and S 2 . The 
sets S 1 and S 2 are usually destroyed by the operation. Show how to support UNION 
in O.1/ time using a suitable list data structure. 
10.2-5 
Give a ‚.n/-time nonrecursive procedure that reverses a singly linked list of n 
elements. The procedure should use no more than constant storage beyond that 
needed for the list itself. 

? 10.2-6 
Explain how to implement doubly linked lists using only one pointer value x: np 
per item instead of the usual two (next and prev). Assume that all pointer values 
can be interpreted as k-bit integers, and deûne x: np D x: next XOR x: prev, the 
k-bit <exclusive-or= of x: next and x: prev. The value NIL is represented by 0. Be 
sure to describe what information you need to access the head of the list. Show 
how to implement the SEARCH, I NSERT, and DELETE operations on such a list. 
Also show how to reverse such a list in O.1/ time. 
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10.3 Representing rooted trees 

Linked lists work well for representing linear relationships, but not all relationships 
are linear. In this section, we look speciûcally at the problem of representing rooted 
trees by linked data structures. We ûrst look at binary trees, and then we present a 
method for rooted trees in which nodes can have an arbitrary number of children. 

We represent each node of a tree by an object. As with linked lists, we assume 
that each node contains a key attribute. The remaining attributes of interest are 
pointers to other nodes, and they vary according to the type of tree. 

Binary trees 
Figure 10.6 shows how to use the attributes p, left , and right to store pointers to 
the parent, left child, and right child of each node in a binary tree T . If x: p D NIL, 
then x is the root. If node x has no left child, then x: left D NIL, and similarly for 
the right child. The root of the entire tree T is pointed to by the attribute T: root . If 
T: root D NIL, then the tree is empty. 

Rooted trees with unbounded branching 
It’s simple to extend the scheme for representing a binary tree to any class of trees 
in which the number of children of each node is at most some constant k: replace 
the left and right attributes by child 1 ; child 2 ; : : : ; child k . This scheme no longer 
works when the number of children of a node is unbounded, however, since we do 
not know how many attributes to allocate in advance. Moreover, if k, the number 
of children, is bounded by a large constant but most nodes have a small number of 
children, we may waste a lot of memory. 

Fortunately, there is a clever scheme to represent trees with arbitrary numbers of 
children. It has the advantage of using only O.n/ space for any n-node rooted tree. 
The left-child, right-sibling representation appears in Figure 10.7. As before, each 
node contains a parent pointer p, and T: root points to the root of tree T . Instead 
of having a pointer to each of its children, however, each node x has only two 
pointers: 
1. x: left-child points to the leftmost child of node x , and 
2. x: right-sibling points to the sibling of x immediately to its right. 
If node x has no children, then x: left-child D NIL, and if node x is the rightmost 
child of its parent, then x: right-sibling D NIL. 
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T: root 

Figure 10.6 The representation of a binary tree T . Each node x has the attributes x: p (top), x: left 
(lower left), and x: right (lower right). The key attributes are not shown. 

T: root 

Figure 10.7 The left-child, right-sibling representation of a tree T . Each node x has attributes x: p 
(top), x: left-child (lower left), and x: right-sibling (lower right). The key attributes are not shown. 
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Other tree representations 
We sometimes represent rooted trees in other ways. In Chapter 6, for example, 
we represented a heap, which is based on a complete binary tree, by a single array 
along with an attribute giving the index of the last node in the heap. The trees that 
appear in Chapter 19 are traversed only toward the root, and so only the parent 
pointers are present: there are no pointers to children. Many other schemes are 
possible. Which scheme is best depends on the application. 

Exercises 
10.3-1 
Draw the binary tree rooted at index 6 that is represented by the following at- 
tributes: 
index key left right 
1 17 8 9 
2 14 NIL NIL 
3 12 NIL NIL 
4 20 10 NIL 
5 33 2 NIL 
6 15 1 4 
7 28 NIL NIL 
8 22 NIL NIL 
9 13 3 7 
10 25 NIL 5 

10.3-2 
Write an O.n/-time recursive procedure that, given an n-node binary tree, prints 
out the key of each node in the tree. 
10.3-3 
Write an O.n/-time nonrecursive procedure that, given an n-node binary tree, 
prints out the key of each node in the tree. Use a stack as an auxiliary data structure. 
10.3-4 
Write an O.n/-time procedure that prints out all the keys of an arbitrary rooted tree 
with n nodes, where the tree is stored using the left-child, right-sibling representa- 
tion. 

? 10.3-5 
Write an O.n/-time nonrecursive procedure that, given an n-node binary tree, 
prints out the key of each node. Use no more than constant extra space outside 
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of the tree itself and do not modify the tree, even temporarily, during the proce- 
dure. 

? 10.3-6 
The left-child, right-sibling representation of an arbitrary rooted tree uses three 
pointers in each node: left-child , right-sibling, and parent . From any node, its 
parent can be accessed in constant time and all its children can be accessed in 
time linear in the number of children. Show how to use only two pointers and 
one boolean value in each node x so that x ’s parent or all of x ’s children can be 
accessed in time linear in the number of x ’s children. 

Problems 

10-1 Comparisons among lists 
For each of the four types of lists in the following table, what is the asymptotic 
worst-case running time for each dynamic-set operation listed? 

unsorted, sorted, unsorted, sorted, 
singly singly doubly doubly 
linked linked linked linked 

SEARCH 
I NSERT 
DELETE 
SUCCESSOR 

PREDECESSOR 

MINIMUM 
MAXIMUM 

10-2 Mergeable heaps using linked lists 
A mergeable heap supports the following operations: MAKE-HEAP (which creates 
an empty mergeable heap), I NSERT, MINIMUM, EXTRACT-MIN, and UNION. 1 

1 Because we have deûned a mergeable heap to support M INIMUM and EXTRACT-MIN, we can also 
refer to it as a mergeable min-heap. Alternatively, if it supports MAXIMUM and EXTRACT-MAX, it 
is a mergeable max-heap. 
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Show how to implement mergeable heaps using linked lists in each of the following 
cases. Try to make each operation as efûcient as possible. Analyze the running 
time of each operation in terms of the size of the dynamic set(s) being operated on. 
a. Lists are sorted. 

b. Lists are unsorted. 

c. Lists are unsorted, and dynamic sets to be merged are disjoint. 

10-3 Searching a sorted compact list 
We can represent a singly linked list with two arrays, key and next . Given the 
index i of an element, its value is stored in keyŒi �, and the index of its successor is 
given by next Œi �, where next Œi � D NIL for the last element. We also need the index 
head of the ûrst element in the list. An n-element list stored in this way is compact 
if it is stored only in positions 1 through n of the key and next arrays. 
Let’s assume that all keys are distinct and that the compact list is also sorted, 

that is, keyŒi � < keyŒnext Œi �� for all i D 1; 2; : : : ; n such that next Œi � ¤ NIL. Under 
these assumptions, you will show that the randomized algorithm COMPACT -LIST- 
SEARCH searches the list for key k in O. p 

n/ expected time. 

COMPACT -LIST-SEARCH .key; next ; head ; n; k/ 
1 i D head 
2 while i ¤ NIL and keyŒi � < k 
3 j D RANDOM.1; n/ 
4 if keyŒi � < keyŒj � and keyŒj � හ k 
5 i D j 
6 if keyŒi � == k 
7 return i 
8 i D next Œi � 
9 if i == NIL or keyŒi � > k 
10 return NIL 
11 else return i 

If you ignore lines 337 of the procedure, you can see that it’s an ordinary algo- 
rithm for searching a sorted linked list, in which index i points to each position of 
the list in turn. The search terminates once the index i <falls off= the end of the list 
or once keyŒi �  k. In the latter case, if keyŒi � D k, the procedure has found a key 
with the value k. If, however, keyŒi � > k, then the search will never ûnd a key with 
the value k, so that terminating the search was the correct action. 
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Lines 337 attempt to skip ahead to a randomly chosen position j . Such a skip 
helps if keyŒj � is larger than keyŒi � and no larger than k. In such a case, j marks 
a position in the list that i would reach during an ordinary list search. Because 
the list is compact, we know that any choice of j between 1 and n indexes some 
element in the list. 

Instead of analyzing the performance of COMPACT -LIST-SEARCH directly, you 
will analyze a related algorithm, COMPACT -LIST-SEARCH 0 , which executes two 
separate loops. This algorithm takes an additional parameter t , which speciûes an 
upper bound on the number of iterations of the ûrst loop. 

COMPACT -LIST-S EARCH 0 .key; next ; head ; n; k; t/ 
1 i D head 
2 for q D 1 to t 
3 j D RANDOM.1; n/ 
4 if keyŒi � < keyŒj � and keyŒj � හ k 
5 i D j 
6 if keyŒi � == k 
7 return i 
8 while i ¤ NIL and keyŒi � < k 
9 i D next Œi � 
10 if i = = NIL or keyŒi � > k 
11 return NIL 
12 else return i 

To compare the execution of the two algorithms, assume that the sequence of 
calls of RANDOM.1; n/ yields the same sequence of integers for both algorithms. 
a. Argue that for any value of t , COMPACT -LIST-SEARCH .key; next ; head; n; k/ 

and COMPACT -LIST-SEARCH 0 .key; next ; head; n; k; t/ return the same result 
and that the number of iterations of the while loop of lines 238 in COMPACT - 
LIST-SEARCH is at most the total number of iterations of both the for and while 
loops in COMPACT -LIST-SEARCH 0 . 

In the call COMPACT -LIST-SEARCH 0 .key; next ; head; n; k; t/, let X t be the random 
variable that describes the distance in the linked list (that is, through the chain of 
next pointers) from position i to the desired key k after t iterations of the for loop 
of lines 237 have occurred. 
b. Argue that COMPACT -LIST-SEARCH 0 .key; next ; head ; n; k; t/ has an expected 

running time of O.t C E ŒX t �/. 

c. Show that E ŒX t � D 
P n 

r D1 .1r=n/ t . (Hint: Use equation (C.28) on page 1193.) 
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d. Show that P n1 
r D0 r t හ n t C1 =.t C1/. (Hint: Use inequality (A.18) on page 1150.) 

e. Prove that E ŒX t � හ n=.t C 1/. 

f. Show that COMPACT -LIST-SEARCH 0 .key; next ; head ; n; k; t/ has an expected 
running time of O.t C n=t/. 

g. Conclude that COMPACT -LIST-SEARCH runs in O. p 
n/ expected time. 

h. Why do we assume that all keys are distinct in COMPACT -LIST-SEARCH? Ar- 
gue that random skips do not necessarily help asymptotically when the list con- 
tains repeated key values. 

Chapter notes 

Aho, Hopcroft, and Ullman [6] and Knuth [259] are excellent references for ele- 
mentary data structures. Many other texts cover both basic data structures and their 
implementation in a particular programming language. Examples of these types of 
textbooks include Goodrich and Tamassia [196], Main [311], Shaffer [406], and 
Weiss [452, 453, 454]. The book by Gonnet and Baeza-Yates [193] provides ex- 
perimental data on the performance of many data-structure operations. 

The origin of stacks and queues as data structures in computer science is un- 
clear, since corresponding notions already existed in mathematics and paper-based 
business practices before the introduction of digital computers. Knuth [259] cites 
A. M. Turing for the development of stacks for subroutine linkage in 1947. 
Pointer-based data structures also seem to be a folk invention. According to 

Knuth, pointers were apparently used in early computers with drum memories. The 
A-1 language developed by G. M. Hopper in 1951 represented algebraic formulas 
as binary trees. Knuth credits the IPL-II language, developed in 1956 by A. Newell, 
J. C. Shaw, and H. A. Simon, for recognizing the importance and promoting the 
use of pointers. Their IPL-III language, developed in 1957, included explicit stack 
operations. 
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Many applications require a dynamic set that supports only the dictionary opera- 
tions I NSERT, SEARCH, and DELETE. For example, a compiler that translates a 
programming language maintains a symbol table, in which the keys of elements 
are arbitrary character strings corresponding to identiûers in the language. A hash 
table is an effective data structure for implementing dictionaries. Although search- 
ing for an element in a hash table can take as long as searching for an element in a 
linked list4‚.n/ time in the worst case4in practice, hashing performs extremely 
well. Under reasonable assumptions, the average time to search for an element in 
a hash table is O.1/. Indeed, the built-in dictionaries of Python are implemented 
with hash tables. 

A hash table generalizes the simpler notion of an ordinary array. Directly ad- 
dressing into an ordinary array takes advantage of the O.1/ access time for any 
array element. Section 11.1 discusses direct addressing in more detail. To use di- 
rect addressing, you must be able to allocate an array that contains a position for 
every possible key. 

When the number of keys actually stored is small relative to the total number 
of possible keys, hash tables become an effective alternative to directly address- 
ing an array, since a hash table typically uses an array of size proportional to the 
number of keys actually stored. Instead of using the key as an array index directly, 
we compute the array index from the key. Section 11.2 presents the main ideas, 
focusing on <chaining= as a way to handle <collisions,= in which more than one 
key maps to the same array index. Section 11.3 describes how to compute array 
indices from keys using hash functions. We present and analyze several variations 
on the basic theme. Section 11.4 looks at <open addressing,= which is another way 
to deal with collisions. The bottom line is that hashing is an extremely effective 
and practical technique: the basic dictionary operations require only O.1/ time on 
the average. Section 11.5 discusses the hierarchical memory systems of modern 
computer systems have and illustrates how to design hash tables that work well in 
such systems. 
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11.1 Direct-address tables 

Direct addressing is a simple technique that works well when the universe U of 
keys is reasonably small. Suppose that an application needs a dynamic set in which 
each element has a distinct key drawn from the universe U D f0; 1; : : : ;m  1g, 
where m is not too large. 

To represent the dynamic set, you can use an array, or direct-address table, de- 
noted by T Œ0 W m  1�, in which each position, or slot, corresponds to a key in the 
universe U . Figure 11.1 illustrates this approach. Slot k points to an element in the 
set with key k. If the set contains no element with key k, then T Œk� D NIL. 

The dictionary operations DIRECT-ADDRESS-SEARCH, DIRECT-ADDRESS- 
I NSERT, and DIRECT-ADDRESS-DELETE on the following page are trivial to im- 
plement. Each takes only O.1/ time. 
For some applications, the direct-address table itself can hold the elements in 

the dynamic set. That is, rather than storing an element’s key and satellite data in 
an object external to the direct-address table, with a pointer from a slot in the table 
to the object, save space by storing the object directly in the slot. To indicate an 
empty slot, use a special key. Then again, why store the key of the object at all? 
The index of the object is its key! Of course, then you’d need some way to tell 
whether slots are empty. 

T 

U 
(universe of keys) 

K 
(actual 
keys) 

2 
3 

5 8 

1 

9 4 
0 

7 
6 2 

3 

5 

8 

key satellite data 
2 

0 
1 

3 

4 

5 

6 

7 

8 

9 

Figure 11.1 How to implement a dynamic set by a direct-address table T . Each key in the universe 
U D f0; 1; : : : ; 9g corresponds to an index into the table. The set K D f2; 3; 5; 8g of actual keys 
determines the slots in the table that contain pointers to elements. The other slots, in blue, contain 
NIL. 
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DIRECT-ADDRESS-SEARCH .T; k/ 
1 return T Œk� 

DIRECT-ADDRESS-I NSERT .T; x/ 
1 T Œx: key� D x 

DIRECT-ADDRESS-DELETE .T; x/ 
1 T Œx: key� D NIL 

Exercises 
11.1-1 
A dynamic set S is represented by a direct-address table T of length m. Describe 
a procedure that ûnds the maximum element of S . What is the worst-case perfor- 
mance of your procedure? 
11.1-2 
A bit vector is simply an array of bits (each either 0 or 1). A bit vector of length m 
takes much less space than an array of m pointers. Describe how to use a bit vector 
to represent a dynamic set of distinct elements drawn from the set f0; 1; : : : ;m  1g 
and with no satellite data. Dictionary operations should run in O.1/ time. 
11.1-3 
Suggest how to implement a direct-address table in which the keys of stored el- 
ements do not need to be distinct and the elements can have satellite data. All 
three dictionary operations (I NSERT, DELETE, and SEARCH) should run in O.1/ 
time. (Don’t forget that DELETE takes as an argument a pointer to an object to be 
deleted, not a key.) 

? 11.1-4 
Suppose that you want to implement a dictionary by using direct addressing on 
a huge array. That is, if the array size is m and the dictionary contains at most 
n elements at any one time, then m  n. At the start, the array entries may 
contain garbage, and initializing the entire array is impractical because of its size. 
Describe a scheme for implementing a direct-address dictionary on a huge array. 
Each stored object should use O.1/ space; the operations SEARCH, I NSERT, and 
DELETE should take O.1/ time each; and initializing the data structure should take 
O.1/ time. (Hint: Use an additional array, treated somewhat like a stack whose size 
is the number of keys actually stored in the dictionary, to help determine whether 
a given entry in the huge array is valid or not.) 
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11.2 Hash tables 

The downside of direct addressing is apparent: if the universe U is large or inûnite, 
storing a table T of size jU j may be impractical, or even impossible, given the 
memory available on a typical computer. Furthermore, the set K of keys actually 
stored may be so small relative to U that most of the space allocated for T would 
be wasted. 

When the set K of keys stored in a dictionary is much smaller than the uni- 
verse U of all possible keys, a hash table requires much less storage than a direct- 
address table. Speciûcally, the storage requirement reduces to ‚.jKj/ while main- 
taining the beneût that searching for an element in the hash table still requires only 
O.1/ time. The catch is that this bound is for the average-case time, 1 whereas for 
direct addressing it holds for the worst-case time. 

With direct addressing, an element with key k is stored in slot k, but with hash- 
ing, we use a hash function h to compute the slot number from the key k, so that 
the element goes into slot h.k/. The hash function h maps the universe U of keys 
into the slots of a hash table T Œ0 W m  1�: 
h W U ! f0; 1; : : : ;m  1g ; 

where the size m of the hash table is typically much less than jU j. We say that 
an element with key k hashes to slot h.k/, and we also say that h.k/ is the hash 
value of key k. Figure 11.2 illustrates the basic idea. The hash function reduces 
the range of array indices and hence the size of the array. Instead of a size of jU j, 
the array can have size m. An example of a simple, but not particularly good, hash 
function is h.k/ D k mod m. 

There is one hitch, namely that two keys may hash to the same slot. We call this 
situation a collision. Fortunately, there are effective techniques for resolving the 
conüict created by collisions. 
Of course, the ideal solution is to avoid collisions altogether. We might try to 

achieve this goal by choosing a suitable hash function h. One idea is to make h ap- 
pear to be <random,= thus avoiding collisions or at least minimizing their number. 
The very term <to hash,= evoking images of random mixing and chopping, cap- 
tures the spirit of this approach. (Of course, a hash function h must be determin- 
istic in that a given input k must always produce the same output h.k/.) Because 
jU j > m, however, there must be at least two keys that have the same hash value, 

1 The deûnition of <average-case= requires care4are we assuming an input distribution over the 
keys, or are we randomizing the choice of hash function itself? We’ll consider both approaches, but 
with an emphasis on the use of a randomly chosen hash function. 
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T 

U 
(universe of keys) 

K 
(actual 
keys) 

0 

m31 

k 1 

k 2 k 3 

k 4 k 5 

h(k 1 ) 
h(k 4 ) 

h(k 3 ) 

h(k 2 ) = h(k 5 ) 

Figure 11.2 Using a hash function h to map keys to hash-table slots. Because keys k 2 and k 5 map 
to the same slot, they collide. 

and avoiding collisions altogether is impossible. Thus, although a well-designed, 
<random=-looking hash function can reduce the number of collisions, we still need 
a method for resolving the collisions that do occur. 
The remainder of this section ûrst presents a deûnition of <independent uniform 

hashing,= which captures the simplest notion of what it means for a hash function 
to be <random.= It then presents and analyzes the simplest collision resolution tech- 
nique, called chaining. Section 11.4 introduces an alternative method for resolving 
collisions, called open addressing. 

Independent uniform hashing 
An <ideal= hashing function h would have, for each possible input k in the do- 
main U , an output h.k/ that is an element randomly and independently chosen 
uniformly from the range f0; 1; : : : ;m  1g. Once a value h.k/ is randomly cho- 
sen, each subsequent call to h with the same input k yields the same output h.k/. 

We call such an ideal hash function an independent uniform hash function. 
Such a function is also often called a random oracle [43]. When hash tables are 
implemented with an independent uniform hash function, we say we are using 
independent uniform hashing. 

Independent uniform hashing is an ideal theoretical abstraction, but it is not 
something that can reasonably be implemented in practice. Nonetheless, we’ll 
analyze the efûciency of hashing under the assumption of independent uniform 
hashing and then present ways of achieving useful practical approximations to this 
ideal. 
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Figure 11.3 Collision resolution by chaining. Each nonempty hash-table slot T Œj � points to a 
linked list of all the keys whose hash value is j . For example, h.k 1 / D h.k 4 / and h.k 5 / D h.k 2 / D 
h.k 7 /. The list can be either singly or doubly linked. We show it as doubly linked because deletion 
may be faster that way when the deletion procedure knows which list element (not just which key) is 
to be deleted. 

Collision resolution by chaining 
At a high level, you can think of hashing with chaining as a nonrecursive form 
of divide-and-conquer: the input set of n elements is divided randomly into m 
subsets, each of approximate size n=m. A hash function determines which subset 
an element belongs to. Each subset is managed independently as a list. 
Figure 11.3 shows the idea behind chaining: each nonempty slot points to a 

linked list, and all the elements that hash to the same slot go into that slot’s linked 
list. Slot j contains a pointer to the head of the list of all stored elements with hash 
value j . If there are no such elements, then slot j contains NIL. 

When collisions are resolved by chaining, the dictionary operations are straight- 
forward to implement. They appear on the next page and use the linked-list pro- 
cedures from Section 10.2. The worst-case running time for insertion is O.1/. 
The insertion procedure is fast in part because it assumes that the element x be- 
ing inserted is not already present in the table. To enforce this assumption, you 
can search (at additional cost) for an element whose key is x: key before inserting. 
For searching, the worst-case running time is proportional to the length of the list. 
(We’ll analyze this operation more closely below.) Deletion takes O.1/ time if the 
lists are doubly linked, as in Figure 11.3. (Since CHAINED-HASH-DELETE takes 
as input an element x and not its key k, no search is needed. If the hash table 
supports deletion, then its linked lists should be doubly linked in order to delete an 
item quickly. If the lists were only singly linked, then by Exercise 10.2-1, deletion 
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CHAINED-HASH-I NSERT .T; x/ 
1 LIST-PREPEND .T Œh.x: key/�; x/ 

CHAINED-HASH-SEARCH .T; k/ 
1 return LIST-SEARCH .T Œh.k/�; k/ 

CHAINED-HASH-DELETE .T; x/ 
1 LIST-DELETE .T Œh.x: key/�; x/ 

could take time proportional to the length of the list. With singly linked lists, both 
deletion and searching would have the same asymptotic running times.) 

Analysis of hashing with chaining 
How well does hashing with chaining perform? In particular, how long does it take 
to search for an element with a given key? 
Given a hash table T with m slots that stores n elements, we deûne the load 

factor ˛ for T as n=m, that is, the average number of elements stored in a chain. 
Our analysis will be in terms of ˛, which can be less than, equal to, or greater 
than 1. 
The worst-case behavior of hashing with chaining is terrible: all n keys hash 

to the same slot, creating a list of length n. The worst-case time for searching is 
thus ‚.n/ plus the time to compute the hash function4no better than using one 
linked list for all the elements. We clearly don’t use hash tables for their worst-case 
performance. 
The average-case performance of hashing depends on how well the hash func- 

tion h distributes the set of keys to be stored among the m slots, on the average 
(meaning with respect to the distribution of keys to be hashed and with respect to 
the choice of hash function, if this choice is randomized). Section 11.3 discusses 
these issues, but for now we assume that any given element is equally likely to 
hash into any of the m slots. That is, the hash function is uniform. We further 
assume that where a given element hashes to is independent of where any other el- 
ements hash to. In other words, we assume that we are using independent uniform 
hashing. 

Because hashes of distinct keys are assumed to be independent, independent uni- 
form hashing is universal: the chance that any two distinct keys k 1 and k 2 collide is 
at most 1=m. Universality is important in our analysis and also in the speciûcation 
of universal families of hash functions, which we’ll see in Section 11.3.2. 

For j D 0; 1; : : : ;m  1, denote the length of the list T Œj � by n j , so that 
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n D n 0 C n 1 C    C n m1 ; (11.1) 
and the expected value of n j is E Œn j � D ˛ D n=m. 

We assume that O.1/ time sufûces to compute the hash value h.k/, so that 
the time required to search for an element with key k depends linearly on the 
length n h.k/ of the list T Œh.k/�. Setting aside the O.1/ time required to compute 
the hash function and to access slot h.k/, we’ll consider the expected number of 
elements examined by the search algorithm, that is, the number of elements in the 
list T Œh.k/� that the algorithm checks to see whether any have a key equal to k. We 
consider two cases. In the ûrst, the search is unsuccessful: no element in the table 
has key k. In the second, the search successfully ûnds an element with key k. 

Theorem 11.1 
In a hash table in which collisions are resolved by chaining, an unsuccessful search 
takes ‚.1 C ˛/ time on average, under the assumption of independent uniform 
hashing. 

Proof Under the assumption of independent uniform hashing, any key k not al- 
ready stored in the table is equally likely to hash to any of the m slots. The expected 
time to search unsuccessfully for a key k is the expected time to search to the end of 
list T Œh.k/�, which has expected length E Œn h.k/ � D ˛. Thus, the expected number 
of elements examined in an unsuccessful search is ˛, and the total time required 
(including the time for computing h.k/) is ‚.1 C ˛/. 

The situation for a successful search is slightly different. An unsuccessful search 
is equally likely to go to any slot of the hash table. A successful search, however, 
cannot go to an empty slot, since it is for an element that is present in one of the 
linked lists. We assume that the element searched for is equally likely to be any 
one of the elements in the table, so the longer the list, the more likely that the 
search is for one of its elements. Even so, the expected search time still turns out 
to be ‚.1 C ˛/. 

Theorem 11.2 
In a hash table in which collisions are resolved by chaining, a successful search 
takes ‚.1 C ˛/ time on average, under the assumption of independent uniform 
hashing. 

Proof We assume that the element being searched for is equally likely to be any 
of the n elements stored in the table. The number of elements examined during 
a successful search for an element x is 1 more than the number of elements that 
appear before x in x ’s list. Because new elements are placed at the front of the list, 
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elements before x in the list were all inserted after x was inserted. Let x i denote 
the i th element inserted into the table, for i D 1; 2; : : : ; n, and let k i D x i : key. 
Our analysis uses indicator random variables extensively. For each slot q in the 

table and for each pair of distinct keys k i and k j , we deûne the indicator random 
variable 
X ij q D I fthe search is for x i , h.k i / D q, and h.k j / D q g : 

That is, X ij q D 1 when keys k i and k j collide at slot q and the search is for 
element x i . Because Pr fthe search is for x i g D 1=n, Pr fh.k i / D qg D 1=m, 
Pr fh.k j / D qg D 1=m, and these events are all independent, we have that 
Pr fX ij q D 1g D 1=nm 2 . Lemma 5.1 on page 130 gives E ŒX ij q � D 1=nm 2 . 
Next, we deûne, for each element x j , the indicator random variable 

Y j D I fx j appears in a list prior to the element being searched forg 

D 
m1 X 

qD0 

j 1 X 

i D1 

X ij q ; 

since at most one of the X ij q equals 1, namely when the element x i being searched 
for belongs to the same list as x j (pointed to by slot q), and i < j (so that x i 
appears after x j in the list). 
Our ûnal random variable is Z, which counts how many elements appear in the 

list prior to the element being searched for: 

Z D 
n X 

j D1 

Y j : 

Because we must count the element being searched for as well as all those pre- 
ceding it in its list, we wish to compute E ŒZ C 1�. Using linearity of expectation 
(equation (C.24) on page 1192), we have 

E ŒZ C 1� D E 
" 

1 C 
n X 

j D1 

Y j 

# 

D 1 C E 
" 

n X 

j D1 

m1 X 

qD0 

j 1 X 

i D1 

X ij q 

# 

D 1 C E 
" 
m1 X 

qD0 

n X 

j D1 

j 1 X 

i D1 

X ij q 

# 

D 1 C 
m1 X 

qD0 

n X 

j D1 

j 1 X 

i D1 

E ŒX ij q � (by linearity of expectation) 
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D 1 C 
m1 X 

qD0 

n X 

j D1 

j 1 X 

i D1 

1 
nm 2 

D 1 C m  n.n  1/ 
2 

 1 
nm 2 

(by equation (A.2) on page 1141) 

D 1 C 
n  1 
2m 

D 1 C 
n 
2m 

 
1 
2m 

D 1 C 
˛ 
2 

 
˛ 
2n 
: 

Thus, the total time required for a successful search (including the time for com- 
puting the hash function) is ‚.2 C ˛=2  ˛=2n/ D ‚.1 C ˛/. 

What does this analysis mean? If the number of elements in the table is at 
most proportional to the number of hash-table slots, we have n D O.m/ and, 
consequently, ˛ D n=m D O.m/=m D O.1/. Thus, searching takes constant time 
on average. Since insertion takes O.1/ worst-case time and deletion takes O.1/ 
worst-case time when the lists are doubly linked (assuming that the list element to 
be deleted is known, and not just its key), we can support all dictionary operations 
in O.1/ time on average. 

The analysis in the preceding two theorems depends only on two essential prop- 
erties of independent uniform hashing: uniformity (each key is equally likely to 
hash to any one of the m slots), and independence (so any two distinct keys collide 
with probability 1=m). 

Exercises 
11.2-1 
You use a hash function h to hash n distinct keys into an array T of length m. 
Assuming independent uniform hashing, what is the expected number of colli- 
sions? More precisely, what is the expected cardinality of ˚ fk 1 ; k 2 g W k 1 ¤ k 2 

and h.k 1 / D h.k 2 / 
 ? 

11.2-2 
Consider a hash table with 9 slots and the hash function h.k/ D k mod 9. Demon- 
strate what happens upon inserting the keys 5; 28; 19; 15; 20; 33; 12; 17; 10 with 
collisions resolved by chaining. 
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11.2-3 
Professor Marley hypothesizes that he can obtain substantial performance gains by 
modifying the chaining scheme to keep each list in sorted order. How does the pro- 
fessor’s modiûcation affect the running time for successful searches, unsuccessful 
searches, insertions, and deletions? 
11.2-4 
Suggest how to allocate and deallocate storage for elements within the hash table 
itself by creating a <free list=: a linked list of all the unused slots. Assume that 
one slot can store a üag and either one element plus a pointer or two pointers. All 
dictionary and free-list operations should run in O.1/ expected time. Does the free 
list need to be doubly linked, or does a singly linked free list sufûce? 
11.2-5 
You need to store a set of n keys in a hash table of size m. Show that if the keys 
are drawn from a universe U with jU j > .n  1/m, then U has a subset of size n 
consisting of keys that all hash to the same slot, so that the worst-case searching 
time for hashing with chaining is ‚.n/. 
11.2-6 
You have stored n keys in a hash table of size m, with collisions resolved by chain- 
ing, and you know the length of each chain, including the length L of the longest 
chain. Describe a procedure that selects a key uniformly at random from among 
the keys in the hash table and returns it in expected time O.L  .1 C 1=˛//. 

11.3 Hash functions 

For hashing to work well, it needs a good hash function. Along with being efû- 
ciently computable, what properties does a good hash function have? How do you 
design good hash functions? 
This section ûrst attempts to answer these questions based on two ad hoc ap- 

proaches for creating hash functions: hashing by division and hashing by multipli- 
cation. Although these methods work well for some sets of input keys, they are 
limited because they try to provide a single ûxed hash function that works well on 
any data4an approach called static hashing. 
We then see that provably good average-case performance for any data can be 

obtained by designing a suitable family of hash functions and choosing a hash func- 
tion at random from this family at runtime, independent of the data to be hashed. 
The approach we examine is called random hashing. A particular kind of random 
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hashing, universal hashing, works well. As we saw with quicksort in Chapter 7, 
randomization is a powerful algorithmic design tool. 

What makes a good hash function? 

A good hash function satisûes (approximately) the assumption of independent uni- 
form hashing: each key is equally likely to hash to any of the m slots, indepen- 
dently of where any other keys have hashed to. What does <equally likely= mean 
here? If the hash function is ûxed, any probabilities would have to be based on the 
probability distribution of the input keys. 

Unfortunately, you typically have no way to check this condition, unless you 
happen to know the probability distribution from which the keys are drawn. More- 
over, the keys might not be drawn independently. 
Occasionally you might know the distribution. For example, if you know that 

the keys are random real numbers k independently and uniformly distributed in the 
range 0 හ k < 1, then the hash function 
h.k/ D bkmc 

satisûes the condition of independent uniform hashing. 
A good static hashing approach derives the hash value in a way that you expect 

to be independent of any patterns that might exist in the data. For example, the 
<division method= (discussed in Section 11.3.1) computes the hash value as the 
remainder when the key is divided by a speciûed prime number. This method may 
give good results, if you (somehow) choose a prime number that is unrelated to any 
patterns in the distribution of keys. 
Random hashing, described in Section 11.3.2, picks the hash function to be used 

at random from a suitable family of hashing functions. This approach removes 
any need to know anything about the probability distribution of the input keys, as 
the randomization necessary for good average-case behavior then comes from the 
(known) random process used to pick the hash function from the family of hash 
functions, rather than from the (unknown) process used to create the input keys. 
We recommend that you use random hashing. 

Keys are integers, vectors, or strings 
In practice, a hash function is designed to handle keys that are one of the following 
two types: 
 A short nonnegative integer that ûts in a w-bit machine word. Typical values 

for w would be 32 or 64. 
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 A short vector of nonnegative integers, each of bounded size. For example, 
each element might be an 8-bit byte, in which case the vector is often called a 
(byte) string. The vector might be of variable length. 

To begin, we assume that keys are short nonnegative integers. Handling vector 
keys is more complicated and discussed in Sections 11.3.5 and 11.5.2. 

11.3.1 Static hashing 

Static hashing uses a single, ûxed hash function. The only randomization available 
is through the (usually unknown) distribution of input keys. This section discusses 
two standard approaches for static hashing: the division method and the multiplica- 
tion method. Although static hashing is no longer recommended, the multiplication 
method also provides a good foundation for <nonstatic= hashing4better known as 
random hashing4where the hash function is chosen at random from a suitable 
family of hash functions. 

The division method 

The division method for creating hash functions maps a key k into one of m slots 
by taking the remainder of k divided by m. That is, the hash function is 
h.k/ D k mod m : 
For example, if the hash table has size m D 12 and the key is k D 100, then 
h.k/ D 4. Since it requires only a single division operation, hashing by division is 
quite fast. 

The division method may work well when m is a prime not too close to an exact 
power of 2. There is no guarantee that this method provides good average-case 
performance, however, and it may complicate applications since it constrains the 
size of the hash tables to be prime. 

The multiplication method 

The general multiplication method for creating hash functions operates in two 
steps. First, multiply the key k by a constant A in the range 0 < A < 1 and extract 
the fractional part of kA. Then, multiply this value by m and take the üoor of the 
result. That is, the hash function is 
h.k/ D bm.kA mod 1/c ; 

where <kA mod 1= means the fractional part of kA, that is, kAbkAc. The general 
multiplication method has the advantage that the value of m is not critical and you 
can choose it independently of how you choose the multiplicative constant A. 
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× a D A2 w 

w bits 

k 

r 0 r 1 

h a .k/ 
extract ` bits 

Figure 11.4 The multiply-shift method to compute a hash function. The w-bit representation of 
the key k is multiplied by the w-bit value a D A  2 w . The ` highest-order bits of the lower w-bit 
half of the product form the desired hash value h a .k/. 

The multiply-shift method 

In practice, the multiplication method is best in the special case where the num- 
ber m of hash-table slots is an exact power of 2, so that m D 2 ` for some integer `, 
where ` හ w and w is the number of bits in a machine word. If you choose a ûxed 
w-bit positive integer a D A2 w , where 0 < A < 1 as in the multiplication method 
so that a is in the range 0 < a < 2 w , you can implement the function on most 
computers as follows. We assume that a key k ûts into a single w-bit word. 
Referring to Figure 11.4, ûrst multiply k by the w-bit integer a. The result is a 

2w-bit value r 1 2 w C r 0 , where r 1 is the high-order w-bit word of the product and 
r 0 is the low-order w-bit word of the product. The desired `-bit hash value consists 
of the ` most signiûcant bits of r 0 . (Since r 1 is ignored, the hash function can be 
implemented on a computer that produces only a w-bit product given two w-bit 
inputs, that is, where the multiplication operation computes modulo 2 w .) 
In other words, you deûne the hash function h D h a , where 

h a .k/ D .ka mod 2 w / o .w  `/ (11.2) 
for a ûxed nonzero w-bit value a. Since the product ka of two w-bit words occu- 
pies 2w bits, taking this product modulo 2 w zeroes out the high-order w bits (r 1 ), 
leaving only the low-order w bits (r 0 ). The o operator performs a logical right 
shift by w  ` bits, shifting zeros into the vacated positions on the left, so that the 
` most signiûcant bits of r 0 move into the ` rightmost positions. (It’s the same as 
dividing by 2 w` and taking the üoor of the result.) The resulting value equals the 
` most signiûcant bits of r 0 . The hash function h a can be implemented with three 
machine instructions: multiplication, subtraction, and logical right shift. 

As an example, suppose that k D 123456, ` D 14, m D 2 14 D 16384, and 
w D 32. Suppose further that we choose a D 2654435769 (following a suggestion 
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of Knuth [261]). Then ka D 327706022297664 D .76300  2 32 / C 17612864, and 
so r 1 D 76300 and r 0 D 17612864. The 14 most signiûcant bits of r 0 yield the 
value h a .k/ D 67. 
Even though the multiply-shift method is fast, it doesn’t provide any guarantee 

of good average-case performance. The universal hashing approach presented in 
the next section provides such a guarantee. A simple randomized variant of the 
multiply-shift method works well on the average, when the program begins by 
picking a as a randomly chosen odd integer. 

11.3.2 Random hashing 

Suppose that a malicious adversary chooses the keys to be hashed by some ûxed 
hash function. Then the adversary can choose n keys that all hash to the same slot, 
yielding an average retrieval time of ‚.n/. Any static hash function is vulnerable to 
such terrible worst-case behavior. The only effective way to improve the situation 
is to choose the hash function randomly in a way that is independent of the keys 
that are actually going to be stored. This approach is called random hashing. A 
special case of this approach, called universal hashing, can yield provably good 
performance on average when collisions are handled by chaining, no matter which 
keys the adversary chooses. 

To use random hashing, at the beginning of program execution you select the 
hash function at random from a suitable family of functions. As in the case of 
quicksort, randomization guarantees that no single input always evokes worst-case 
behavior. Because you randomly select the hash function, the algorithm can be- 
have differently on each execution, even for the same set of keys to be hashed, 
guaranteeing good average-case performance. 

Let H be a ûnite family of hash functions that map a given universe U of keys 
into the range f0; 1; : : : ;m  1g. Such a family is said to be universal if for each 
pair of distinct keys k 1 ; k 2 2 U , the number of hash functions h 2 H for which 
h.k 1 / D h.k 2 / is at most jH j =m. In other words, with a hash function randomly 
chosen from H , the chance of a collision between distinct keys k 1 and k 2 is no 
more than the chance 1=m of a collision if h.k 1 / and h.k 2 / were randomly and 
independently chosen from the set f0; 1; : : : ;m  1g. 

Independent uniform hashing is the same as picking a hash function uniformly at 
random from a family of m n hash functions, each member of that family mapping 
the n keys to the m hash values in a different way. 

Every independent uniform random family of hash function is universal, but the 
converse need not be true: consider the case where U D f0; 1; : : : ;m  1g and the 
only hash function in the family is the identity function. The probability that two 
distinct keys collide is zero, even though each key is hashes to a ûxed value. 
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The following corollary to Theorem 11.2 on page 279 says that universal hash- 
ing provides the desired payoff: it becomes impossible for an adversary to pick a 
sequence of operations that forces the worst-case running time. 

Corollary 11.3 
Using universal hashing and collision resolution by chaining in an initially empty 
table with m slots, it takes ‚.s/ expected time to handle any sequence of s I NSERT, 
SEARCH, and DELETE operations containing n D O.m/ I NSERT operations. 

Proof The I NSERT and DELETE operations take constant time. Since the num- 
ber n of insertions is O.m/, we have that ˛ D O.1/. Furthermore, the expected 
time for each SEARCH operation is O.1/, which can be seen by examining the 
proof of Theorem 11.2. That analysis depends only on collision probabilities, 
which are 1=m for any pair k 1 ; k 2 of keys by the choice of an independent uniform 
hash function in that theorem. Using a universal family of hash functions here 
instead of using independent uniform hashing changes the probability of collision 
from 1=m to at most 1=m. By linearity of expectation, therefore, the expected time 
for the entire sequence of s operations is O.s/. Since each operation takes �.1/ 
time, the ‚.s/ bound follows. 

11.3.3 Achievable properties of random hashing 

There is a rich literature on the properties a family H of hash functions can have, 
and how they relate to the efûciency of hashing. We summarize a few of the most 
interesting ones here. 

Let H be a family of hash functions, each with domain U and range f0; 1; : : : ; 
m  1g, and let h be any hash function that is picked uniformly at random from H . 
The probabilities mentioned are probabilities over the picks of h. 
 The family H is uniform if for any key k in U and any slot q in the range 

f0; 1; : : : ;m  1g, the probability that h.k/ D q is 1=m. 
 The family H is universal if for any distinct keys k 1 and k 2 in U , the probability 

that h.k 1 / D h.k 2 / is at most 1=m. 
 The family H of hash functions is -universal if for any distinct keys k 1 and k 2 

in U , the probability that h.k 1 / D h.k 2 / is at most � . Therefore, a universal 
family of hash functions is also 1=m-universal. 2 

2 In the literature, a .c=m/-universal hash function is sometimes called c-universal or c-approxi- 
mately universal. We’ll stick with the notation .c=m/-universal. 
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 The family H is d -independent if for any distinct keys k 1 , k 2 , . . . , k d in U 
and any slots q 1 , q 2 , . . . , q d , not necessarily distinct, in f0; 1; : : : ;m  1g the 
probability that h.k i / D q i for i D 1; 2; : : : ; d is 1=m d . 

Universal hash-function families are of particular interest, as they are the sim- 
plest type supporting provably efûcient hash-table operations for any input data 
set. Many other interesting and desirable properties, such as those noted above, are 
also possible and allow for efûcient specialized hash-table operations. 

11.3.4 Designing a universal family of hash functions 
This section present two ways to design a universal (or � -universal) family of hash 
functions: one based on number theory and another based on a randomized variant 
of the multiply-shift method presented in Section 11.3.1. The ûrst method is a bit 
easier to prove universal, but the second method is newer and faster in practice. 

A universal family of hash functions based on number theory 

We can design a universal family of hash functions using a little number theory. 
You may wish to refer to Chapter 31 if you are unfamiliar with basic concepts in 
number theory. 

Begin by choosing a prime number p large enough so that every possible key k 
lies in the range 0 to p  1, inclusive. We assume here that p has a <reasonable= 
length. (See Section 11.3.5 for a discussion of methods for handling long input 
keys, such as variable-length strings.) Let Z p denote the set f0; 1; : : : ; p  1g, and 
let Z  

p denote the set f1; 2; : : : ; p  1g. Since p is prime, we can solve equations 
modulo p with the methods given in Chapter 31. Because the size of the universe 
of keys is greater than the number of slots in the hash table (otherwise, just use 
direct addressing), we have p > m. 
Given any a 2 Z  

p and any b 2 Z p , deûne the hash function h ab as a linear 
transformation followed by reductions modulo p and then modulo m: 
h ab .k/ D ..ak C b/ mod p/ mod m : (11.3) 
For example, with p D 17 and m D 6, we have 
h 3;4 .8/ D ..3  8 C 4/ mod 17/ mod 6 

D .28 mod 17/ mod 6 
D 11 mod 6 
D 5 : 

Given p and m, the family of all such hash functions is 
H pm D 

˚ 
h ab W a 2 Z  

p and b 2 Z p 
 
: (11.4) 
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Each hash function h ab maps Z p to Z m . This family of hash functions has the nice 
property that the size m of the output range (which is the size of the hash table) is 
arbitrary4it need not be prime. Since you can choose from among p  1 values 
for a and p values for b, the family H pm contains p.p  1/ hash functions. 

Theorem 11.4 
The family H pm of hash functions deûned by equations (11.3) and (11.4) is uni- 
versal. 

Proof Consider two distinct keys k 1 and k 2 from Z p , so that k 1 ¤ k 2 . For a given 
hash function h ab , let 
r 1 D .ak 1 C b/ mod p ; 
r 2 D .ak 2 C b/ mod p : 
We ûrst note that r 1 ¤ r 2 . Why? Since we have r 1  r 2 D a.k 1  k 2 / .mod p/, 
it follows that r 1 ¤ r 2 because p is prime and both a and .k 1  k 2 / are nonzero 
modulo p. By Theorem 31.6 on page 908, their product must also be nonzero 
modulo p. Therefore, when computing any h ab 2 H pm , distinct inputs k 1 and k 2 
map to distinct values r 1 and r 2 modulo p, and there are no collisions yet at the 
<mod p level.= Moreover, each of the possible p.p  1/ choices for the pair .a; b/ 
with a ¤ 0 yields a different resulting pair .r 1 ; r 2 / with r 1 ¤ r 2 , since we can solve 
for a and b given r 1 and r 2 : 
a D 

ã 
.r 1  r 2 /..k 1  k 2 / 1 mod p/ ä mod p ; 

b D .r 1  ak 1 / mod p ; 
where ..k 1  k 2 / 1 mod p/ denotes the unique multiplicative inverse, modulo p, 
of k 1  k 2 . For each of the p possible values of r 1 , there are only p  1 possible 
values of r 2 that do not equal r 1 , making only p.p  1/ possible pairs .r 1 ; r 2 / with 
r 1 ¤ r 2 . Therefore, there is a one-to-one correspondence between pairs .a; b/ with 
a ¤ 0 and pairs .r 1 ; r 2 / with r 1 ¤ r 2 . Thus, for any given pair of distinct inputs 
k 1 and k 2 , if we pick .a; b/ uniformly at random from Z  

p  Z p , the resulting pair 
.r 1 ; r 2 / is equally likely to be any pair of distinct values modulo p. 

Therefore, the probability that distinct keys k 1 and k 2 collide is equal to the 
probability that r 1 D r 2 .mod m/ when r 1 and r 2 are randomly chosen as distinct 
values modulo p. For a given value of r 1 , of the p  1 possible remaining values 
for r 2 , the number of values r 2 such that r 2 ¤ r 1 and r 2 D r 1 .mod m/ is at most l p 
m 

m 
 1 හ 

p C m  1 
m 

 1 (by inequality (3.7) on page 64) 

D 
p  1 
m 

: 
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The probability that r 2 collides with r 1 when reduced modulo m is at most 
..p  1/=m/=.p  1/ D 1=m, since r 2 is equally likely to be any of the p  1 
values in Z p that are different from r 1 , but at most .p  1/=m of those values are 
equivalent to r 1 modulo m. 

Therefore, for any pair of distinct values k 1 ; k 2 2 Z p , 
Pr fh ab .k 1 / D h ab .k 2 /g හ 1=m ; 

so that H pm is indeed universal. 

A 2=m-universal family of hash functions based on the multiply-shift method 

We recommend that in practice you use the following hash-function family based 
on the multiply-shift method. It is exceptionally efûcient and (although we omit 
the proof) provably 2=m-universal. Deûne H to be the family of multiply-shift 
hash functions with odd constants a: 
H D fh a W a is odd, 1 හ a < m, and h a is deûned by equation (11.2)g : (11.5) 

Theorem 11.5 
The family of hash functions H given by equation (11.5) is 2=m-universal. 

That is, the probability that any two distinct keys collide is at most 2=m. In 
many practical situations, the speed of computing the hash function more than 
compensates for the higher upper bound on the probability that two distinct keys 
collide when compared with a universal hash function. 

11.3.5 Hashing long inputs such as vectors or strings 
Sometimes hash function inputs are so long that they cannot be easily encoded 
modulo a reasonably sized prime number p or encoded within a single word of, 
say, 64 bits. As an example, consider the class of vectors, such as vectors of 8-bit 
bytes (which is how strings in many programming languages are stored). A vector 
might have an arbitrary nonnegative length, in which case the length of the input 
to the hash function may vary from input to input. 

Number-theoretic approaches 
One way to design good hash functions for variable-length inputs is to extend the 
ideas used in Section 11.3.4 to design universal hash functions. Exercise 11.3-6 
explores one such approach. 
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Cryptographic hashing 

Another way to design a good hash function for variable-length inputs is to use a 
hash function designed for cryptographic applications. Cryptographic hash func- 
tions are complex pseudorandom functions, designed for applications requiring 
properties beyond those needed here, but are robust, widely implemented, and us- 
able as hash functions for hash tables. 

A cryptographic hash function takes as input an arbitrary byte string and returns 
a ûxed-length output. For example, the NIST standard deterministic cryptographic 
hash function SHA-256 [346] produces a 256-bit (32-byte) output for any input. 

Some chip manufacturers include instructions in their CPU architectures to pro- 
vide fast implementations of some cryptographic functions. Of particular inter- 
est are instructions that efûciently implement rounds of the Advanced Encryption 
Standard (AES), the <AES-NI= instructions. These instructions execute in a few 
tens of nanoseconds, which is generally fast enough for use with hash tables. A 
message authentication code such as CBC-MAC based on AES and the use of the 
AES-NI instructions could be a useful and efûcient hash function. We don’t pursue 
the potential use of specialized instruction sets further here. 

Cryptographic hash functions are useful because they provide a way of imple- 
menting an approximate version of a random oracle. As noted earlier, a random 
oracle is equivalent to an independent uniform hash function family. From a the- 
oretical point of view, a random oracle is an unachievable ideal: a deterministic 
function that provides a randomly selected output for each input. Because it is de- 
terministic, it provides the same output if queried again for the same input. From 
a practical point of view, constructions of hash function families based on crypto- 
graphic hash functions are sensible substitutes for random oracles. 

There are many ways to use a cryptographic hash function as a hash function. 
For example, we could deûne 
h.k/ D SHA-256 .k/ mod m : 
To deûne a family of such hash functions one may prepend a <salt= string a to the 
input before hashing it, as in 
h a .k/ D SHA-256 .a k k/ mod m ; 
where a k k denotes the string formed by concatenating the strings a and k. The lit- 
erature on message authentication codes (MACs) provides additional approaches. 
Cryptographic approaches to hash-function design are becoming more practi- 

cal as computers arrange their memories in hierarchies of differing capacities and 
speeds. Section 11.5 discusses one hash-function design based on the RC6 encryp- 
tion method. 
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Exercises 
11.3-1 
You wish to search a linked list of length n, where each element contains a key 
k along with a hash value h.k/. Each key is a long character string. How might 
you take advantage of the hash values when searching the list for an element with 
a given key? 
11.3-2 
You hash a string of r characters into m slots by treating it as a radix-128 number 
and then using the division method. You can represent the number m as a 32-bit 
computer word, but the string of r characters, treated as a radix-128 number, takes 
many words. How can you apply the division method to compute the hash value of 
the character string without using more than a constant number of words of storage 
outside the string itself? 
11.3-3 
Consider a version of the division method in which h.k/ D k mod m, where 
m D 2 p  1 and k is a character string interpreted in radix 2 p . Show that if string x 
can be converted to string y by permuting its characters, then x and y hash to the 
same value. Give an example of an application in which this property would be 
undesirable in a hash function. 
11.3-4 
Consider a hash table of size m D 1000 and a corresponding hash function h.k/ D 
bm.kA mod 1/c for A D . 

p 
5  1/=2. Compute the locations to which the keys 

61, 62, 63, 64, and 65 are mapped. 
? 11.3-5 

Show that any � -universal family H of hash functions from a ûnite set U to a ûnite 
set Q has �  1= jQj  1= jU j. 

? 11.3-6 
Let U be the set of d -tuples of values drawn from Z p , and let Q D Z p , where p 
is prime. Deûne the hash function h b W U ! Q for b 2 Z p on an input d -tuple 
ha 0 ; a 1 ; : : : ; a d 1 i from U as 

h b .ha 0 ; a 1 ; : : : ; a d 1 i/ D 

 
d 1 X 

j D0 

a j b j 

! 

mod p ; 

and let H D fh b W b 2 Z p g. Argue that H is � -universal for � D .d  1/=p. (Hint: 
See Exercise 31.4-4.) 
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11.4 Open addressing 

This section describes open addressing, a method for collision resolution that, un- 
like chaining, does not make use of storage outside of the hash table itself. In open 
addressing, all elements occupy the hash table itself. That is, each table entry con- 
tains either an element of the dynamic set or NIL. No lists or elements are stored 
outside the table, unlike in chaining. Thus, in open addressing, the hash table can 
<ûll up= so that no further insertions can be made. One consequence is that the 
load factor ˛ can never exceed 1. 

Collisions are handled as follows: when a new element is to be inserted into the 
table, it is placed in its <ûrst-choice= location if possible. If that location is already 
occupied, the new element is placed in its <second-choice= location. The process 
continues until an empty slot is found in which to place the new element. Different 
elements have different preference orders for the locations. 

To search for an element, systematically examine the preferred table slots for 
that element, in order of decreasing preference, until either you ûnd the desired 
element or you ûnd an empty slot and thus verify that the element is not in the 
table. 
Of course, you could use chaining and store the linked lists inside the hash table, 

in the otherwise unused hash-table slots (see Exercise 11.2-4), but the advantage of 
open addressing is that it avoids pointers altogether. Instead of following pointers, 
you compute the sequence of slots to be examined. The memory freed by not 
storing pointers provides the hash table with a larger number of slots in the same 
amount of memory, potentially yielding fewer collisions and faster retrieval. 

To perform insertion using open addressing, successively examine, or probe, the 
hash table until you ûnd an empty slot in which to put the key. Instead of being 
ûxed in the order 0; 1; : : : ;m  1 (which implies a ‚.n/ search time), the sequence 
of positions probed depends upon the key being inserted. To determine which slots 
to probe, the hash function includes the probe number (starting from 0) as a second 
input. Thus, the hash function becomes 
h W U  f0; 1; : : : ;m  1g ! f0; 1; : : : ;m  1g : 

Open addressing requires that for every key k, the probe sequence hh.k;0/;h.k; 1/; 
: : : ; h.k; m  1/i be a permutation of h0; 1; : : : ; m  1i, so that every hash-table 
position is eventually considered as a slot for a new key as the table ûlls up. The 
HASH-I NSERT procedure on the following page assumes that the elements in the 
hash table T are keys with no satellite information: the key k is identical to the 
element containing key k. Each slot contains either a key or NIL (if the slot is 
empty). The HASH-I NSERT procedure takes as input a hash table T and a key k 
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that is assumed to be not already present in the hash table. It either returns the slot 
number where it stores key k or üags an error because the hash table is already full. 

HASH-I NSERT .T; k/ 
1 i D 0 
2 repeat 
3 q D h.k; i/ 
4 if T Œq� == NIL 
5 T Œq� D k 
6 return q 
7 else i D i C 1 
8 until i = = m 
9 error <hash table overüow= 

HASH-SEARCH.T; k/ 
1 i D 0 
2 repeat 
3 q D h.k; i/ 
4 if T Œq� == k 
5 return q 
6 i D i C 1 
7 until T Œq� = = NIL or i == m 
8 return NIL 

The algorithm for searching for key k probes the same sequence of slots that the 
insertion algorithm examined when key k was inserted. Therefore, the search can 
terminate (unsuccessfully) when it ûnds an empty slot, since k would have been 
inserted there and not later in its probe sequence. The procedure HASH-SEARCH 
takes as input a hash table T and a key k, returning q if it ûnds that slot q contains 
key k, or NIL if key k is not present in table T . 
Deletion from an open-address hash table is tricky. When you delete a key from 

slot q, it would be a mistake to mark that slot as empty by simply storing NIL in 
it. If you did, you might be unable to retrieve any key k for which slot q was 
probed and found occupied when k was inserted. One way to solve this problem 
is by marking the slot, storing in it the special value DELETED instead of NIL. The 
HASH-I NSERT procedure then has to treat such a slot as empty so that it can insert 
a new key there. The HASH-SEARCH procedure passes over DELETED values 
while searching, since slots containing DELETED were ûlled when the key being 
searched for was inserted. Using the special value DELETED, however, means that 
search times no longer depend on the load factor ˛, and for this reason chaining is 
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frequently selected as a collision resolution technique when keys must be deleted. 
There is a simple special case of open addressing, linear probing, that avoids the 
need to mark slots with DELETED. Section 11.5.1 shows how to delete from a hash 
table when using linear probing. 

In our analysis, we assume independent uniform permutation hashing (also 
confusingly known as uniform hashing in the literature): the probe sequence of 
each key is equally likely to be any of the mŠ permutations of h0; 1; : : : ; m  1i. 
Independent uniform permutation hashing generalizes the notion of independent 
uniform hashing deûned earlier to a hash function that produces not just a single 
slot number, but a whole probe sequence. True independent uniform permutation 
hashing is difûcult to implement, however, and in practice suitable approximations 
(such as double hashing, deûned below) are used. 
We’ll examine both double hashing and its special case, linear probing. These 

techniques guarantee that hh.k; 0/; h.k; 1/; : : : ; h.k; m  1/i is a permutation 
of h0; 1; : : : ; m  1i for each key k. (Recall that the second parameter to the hash 
function h is the probe number.) Neither double hashing nor linear probing meets 
the assumption of independent uniform permutation hashing, however. Double 
hashing cannot generate more than m 2 different probe sequences (instead of the 
mŠ that independent uniform permutation hashing requires). Nonetheless, double 
hashing has a large number of possible probe sequences and, as you might expect, 
seems to give good results. Linear probing is even more restricted, capable of 
generating only m different probe sequences. 

Double hashing 

Double hashing offers one of the best methods available for open addressing be- 
cause the permutations produced have many of the characteristics of randomly 
chosen permutations. Double hashing uses a hash function of the form 
h.k; i/ D .h 1 .k/ C ih 2 .k// mod m ; 
where both h 1 and h 2 are auxiliary hash functions. The initial probe goes to posi- 
tion T Œh 1 .k/�, and successive probe positions are offset from previous positions by 
the amount h 2 .k/, modulo m. Thus, the probe sequence here depends in two ways 
upon the key k, since the initial probe position h 1 .k/, the step size h 2 .k/, or both, 
may vary. Figure 11.5 gives an example of insertion by double hashing. 

In order for the entire hash table to be searched, the value h 2 .k/ must be rel- 
atively prime to the hash-table size m. (See Exercise 11.4-5.) A convenient way 
to ensure this condition is to let m be an exact power of 2 and to design h 2 so 
that it always produces an odd number. Another way is to let m be prime and to 
design h 2 so that it always returns a positive integer less than m. For example, you 
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Figure 11.5 Insertion by double hashing. The hash table has size 13 with h 1 .k/ D k mod 13 and 
h 2 .k/ D 1 C .k mod 11/. Since 14 D 1 .mod 13/ and 14 D 3 .mod 11/, the key 14 goes into 
empty slot 9, after slots 1 and 5 are examined and found to be occupied. 

could choose m prime and let 
h 1 .k/ D k mod m ; 
h 2 .k/ D 1 C .k mod m 0 / ; 

where m 0 is chosen to be slightly less than m (say, m  1). For example, if 
k D 123456, m D 701, and m 0 D 700, then h 1 .k/ D 80 and h 2 .k/ D 257, so 
that the ûrst probe goes to position 80, and successive probes examine every 257th 
slot (modulo m) until the key has been found or every slot has been examined. 

Although values of m other than primes or exact powers of 2 can in principle 
be used with double hashing, in practice it becomes more difûcult to efûciently 
generate h 2 .k/ (other than choosing h 2 .k/ D 1, which gives linear probing) in a 
way that ensures that it is relatively prime to m, in part because the relative density 
�.m/=m of such numbers for general m may be small (see equation (31.25) on 
page 921). 

When m is prime or an exact power of 2, double hashing produces ‚.m 2 / probe 
sequences, since each possible .h 1 .k/; h 2 .k// pair yields a distinct probe sequence. 
As a result, for such values of m, double hashing appears to perform close to the 
<ideal= scheme of independent uniform permutation hashing. 
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Linear probing 

Linear probing, a special case of double hashing, is the simplest open-addressing 
approach to resolving collisions. As with double hashing, an auxiliary hash func- 
tion h 1 determines the ûrst probe position h 1 .k/ for inserting an element. If slot 
T Œh 1 .k/� is already occupied, probe the next position T Œh 1 .k/ C 1�. Keep going as 
necessary, on up to slot T Œm  1�, and then wrap around to slots T Œ0�, T Œ1�, and so 
on, but never going past slot T Œh 1 .k/  1�. To view linear probing as a special case 
of double hashing, just set the double-hashing step function h 2 to be ûxed at 1: 
h 2 .k/ D 1 for all k. That is, the hash function is 
h.k; i/ D .h 1 .k/ C i/ mod m (11.6) 
for i D 0; 1; : : : ;m  1. The value of h 1 .k/ determines the entire probe sequence, 
and so assuming that h 1 .k/ can take on any value in f0; 1; : : : ;m  1g, linear prob- 
ing allows only m distinct probe sequences. 
We’ll revisit linear probing in Section 11.5.1. 

Analysis of open-address hashing 

As in our analysis of chaining in Section 11.2, we analyze open addressing in terms 
of the load factor ˛ D n=m of the hash table. With open addressing, at most one 
element occupies each slot, and thus n හ m, which implies ˛ හ 1. The analysis 
below requires ˛ to be strictly less than 1, and so we assume that at least one slot 
is empty. Because deleting from an open-address hash table does not really free up 
a slot, we assume as well that no deletions occur. 

For the hash function, we assume independent uniform permutation hashing. In 
this idealized scheme, the probe sequence hh.k; 0/; h.k; 1/; : : : ; h.k;m  1/i used 
to insert or search for each key k is equally likely to be any permutation of h0; 1; 
: : : ;m  1i. Of course, any given key has a unique ûxed probe sequence associated 
with it. What we mean here is that, considering the probability distribution on the 
space of keys and the operation of the hash function on the keys, each possible 
probe sequence is equally likely. 

We now analyze the expected number of probes for hashing with open address- 
ing under the assumption of independent uniform permutation hashing, beginning 
with the expected number of probes made in an unsuccessful search (assuming, as 
stated above, that ˛ < 1). 

The bound proven, of 1=.1  ˛/ D 1 C ˛ C ˛ 2 C ˛ 3 C   , has an intuitive in- 
terpretation. The ûrst probe always occurs. With probability approximately ˛, the 
ûrst probe ûnds an occupied slot, so that a second probe happens. With probability 
approximately ˛ 2 , the ûrst two slots are occupied so that a third probe ensues, and 
so on. 
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Theorem 11.6 
Given an open-address hash table with load factor ˛ D n=m < 1 , the expected 
number of probes in an unsuccessful search is at most 1=.1  ˛/, assuming inde- 
pendent uniform permutation hashing and no deletions. 

Proof In an unsuccessful search, every probe but the last accesses an occupied 
slot that does not contain the desired key, and the last slot probed is empty. Let the 
random variable X denote the number of probes made in an unsuccessful search, 
and deûne the event A i , for i D 1; 2; : : :, as the event that an i th probe occurs 
and it is to an occupied slot. Then the event fX  i g is the intersection of events 
A 1 \A 2 \  \A i 1 . We bound Pr fX  i g by bounding Pr fA 1 \ A 2 \    \ A i 1 g. 
By Exercise C.2-5 on page 1190, 
Pr fA 1 \ A 2 \    \ A i 1 g D Pr fA 1 g  Pr fA 2 j A 1 g  Pr fA 3 j A 1 \ A 2 g    

Pr fA i 1 j A 1 \ A 2 \    \ A i 2 g : 

Since there are n elements and m slots, Pr fA 1 g D n=m. For j > 1, the probability 
that there is a j th probe and it is to an occupied slot, given that the ûrst j  1 
probes were to occupied slots, is .n  j C 1/=.m  j C 1/. This probability follows 
because the j th probe would be ûnding one of the remaining .n  .j  1// elements 
in one of the .m  .j  1// unexamined slots, and by the assumption of independent 
uniform permutation hashing, the probability is the ratio of these quantities. Since 
n < m implies that .n  j /=.m  j / හ n=m for all j in the range 0 හ j < m, it 
follows that for all i in the range 1 හ i හ m, we have 

Pr fX  i g D 
n 
m 

 n  1 
m  1 

 n  2 
m  2 

   n  i C 2 
m  i C 2 

හ 
 n 
m 

Í i 1 

D ˛ i 1 : 

The product in the ûrst line has i  1 factors. When i D 1, the product is 1, the 
identity for multiplication, and we get Pr fX  1g D 1, which makes sense, since 
there must always be at least 1 probe. If each of the ûrst n probes is to an occupied 
slot, then all occupied slots have been probed. Then, the .n C 1/st probe must 
be to an empty slot, which gives Pr fX  i g D 0 for i > n C 1. Now, we use 
equation (C.28) on page 1193 to bound the expected number of probes: 

E ŒX� D 
1 X 

i D1 

Pr fX  i g 

D 
nC1 X 

i D1 

Pr fX  i g C 
X 

i>nC1 

Pr fX  i g 
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හ 
1 X 

i D1 

˛ i 1 C 0 

D 
1 X 

i D0 

˛ i 

D 
1 

1  ˛ 
(by equation (A.7) on page 1142 because 0 හ ˛ < 1) . 

If ̨  is a constant, Theorem 11.6 predicts that an unsuccessful search runs in O.1/ 
time. For example, if the hash table is half full, the average number of probes in an 
unsuccessful search is at most 1=.1  :5/ D 2. If it is 90% full, the average number 
of probes is at most 1=.1  :9/ D 10. 
Theorem 11.6 yields almost immediately how well the HASH-I NSERT procedure 

performs. 

Corollary 11.7 
Inserting an element into an open-address hash table with load factor ˛, where 
˛ < 1, requires at most 1=.1  ˛/ probes on average, assuming independent uni- 
form permutation hashing and no deletions. 

Proof An element is inserted only if there is room in the table, and thus ˛ < 1. 
Inserting a key requires an unsuccessful search followed by placing the key into the 
ûrst empty slot found. Thus, the expected number of probes is at most 1=.1  ̨ /. 

It takes a little more work to compute the expected number of probes for a suc- 
cessful search. 

Theorem 11.8 
Given an open-address hash table with load factor ˛ < 1, the expected number of 
probes in a successful search is at most 
1 
˛ 

ln 1 
1  ˛ 

; 

assuming independent uniform permutation hashing with no deletions and assum- 
ing that each key in the table is equally likely to be searched for. 

Proof A search for a key k reproduces the same probe sequence as when the 
element with key k was inserted. If k was the .i C 1/st key inserted into the 
hash table, then the load factor at the time it was inserted was i=m, and so by 
Corollary 11.7, the expected number of probes made in a search for k is at most 
1=.1  i=m/ D m=.m  i/. Averaging over all n keys in the hash table gives us 
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the expected number of probes in a successful search: 

1 
n 

n1 X 

i D0 

m 
m  i 

D 
m 
n 

n1 X 

i D0 

1 
m  i 

D 
1 
˛ 

m X 

kDmnC1 

1 
k 

හ 
1 
˛ 

Z m 

mn 

1 
x 
dx (by inequality (A.19) on page 1150) 

D 
1 
˛ 
.ln m  ln.m  n// 

D 
1 
˛ 

ln m 
m  n 

D 
1 
˛ 

ln 1 
1  ˛ 

: 

If the hash table is half full, the expected number of probes in a successful search 
is less than 1:387. If the hash table is 90% full, the expected number of probes is 
less than 2:559. If ˛ D 1, then in an unsuccessful search, all m slots must be 
probed. Exercise 11.4-4 asks you to analyze a successful search when ˛ D 1. 

Exercises 
11.4-1 
Consider inserting the keys 10; 22; 31; 4; 15; 28; 17; 88; 59 into a hash table of 
length m D 11 using open addressing. Illustrate the result of inserting these keys 
using linear probing with h.k; i/ D .k C i/ mod m and using double hashing with 
h 1 .k/ D k and h 2 .k/ D 1 C .k mod .m  1//. 
11.4-2 
Write pseudocode for HASH-DELETE that ûlls the deleted key’s slot with the spe- 
cial value DELETED, and modify HASH-SEARCH and HASH-I NSERT as needed to 
handle DELETED. 
11.4-3 
Consider an open-address hash table with independent uniform permutation hash- 
ing and no deletions. Give upper bounds on the expected number of probes in an 
unsuccessful search and on the expected number of probes in a successful search 
when the load factor is 3=4 and when it is 7=8. 
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11.4-4 
Show that the expected number of probes required for a successful search when 
˛ D 1 (that is, when n D m), is H m , the mth harmonic number. 

? 11.4-5 
Show that, with double hashing, if m and h 2 .k/ have greatest common divisor 
d  1 for some key k, then an unsuccessful search for key k examines .1=d/th 
of the hash table before returning to slot h 1 .k/. Thus, when d D 1, so that m 
and h 2 .k/ are relatively prime, the search may examine the entire hash table. (Hint: 
See Chapter 31.) 

? 11.4-6 
Consider an open-address hash table with a load factor ˛. Approximate the nonzero 
value ˛ for which the expected number of probes in an unsuccessful search equals 
twice the expected number of probes in a successful search. Use the upper bounds 
given by Theorems 11.6 and 11.8 for these expected numbers of probes. 

11.5 Practical considerations 

Efûcient hash table algorithms are not only of theoretical interest, but also of im- 
mense practical importance. Constant factors can matter. For this reason, this 
section discusses two aspects of modern CPUs that are not included in the standard 
RAM model presented in Section 2.2: 
Memory hierarchies: The memory of modern CPUs has a number of levels, 

from the fast registers, through one or more levels of cache memory, to the 
main-memory level. Each successive level stores more data than the previous 
level, but access is slower. As a consequence, a complex computation (such as 
a complicated hash function) that works entirely within the fast registers can 
take less time than a single read operation from main memory. Furthermore, 
cache memory is organized in cache blocks of (say) 64 bytes each, which are 
always fetched together from main memory. There is a substantial beneût for 
ensuring that memory usage is local: reusing the same cache block is much 
more efûcient than fetching a different cache block from main memory. 
The standard RAM model measures efûciency of a hash-table operation by 
counting the number of hash-table slots probed. In practice, this metric is only 
a crude approximation to the truth, since once a cache block is in the cache, 
successive probes to that cache block are much faster than probes that must 
access main memory. 
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Advanced instruction sets: Modern CPUs may have sophisticated instruction 
sets that implement advanced primitives useful for encryption or other forms 
of cryptography. These instructions may be useful in the design of exception- 
ally efûcient hash functions. 

Section 11.5.1 discusses linear probing, which becomes the collision-resolution 
method of choice in the presence of a memory hierarchy. Section 11.5.2 suggests 
how to construct <advanced= hash functions based on cryptographic primitives, 
suitable for use on computers with hierarchical memory models. 

11.5.1 Linear probing 

Linear probing is often disparaged because of its poor performance in the standard 
RAM model. But linear probing excels for hierarchical memory models, because 
successive probes are usually to the same cache block of memory. 

Deletion with linear probing 

Another reason why linear probing is often not used in practice is that deletion 
seems complicated or impossible without using the special DELETED value. Yet 
we’ll now see that deletion from a hash table based on linear probing is not all 
that difûcult, even without the DELETED marker. The deletion procedure works 
for linear probing, but not for open-address probing in general, because with lin- 
ear probing keys all follow the same simple cyclic probing sequence (albeit with 
different starting points). 

The deletion procedure relies on an <inverse= function to the linear-probing hash 
function h.k; i/ D .h 1 .k/ C i/ mod m, which maps a key k and a probe number i 
to a slot number in the hash table. The inverse function g maps a key k and a slot 
number q, where 0 හ q < m, to the probe number that reaches slot q: 
g.k; q/ D .q  h 1 .k// mod m : 
If h.k; i/ D q, then g.k; q/ D i , and so h.k; g.k; q// D q. 

The procedure LINEAR-PROBING-HASH-DELETE on the facing page deletes 
the key stored in position q from hash table T . Figure 11.6 shows how it works. 
The procedure ûrst deletes the key in position q by setting T Œq� to NIL in line 2. It 
then searches for a slot q 0 (if any) that contains a key that should be moved to the 
slot q just vacated by key k. Line 9 asks the critical question: does the key k 0 in 
slot q 0 need to be moved to the vacated slot q in order to preserve the accessibility 
of k 0 ? If g.k 0 ; q/ < g.k 0 ; q 0 /, then during the insertion of k 0 into the table, slot q 
was examined but found to be already occupied. But now slot q, where a search 
will look for k 0 , is empty. In this case, key k 0 moves to slot q in line 10, and the 
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Figure 11.6 Deletion in a hash table that uses linear probing. The hash table has size 10 with 
h 1 .k/ D k mod 10. (a) The hash table after inserting keys in the order 74, 43, 93, 18, 82, 38, 92. 
(b) The hash table after deleting the key 43 from slot 3. Key 93 moves up to slot 3 to keep it 
accessible, and then key 92 moves up to slot 5 just vacated by key 93. No other keys need to be 
moved. 

search continues, to see whether any later key also needs to be moved to the slot q 0 
that was just freed up when k 0 moved. 

LINEAR-PROBING-HASH-DELETE .T; q/ 
1 while TRUE 
2 T Œq� D NIL // make slot q empty 
3 q 0 D q // starting point for search 
4 repeat 
5 q 0 D .q 0 C 1/ mod m // next slot number with linear probing 
6 k 0 D T Œq 0 � // next key to try to move 
7 if k 0 = = NIL 
8 return // return when an empty slot is found 
9 until g.k 0 ; q/ < g.k 0 ; q 0 / // was empty slot q probed before q 0 ? 
10 T Œq� D k 0 // move k 0 into slot q 
11 q D q 0 // free up slot q 0 

Analysis of linear probing 

Linear probing is popular to implement, but it exhibits a phenomenon known as 
primary clustering. Long runs of occupied slots build up, increasing the average 
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search time. Clusters arise because an empty slot preceded by i full slots gets ûlled 
next with probability .i C 1/=m. Long runs of occupied slots tend to get longer, 
and the average search time increases. 

In the standard RAM model, primary clustering is a problem, and general dou- 
ble hashing usually performs better than linear probing. By contrast, in a hierar- 
chical memory model, primary clustering is a beneûcial property, as elements are 
often stored together in the same cache block. Searching proceeds through one 
cache block before advancing to search the next cache block. With linear prob- 
ing, the running time for a key k of HASH-I NSERT, HASH-SEARCH, or LINEAR- 
PROBING-HASH-DELETE is at most proportional to the distance from h 1 .k/ to the 
next empty slot. 
The following theorem is due to Pagh et al. [351]. A more recent proof is given 

by Thorup [438]. We omit the proof here. The need for 5-independence is by no 
means obvious; see the cited proofs. 

Theorem 11.9 
If h 1 is 5-independent and ˛ හ 2=3, then it takes expected constant time to search 
for, insert, or delete a key in a hash table using linear probing. 
(Indeed, the expected operation time is O.1=� 2 / for ˛ D 1  � .) 

? 11.5.2 Hash functions for hierarchical memory models 
This section illustrates an approach for designing efûcient hash tables in a modern 
computer system having a memory hierarchy. 

Because of the memory hierarchy, linear probing is a good choice for resolving 
collisions, as probe sequences are sequential and tend to stay within cache blocks. 
But linear probing is most efûcient when the hash function is complex (for exam- 
ple, 5-independent as in Theorem 11.9). Fortunately, having a memory hierarchy 
means that complex hash functions can be implemented efûciently. 
As noted in Section 11.3.5, one approach is to use a cryptographic hash func- 

tion such as SHA-256. Such functions are complex and sufûciently random for 
hash table applications. On machines with specialized instructions, cryptographic 
functions can be quite efûcient. 

Instead, we present here a simple hash function based only on addition, multi- 
plication, and swapping the halves of a word. This function can be implemented 
entirely within the fast registers, and on a machine with a memory hierarchy, its 
latency is small compared with the time taken to access a random slot of the hash 
table. It is related to the RC6 encryption algorithm and can f or practical purposes 
be considered a <random oracle.= 
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The wee hash function 

Let w denote the word size of the machine (e.g., w D 64), assumed to be even, 
and let a and b be w-bit unsigned (nonnegative) integers such that a is odd. Let 
swap.x/ denote the w-bit result of swapping the two w=2-bit halves of w-bit in- 
put x . That is, 
swap.x/ D .x o .w=2// C .x n .w=2// 

where <o= is <logical right shift= (as in equation (11.2)) and <n is <left shift.= 
Deûne 
f a .k/ D swap..2k 2 C ak/ mod 2 w / : 

Thus, to compute f a .k/, evaluate the quadratic function 2k 2 C ak modulo 2 w and 
then swap the left and right halves of the result. 

Let r denote a desired number of <rounds= for the computation of the hash func- 
tion. We’ll use r D 4, but the hash function is well deûned for any nonnegative r . 
Denote by f .r/ a .k/ the result of iterating f a a total of r times (that is, r rounds) 
starting with input value k. For any odd a and any r  0, the function f .r/ a , al- 
though complicated, is one-to-one (see Exercise 11.5-1). A cryptographer would 
view f .r/ a as a simple block cipher operating on w-bit input blocks, with r rounds 
and key a. 
We ûrst deûne the wee hash function h for short inputs, where by <short= we 

means <whose length t is at most w-bits,= so that the input ûts within one computer 
word. We would like inputs of different lengths to be hashed differently. The wee 
hash function h a;b;t;r .k/ for parameters a, b, and r on t -bit input k is deûned as 
h a;b;t;r .k/ D 

ã 
f .r/ aC2t .k C b/ 

ä mod m : (11.7) 
That is, the hash value for t -bit input k is obtained by applying f .r/ aC2t to k C b, then 
taking the ûnal result modulo m. Adding the value b provides hash-dependent 
randomization of the input, in a way that ensures that for variable-length inputs the 
0-length input does not have a ûxed hash value. Adding the value 2t to a ensures 
that the hash function acts differently for inputs of different lengths. (We use 2t 
rather than t to ensure that the key a C 2t is odd if a is odd.) We call this hash 
function <wee= because it uses a tiny amount of memory4more precisely, it can 
be implemented efûciently using only the computer’s fast registers. (This hash 
function does not have a name in the literature; it is a variant we developed for this 
textbook.) 

Speed of the wee hash function 

It is surprising how much efûciency can be bought with locality. Experiments (un- 
published, by the authors) suggest that evaluating the wee hash function takes less 
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time than probing a single randomly chosen slot in a hash table. These experi- 
ments were run on a laptop (2019 MacBook Pro) with w D 64 and a D 123. For 
large hash tables, evaluating the wee hash function was 2 to 10 times faster than 
performing a single probe of the hash table. 

The wee hash function for variable-length inputs 
Sometimes inputs are long4more than one w-bit word in length4or have variable 
length, as discussed in Section 11.3.5. We can extend the wee hash function, de- 
ûned above for inputs that are at most single w-bit word in length, to handle long 
or variable-length inputs. Here is one method for doing so. 

Suppose that an input k has length t (measured in bits). Break k into a sequence 
hk 1 ; k 2 ; : : : ; k u i of w-bit words, where u D dt=we, k 1 contains the least-signiûcant 
w bits of k, and k u contains the most signiûcant bits. If t is not a multiple of w, 
then k u contains fewer than w bits, in which case, pad out the unused high-order 
bits of k u with 0-bits. Deûne the function chop to return a sequence of the w-bit 
words in k: 
chop.k/ D hk 1 ; k 2 ; : : : ; k u i : 
The most important property of the chop operation is that it is one-to-one, given t : 
for any two t -bit keys k and k 0 , if k ¤ k 0 then chop.k/ ¤ chop.k 0 /, and k can be 
derived from chop.k/ and t . The chop operation also has the useful property that a 
single-word input key yields a single-word output sequence: chop.k/ D hki. 

With the chop function in hand, we specify the wee hash function h a;b;t;r .k/ for 
an input k of length t bits as follows: 
h a;b;t;r .k/ D WEE.k; a; b; t; r;m/ ; 
where the procedure WEE deûned on the facing page iterates through the elements 
of the w-bit words returned by chop.k/, applying f r 

a to the sum of the current 
word k i and the previously computed hash value so far, ûnally returning the result 
obtained modulo m. This deûnition for variable-length and long (multiple-word) 
inputs is a consistent extension of the deûnition in equation (11.7) for short (single- 
word) inputs. For practical use, we recommend that a be a randomly chosen odd 
w-bit word, b be a randomly chosen w-bit word, and that r D 4. 

Note that the wee hash function is really a hash function family, with individ- 
ual hash functions determined by parameters a; b; t; r; and m. The (approximate) 
5-independence of the wee hash function family for variable-length inputs can be 
argued based on the assumption that the 1-word wee hash function is a random or- 
acle and on the security of the cipher-block-chaining message authentication code 
(CBC-MAC), as studied by Bellare et al. [42]. The case here is actually simpler 
than that studied in the literature, since if two messages have different lengths t 
and t 0 , then their <keys= are different: a C 2t ¤ a C 2t 0 . We omit the details. 
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WEE.k; a; b; t; r;m/ 
1 u D dt=we 
2 hk 1 ; k 2 ; : : : ; k u i D chop.k/ 
3 q D b 
4 for i D 1 to u 
5 q D f .r/ aC2t .k i C q/ 
6 return q mod m 

This deûnition of a cryptographically inspired hash-function family is meant 
to be realistic, yet only illustrative, and many variations and improvements are 
possible. See the chapter notes for suggestions. 

In summary, we see that when the memory system is hierarchical, it becomes 
advantageous to use linear probing (a special case of double hashing), since suc- 
cessive probes tend to stay in the same cache block. Furthermore, hash functions 
that can be implemented using only the computer’s fast registers are exceptionally 
efûcient, so they can be quite complex and even cryptographically inspired, pro- 
viding the high degree of independence needed for linear probing to work most 
efûciently. 

Exercises 
? 11.5-1 

Complete the argument that for any odd positive integer a and any integer r  0, 
the function f .r/ a is one-to-one. Use a proof by contradiction and make use of the 
fact that the function f a works modulo 2 w . 

? 11.5-2 
Argue that a random oracle is 5-independent. 

? 11.5-3 
Consider what happens to the value f .r/ a .k/ as we üip a single bit k i of the input 
value k, for various values of r . Let k D 

P w1 
i D0 k i 2 i and g a .k/ D 

P w1 
j D0 b j 2 j 

deûne the bit values k i in the input (with k 0 the least-signiûcant bit) and the bit 
values b j in g a .k/ D .2k 2 C ak/ mod 2 w (where g a .k/ is the value that, when 
its halves are swapped, becomes f a .k/). Suppose that üipping a single bit k i of 
the input k may cause any bit b j of g a .k/ to üip, for j  i . What is the least 
value of r for which üipping the value of any single bit k i may cause any bit of the 
output f .r/ a .k/ to üip? Explain. 
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Problems 

11-1 Longest-probe bound for hashing 
Suppose you are using an open-addressed hash table of size m to store n හ m=2 
items. 
a. Assuming independent uniform permutation hashing, show that for i D 
1; 2; : : : ; n, the probability is at most 2 p that the i th insertion requires strictly 
more than p probes. 

b. Show that for i D 1; 2; : : : ; n, the probability is O.1=n 2 / that the i th insertion 
requires more than 2 lg n probes. 

Let the random variable X i denote the number of probes required by the i th inser- 
tion. You have shown in part (b) that Pr fX i > 2 lg ng D O.1=n 2 /. Let the random 
variable X D max fX i W 1 හ i හ ng denote the maximum number of probes re- 
quired by any of the n insertions. 
c. Show that Pr fX > 2 lg ng D O.1=n/. 

d. Show that the expected length E ŒX� of the longest probe sequence is O.lg n/. 

11-2 Searching a static set 
You are asked to implement a searchable set of n elements in which the keys are 
numbers. The set is static (no I NSERT or DELETE operations), and the only opera- 
tion required is SEARCH. You are given an arbitrary amount of time to preprocess 
the n elements so that SEARCH operations run quickly. 
a. Show how to implement SEARCH in O.lg n/ worst-case time using no extra 

storage beyond what is needed to store the elements of the set themselves. 

b. Consider implementing the set by open-address hashing on m slots, and assume 
independent uniform permutation hashing. What is the minimum amount of ex- 
tra storage m  n required to make the average performance of an unsuccessful 
SEARCH operation be at least as good as the bound in part (a)? Your answer 
should be an asymptotic bound on m  n in terms of n. 

11-3 Slot-size bound for chaining 
Given a hash table with n slots, with collisions resolved by chaining, suppose that 
n keys are inserted into the table. Each key is equally likely to be hashed to each 
slot. Let M be the maximum number of keys in any slot after all the keys have 
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been inserted. Your mission is to prove an O.lg n= lg lg n/ upper bound on E ŒM �, 
the expected value of M . 
a. Argue that the probability Q k that exactly k keys hash to a particular slot is 

given by 

Q k D 
Î 
1 
n 

Ï k Î 
1  

1 
n 

Ï nk 
 
n 
k 

! 

: 

b. Let P k be the probability that M D k, that is, the probability that the slot 
containing the most keys contains k keys. Show that P k හ nQ k . 

c. Show that Q k < e k =k k . Hint: Use Stirling’s approximation, equation (3.25) 
on page 67. 

d. Show that there exists a constant c > 1 such that Q k 0 < 1=n 3 for k 0 D 
c lg n= lg lg n. Conclude that P k < 1=n 2 for k  k 0 D c lg n= lg lg n. 

e. Argue that 

E ŒM � හ Pr 
ï 
M > 

c lg n 
lg lg n 

ð 
 n C Pr 

ï 
M හ 

c lg n 
lg lg n 

ð 
 c lg n 

lg lg n 
: 

Conclude that E ŒM � D O.lg n= lg lg n/. 

11-4 Hashing and authentication 
Let H be a family of hash functions in which each hash function h 2 H maps the 
universe U of keys to f0; 1; : : : ;m  1g. 
a. Show that if the family H of hash functions is 2-independent, then it is univer- 

sal. 

b. Suppose that the universe U is the set of n-tuples of values drawn from 
Z p D f0; 1; : : : ; p  1g, where p is prime. Consider an element x D 
hx 0 ; x 1 ; : : : ; x n1 i 2 U . For any n-tuple a D ha 0 ; a 1 ; : : : ; a n1 i 2 U , de- 
ûne the hash function h a by 

h a .x/ D 

 
n1 X 

j D0 

a j x j 

! 

mod p : 

Let H D fh a W a 2 U g. Show that H is universal, but not 2-independent. 
(Hint: Find a key for which all hash functions in H produce the same value.) 
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c. Suppose that we modify H slightly from part (b): for any a 2 U and for any 
b 2 Z p , deûne 

h 0 ab .x/ D 

 
n1 X 

j D0 

a j x j C b 

! 

mod p 

and H 0 D fh 0 
ab W a 2 U and b 2 Z p g. Argue that H 0 is 2-independent. (Hint: 

Consider ûxed n-tuples x 2 U and y 2 U , with x i ¤ y i for some i . What 
happens to h 0 

ab .x/ and h 0 
ab .y/ as a i and b range over Z p ?) 

d. Alice and Bob secretly agree on a hash function h from a 2-independent fam- 
ily H of hash functions. Each h 2 H maps from a universe of keys U to Z p , 
where p is prime. Later, Alice sends a message m to Bob over the internet, 
where m 2 U . She authenticates this message to Bob by also sending an au- 
thentication tag t D h.m/, and Bob checks that the pair .m; t/ he receives 
indeed satisûes t D h.m/. Suppose that an adversary intercepts .m; t/ en route 
and tries to fool Bob by replacing the pair .m; t/ with a different pair .m 0 ; t 0 /. 
Argue that the probability that the adversary succeeds in fooling Bob into ac- 
cepting .m 0 ; t 0 / is at most 1=p, no matter how much computing power the ad- 
versary has, even if the adversary knows the family H of hash functions used. 

Chapter notes 

The books by Knuth [261] and Gonnet and Baeza-Yates [193] are excellent ref- 
erences for the analysis of hashing algorithms. Knuth credits H. P. Luhn (1953) 
for inventing hash tables, along with the chaining method for resolving collisions. 
At about the same time, G. M. Amdahl originated the idea of open addressing. 
The notion of a random oracle was introduced by Bellare et al. [43]. Carter and 
Wegman [80] introduced the notion of universal families of hash functions in 1979. 
Dietzfelbinger et al. [113] invented the multiply-shift hash function and gave a 

proof of Theorem 11.5. Thorup [437] provides extensions and additional analysis. 
Thorup [438] gives a simple proof that linear probing with 5-independent hashing 
takes constant expected time per operation. Thorup also describes the method for 
deletion in a hash table using linear probing. 
Fredman, Koml´ os, and Szemer´ edi [154] developed a perfect hashing scheme 

for static sets4<perfect= because all collisions are avoided. An extension of their 
method to dynamic sets, handling insertions and deletions in amortized expected 
time O.1/, has been given by Dietzfelbinger et al. [114]. 
The wee hash function is based on the RC6 encryption algorithm [379]. Leiser- 

son et al. [292] propose an <RC6MIX= function that is essentially the same as the 
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wee hash function. They give experimental evidence that it has good randomness, 
and they also give a <DOTMIX= function for dealing with variable-length inputs. 
Bellare et al. [42] provide an analysis of the security of the cipher-block-chaining 
message authentication code. This analysis implies that the wee hash function has 
the desired pseudorandomness properties. 



12 Binary Search Trees 

The search tree data structure supports each of the dynamic-set operations listed 
on page 250: SEARCH, MINIMUM, MAXIMUM, PREDECESSOR, SUCCESSOR, 
I NSERT, and DELETE. Thus, you can use a search tree both as a dictionary and as 
a priority queue. 

Basic operations on a binary search tree take time proportional to the height of 
the tree. For a complete binary tree with n nodes, such operations run in ‚.lg n/ 
worst-case time. If the tree is a linear chain of n nodes, however, the same oper- 
ations take ‚.n/ worst-case time. In Chapter 13, we’ll see a variation of binary 
search trees, red-black trees, whose operations guarantee a height of O.lg n/. We 
won’t prove it here, but if you build a binary search tree on a random set of n keys, 
its expected height is O.lg n/ even if you don’t try to limit its height. 

After presenting the basic properties of binary search trees, the following sec- 
tions show how to walk a binary search tree to print its values in sorted order, how 
to search for a value in a binary search tree, how to ûnd the minimum or maximum 
element, how to ûnd the predecessor or successor of an element, and how to insert 
into or delete from a binary search tree. The basic mathematical properties of trees 
appear in Appendix B. 

12.1 What is a binary search tree? 

A binary search tree is organized, as the name suggests, in a binary tree, as shown 
in Figure 12.1. You can represent such a tree with a linked data structure, as in 
Section 10.3. In addition to a key and satellite data, each node object contains 
attributes left , right , and p that point to the nodes corresponding to its left child, 
its right child, and its parent, respectively. If a child or the parent is missing, the 
appropriate attribute contains the value NIL. The tree itself has an attribute root 
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Figure 12.1 Binary search trees. For any node x, the keys in the left subtree of x are at most x: key, 
and the keys in the right subtree of x are at least x: key. Different binary search trees can represent 
the same set of values. The worst-case running time for most search-tree operations is proportional 
to the height of the tree. (a) A binary search tree on 6 nodes with height 2. The top ûgure shows how 
to view the tree conceptually, and the bottom ûgure shows the left, right, and p attributes in each 
node, in the style of Figure 10.6 on page 266. (b) A less efûcient binary search tree, with height 4, 
that contains the same keys. 

that points to the root node, or NIL if the tree is empty. The root node T: root is the 
only node in a tree T whose parent is NIL. 

The keys in a binary search tree are always stored in such a way as to satisfy the 
binary-search-tree property: 
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Let x be a node in a binary search tree. If y is a node in the left subtree 
of x , then y: key හ x: key. If y is a node in the right subtree of x , then 
y: key  x: key. 
Thus, in Figure 12.1(a), the key of the root is 6, the keys 2, 5, and 5 in its left 

subtree are no larger than 6, and the keys 7 and 8 in its right subtree are no smaller 
than 6. The same property holds for every node in the tree. For example, looking 
at the root’s left child as the root of a subtree, this subtree root has the key 5, the 
key 2 in its left subtree is no larger than 5, and the key 5 in its right subtree is no 
smaller than 5. 
Because of the binary-search-tree property, you can print out all the keys in a 

binary search tree in sorted order by a simple recursive algorithm, called an inorder 
tree walk, given by the procedure I NORDER-TREE-WALK. This algorithm is so 
named because it prints the key of the root of a subtree between printing the values 
in its left subtree and printing those in its right subtree. (Similarly, a preorder tree 
walk prints the root before the values in either subtree, and a postorder tree walk 
prints the root after the values in its subtrees.) To print all the elements in a binary 
search tree T , call I NORDER-TREE-WALK .T: root /. For example, the inorder tree 
walk prints the keys in each of the two binary search trees from Figure 12.1 in the 
order 2; 5; 5; 6; 7; 8. The correctness of the algorithm follows by induction directly 
from the binary-search-tree property. 

I NORDER-TREE-WALK .x/ 
1 if x ¤ NIL 
2 I NORDER-TREE-WALK .x: left/ 
3 print x: key 
4 I NORDER-TREE-WALK .x: right / 

It takes ‚.n/ time to walk an n-node binary search tree, since after the initial 
call, the procedure calls itself recursively exactly twice for each node in the tree4 
once for its left child and once for its right child. The following theorem gives a 
formal proof that it takes linear time to perform an inorder tree walk. 

Theorem 12.1 
If x is the root of an n-node subtree, then the call I NORDER-TREE-WALK .x/ 
takes ‚.n/ time. 

Proof Let T .n/ denote the time taken by I NORDER-TREE-WALK when it is 
called on the root of an n-node subtree. Since I NORDER-TREE-WALK visits all n 
nodes of the subtree, we have T .n/ D �.n/. It remains to show that T .n/ D O.n/. 
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Since I NORDER-TREE-WALK takes a small, constant amount of time on an 
empty subtree (for the test x ¤ NIL), we have T .0/ D c for some constant c > 0. 

For n > 0, suppose that I NORDER-TREE-WALK is called on a node x whose 
left subtree has k nodes and whose right subtree has n  k  1 nodes. The time to 
perform I NORDER-TREE-WALK .x/ is bounded by T .n/ හ T .k/CT .nk 1/Cd 
for some constant d > 0 that reüects an upper bound on the time to execute the 
body of I NORDER-TREE-WALK .x/, exclusive of the time spent in recursive calls. 

We use the substitution method to show that T .n/ D O.n/ by proving that 
T .n/ හ .c C d/n C c . For n D 0, we have .c C d/  0 C c D c D T .0/. For n > 0, 
we have 
T .n/ හ T .k/ C T .n  k  1/ C d 

හ ..c C d/k C c/ C ..c C d/.n  k  1/ C c/ C d 
D .c C d/n C c  .c C d/ C c C d 
D .c C d/n C c ; 

which completes the proof. 

Exercises 
12.1-1 
For the set f1; 4; 5; 10; 16; 17; 21g of keys, draw binary search trees of heights 2, 3, 
4, 5, and 6. 
12.1-2 
What is the difference between the binary-search-tree property and the min-heap 
property on page 163? Can the min-heap property be used to print out the keys of 
an n-node tree in sorted order in O.n/ time? Show how, or explain why not. 
12.1-3 
Give a nonrecursive algorithm that performs an inorder tree walk. (Hint: An easy 
solution uses a stack as an auxiliary data structure. A more complicated, but ele- 
gant, solution uses no stack but assumes that you can test two pointers for equality.) 
12.1-4 
Give recursive algorithms that perform preorder and postorder tree walks in ‚.n/ 
time on a tree of n nodes. 
12.1-5 
Argue that since sorting n elements takes �.n lg n/ time in the worst case in 
the comparison model, any comparison-based algorithm for constructing a binary 
search tree from an arbitrary list of n elements takes �.n lg n/ time in the worst 
case. 
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12.2 Querying a binary search tree 

Binary search trees can support the queries M INIMUM, MAXIMUM, SUCCESSOR, 
and PREDECESSOR, as well as SEARCH. This section examines these operations 
and shows how to support each one in O.h/ time on any binary search tree of 
height h. 

Searching 

To search for a node with a given key in a binary search tree, call the TREE- 
SEARCH procedure. Given a pointer x to the root of a subtree and a key k, 
TREE-SEARCH .x; k/ returns a pointer to a node with key k if one exists in the 
subtree; otherwise, it returns NIL. To search for key k in the entire binary search 
tree T , call TREE-SEARCH .T: root ; k/. 

TREE-SEARCH .x; k/ 
1 if x = = NIL or k == x: key 
2 return x 
3 if k < x: key 
4 return TREE-SEARCH.x: left; k/ 
5 else return TREE-SEARCH.x: right ; k/ 

I TERATIVE-TREE-SEARCH .x; k/ 
1 while x ¤ NIL and k ¤ x: key 
2 if k < x: key 
3 x D x: left 
4 else x D x: right 
5 return x 

The TREE-SEARCH procedure begins its search at the root and traces a simple 
path downward in the tree, as shown in Figure 12.2(a). For each node x it encoun- 
ters, it compares the key k with x: key. If the two keys are equal, the search termi- 
nates. If k is smaller than x: key, the search continues in the left subtree of x , since 
the binary-search-tree property implies that k cannot reside in the right subtree. 
Symmetrically, if k is larger than x: key, the search continues in the right subtree. 
The nodes encountered during the recursion form a simple path downward from 
the root of the tree, and thus the running time of TREE-SEARCH is O.h/, where h 
is the height of the tree. 
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Figure 12.2 Queries on a binary search tree. Nodes and paths followed in each query are colored 
blue. (a) A search for the key 13 in the tree follows the path 15 ! 6 ! 7 ! 13 from the root. 
(b) The minimum key in the tree is 2, which is found by following left pointers from the root. The 
maximum key 20 is found by following right pointers from the root. (c) The successor of the node 
with key 15 is the node with key 17, since it is the minimum key in the right subtree of 15. (d) The 
node with key 13 has no right subtree, and thus its successor is its lowest ancestor whose left child is 
also an ancestor. In this case, the node with key 15 is its successor. 

Since the TREE-SEARCH procedure recurses on either the left subtree or the 
right subtree, but not both, we can rewrite the algorithm to <unroll= the recursion 
into a while loop. On most computers, the I TERATIVE-TREE-SEARCH procedure 
on the facing page is more efûcient. 

Minimum and maximum 

To ûnd an element in a binary search tree whose key is a minimum, just follow left 
child pointers from the root until you encounter a NIL, as shown in Figure 12.2(b). 
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The TREE-MINIMUM procedure returns a pointer to the minimum element in the 
subtree rooted at a given node x , which we assume to be non-NIL. 

TREE-MINIMUM.x/ 
1 while x: left ¤ NIL 
2 x D x: left 
3 return x 

TREE-MAXIMUM.x/ 
1 while x: right ¤ NIL 
2 x D x: right 
3 return x 

The binary-search-tree property guarantees that TREE-MINIMUM is correct. If 
node x has no left subtree, then since every key in the right subtree of x is at least as 
large as x: key, the minimum key in the subtree rooted at x is x: key. If node x has 
a left subtree, then since no key in the right subtree is smaller than x: key and every 
key in the left subtree is not larger than x: key, the minimum key in the subtree 
rooted at x resides in the subtree rooted at x: left. 

The pseudocode for TREE-MAXIMUM is symmetric. Both TREE-MINIMUM 
and TREE-MAXIMUM run in O.h/ time on a tree of height h since, as in TREE- 
SEARCH, the sequence of nodes encountered forms a simple path downward from 
the root. 

Successor and predecessor 
Given a node in a binary search tree, how can you ûnd its successor in the sorted 
order determined by an inorder tree walk? If all keys are distinct, the successor of a 
node x is the node with the smallest key greater than x: key. Regardless of whether 
the keys are distinct, we deûne the successor of a node as the next node visited in an 
inorder tree walk. The structure of a binary search tree allows you to determine the 
successor of a node without comparing keys. The TREE-SUCCESSOR procedure 
on the facing page returns the successor of a node x in a binary search tree if it 
exists, or NIL if x is the last node that would be visited during an inorder walk. 

The code for TREE-SUCCESSOR has two cases. If the right subtree of node x 
is nonempty, then the successor of x is just the leftmost node in x ’s right subtree, 
which line 2 ûnds by calling TREE-MINIMUM.x: right /. For example, the succes- 
sor of the node with key 15 in Figure 12.2(c) is the node with key 17. 
On the other hand, as Exercise 12.2-6 asks you to show, if the right subtree of 

node x is empty and x has a successor y , then y is the lowest ancestor of x whose 
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TREE-SUCCESSOR.x/ 
1 if x: right ¤ NIL 
2 return TREE-MINIMUM.x: right / // leftmost node in right subtree 
3 else // ûnd the lowest ancestor of x whose left child is an ancestor of x 
4 y D x: p 
5 while y ¤ NIL and x = = y: right 
6 x D y 
7 y D y: p 
8 return y 

left child is also an ancestor of x . In Figure 12.2(d), the successor of the node 
with key 13 is the node with key 15. To ûnd y , go up the tree from x until you 
encounter either the root or a node that is the left child of its parent. Lines 438 of 
TREE-SUCCESSOR handle this case. 

The running time of TREE-SUCCESSOR on a tree of height h is O.h/, since it 
either follows a simple path up the tree or follows a simple path down the tree. The 
procedure TREE-PREDECESSOR, which is symmetric to TREE-SUCCESSOR, also 
runs in O.h/ time. 

In summary, we have proved the following theorem. 

Theorem 12.2 
The dynamic-set operations SEARCH, MINIMUM, MAXIMUM, SUCCESSOR, and 
PREDECESSOR can be implemented so that each one runs in O.h/ time on a binary 
search tree of height h. 

Exercises 
12.2-1 
You are searching for the number 363 in a binary search tree containing numbers 
between 1 and 1000. Which of the following sequences cannot be the sequence of 
nodes examined? 
a. 2, 252, 401, 398, 330, 344, 397, 363. 
b. 924, 220, 911, 244, 898, 258, 362, 363. 
c. 925, 202, 911, 240, 912, 245, 363. 
d. 2, 399, 387, 219, 266, 382, 381, 278, 363. 
e. 935, 278, 347, 621, 299, 392, 358, 363. 
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12.2-2 
Write recursive versions of TREE-MINIMUM and TREE-MAXIMUM. 
12.2-3 
Write the TREE-PREDECESSOR procedure. 
12.2-4 
Professor Kilmer claims to have discovered a remarkable property of binary search 
trees. Suppose that the search for key k in a binary search tree ends up at a leaf. 
Consider three sets: A, the keys to the left of the search path; B , the keys on 
the search path; and C , the keys to the right of the search path. Professor Kilmer 
claims that any three keys a 2 A, b 2 B , and c 2 C must satisfy a හ b හ c . Give 
a smallest possible counterexample to the professor’s claim. 
12.2-5 
Show that if a node in a binary search tree has two children, then its successor has 
no left child and its predecessor has no right child. 
12.2-6 
Consider a binary search tree T whose keys are distinct. Show that if the right 
subtree of a node x in T is empty and x has a successor y , then y is the lowest 
ancestor of x whose left child is also an ancestor of x . (Recall that every node is 
its own ancestor.) 
12.2-7 
An alternative method of performing an inorder tree walk of an n-node binary 
search tree ûnds the minimum element in the tree by calling TREE-MINIMUM and 
then making n  1 calls to TREE-SUCCESSOR. Prove that this algorithm runs 
in ‚.n/ time. 
12.2-8 
Prove that no matter what node you start at in a height-h binary search tree, k 
successive calls to TREE-SUCCESSOR take O.k C h/ time. 
12.2-9 
Let T be a binary search tree whose keys are distinct, let x be a leaf node, and let y 
be its parent. Show that y: key is either the smallest key in T larger than x: key or 
the largest key in T smaller than x: key. 
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12.3 Insertion and deletion 

The operations of insertion and deletion cause the dynamic set represented by a 
binary search tree to change. The data structure must be modiûed to reüect this 
change, but in such a way that the binary-search-tree property continues to hold. 
We’ll see that modifying the tree to insert a new element is relatively straightfor- 
ward, but deleting a node from a binary search tree is more complicated. 

Insertion 

The TREE-I NSERT procedure inserts a new node into a binary search tree. The 
procedure takes a binary search tree T and a node ´ for which ´: key has already 
been ûlled in, ´: left D NIL, and ´: right D NIL. It modiûes T and some of the 
attributes of ´ so as to insert ´ into an appropriate position in the tree. 

TREE-I NSERT .T; ´/ 
1 x D T: root // node being compared with ´ 
2 y D NIL // y will be parent of ´ 
3 while x ¤ NIL // descend until reaching a leaf 
4 y D x 
5 if ´: key < x: key 
6 x D x: left 
7 else x D x: right 
8 ´: p D y // found the location4insert ´ with parent y 
9 if y == NIL 
10 T: root D ´ // tree T was empty 
11 elseif ´: key < y: key 
12 y: left D ´ 
13 else y: right D ´ 

Figure 12.3 shows how TREE-I NSERT works. Just like the procedures TREE- 
SEARCH and I TERATIVE-T REE-SEARCH, TREE-I NSERT begins at the root of the 
tree and the pointer x traces a simple path downward looking for a NIL to replace 
with the input node ´. The procedure maintains the trailing pointer y as the parent 
of x . After initialization, the while loop in lines 337 causes these two pointers 
to move down the tree, going left or right depending on the comparison of ´: key 
with x: key, until x becomes NIL. This NIL occupies the position where node ´ will 
go. More precisely, this NIL is a left or right attribute of the node that will become 
´’s parent, or it is T: root if tree T is currently empty. The procedure needs the 
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Figure 12.3 Inserting a node with key 13 into a binary search tree. The simple path from the root 
down to the position where the node is inserted is shown in blue. The new node and the link to its 
parent are highlighted in orange. 

trailing pointer y , because by the time it ûnds the NIL where ´ belongs, the search 
has proceeded one step beyond the node that needs to be changed. Lines 8313 set 
the pointers that cause ´ to be inserted. 

Like the other primitive operations on search trees, the procedure TREE-I NSERT 
runs in O.h/ time on a tree of height h. 

Deletion 

The overall strategy for deleting a node ´ from a binary search tree T has three 
basic cases and, as we’ll see, one of the cases is a bit tricky. 
 If ´ has no children, then simply remove it by modifying its parent to replace ´ 

with NIL as its child. 
 If ´ has just one child, then elevate that child to take ´’s position in the tree by 

modifying ´’s parent to replace ´ by ´’s child. 
 If ´ has two children, ûnd ´’s successor y 4which must belong to ´’s right 

subtree4and move y to take ´’s position in the tree. The rest of ´’s original 
right subtree becomes y ’s new right subtree, and ´’s left subtree becomes y ’s 
new left subtree. Because y is ´’s successor, it cannot have a left child, and y ’s 
original right child moves into y ’s original position, with the rest of y ’s original 
right subtree following automatically. This case is the tricky one because, as 
we’ll see, it matters whether y is ´’s right child. 

The procedure for deleting a given node ´ from a binary search tree T takes as 
arguments pointers to T and ´. It organizes its cases a bit differently from the three 
cases outlined previously by considering the four cases shown in Figure 12.4. 
 If ´ has no left child, then as in part (a) of the ûgure, replace ´ by its right child, 

which may or may not be NIL. When ´’s right child is NIL, this case deals with 
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Figure 12.4 Deleting a node ´, in blue, from a binary search tree. Node ´ may be the root, a left 
child of node q, or a right child of q. The node that will replace node ´ in its position in the tree 
is colored orange. (a) Node ´ has no left child. Replace ´ by its right child r , which may or may 
not be NIL. (b) Node ´ has a left child l but no right child. Replace ´ by l . (c) Node ´ has two 
children. Its left child is node l , its right child is its successor y (which has no left child), and y’s 
right child is node x. Replace ´ by y, updating y’s left child to become l , but leaving x as y’s right 
child. (d) Node ´ has two children (left child l and right child r ), and its successor y ¤ r lies within 
the subtree rooted at r . First replace y by its own right child x, and set y to be r ’s parent. Then set y 
to be q’s child and the parent of l . 
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the situation in which ´ has no children. When ´’s right child is non-NIL, this 
case handles the situation in which ´ has just one child, which is its right child. 

 Otherwise, if ´ has just one child, then that child is a left child. As in part (b) 
of the ûgure, replace ´ by its left child. 

 Otherwise, ´ has both a left and a right child. Find ´’s successor y , which lies 
in ´’s right subtree and has no left child (see Exercise 12.2-5). Splice node y 
out of its current location and replace ´ by y in the tree. How to do so depends 
on whether y is ´’s right child: 
B If y is ´’s right child, then as in part (c) of the ûgure, replace ´ by y , leaving 
y ’s right child alone. 

B Otherwise, y lies within ´’s right subtree but is not ´’s right child. In this 
case, as in part (d) of the ûgure, ûrst replace y by its own right child, and 
then replace ´ by y . 

As part of the process of deleting a node, subtrees need to move around within 
the binary search tree. The subroutine TRANSPLANT replaces one subtree as a 
child of its parent with another subtree. When TRANSPLANT replaces the sub- 
tree rooted at node u with the subtree rooted at node v, node u’s parent be- 
comes node v’s parent, and u’s parent ends up having v as its appropriate child. 
TRANSPLANT allows v to be NIL instead of a pointer to a node. 

TRANSPLANT .T; u; v/ 
1 if u: p = = NIL 
2 T: root D v 
3 elseif u = = u: p: left 
4 u: p: left D v 
5 else u: p: right D v 
6 if v ¤ NIL 
7 v: p D u: p 

Here is how TRANSPLANT works. Lines 132 handle the case in which u is the 
root of T . Otherwise, u is either a left child or a right child of its parent. Lines 334 
take care of updating u: p: left if u is a left child, and line 5 updates u: p: right if u 
is a right child. Because v may be NIL, lines 637 update v: p only if v is non-NIL. 
The procedure TRANSPLANT does not attempt to update v: left and v: right . Doing 
so, or not doing so, is the responsibility of TRANSPLANT’s caller. 

The procedure TREE-DELETE on the facing page uses TRANSPLANT to delete 
node ´ from binary search tree T . It executes the four cases as follows. Lines 132 
handle the case in which node ´ has no left child (Figure 12.4(a)), and lines 334 
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handle the case in which ´ has a left child but no right child (Figure 12.4(b)). Lines 
5312 deal with the remaining two cases, in which ´ has two children. Line 5 ûnds 
node y , which is the successor of ´. Because ´ has a nonempty right subtree, its 
successor must be the node in that subtree with the smallest key; hence the call to 
TREE-MINIMUM.´: right /. As we noted before, y has no left child. The procedure 
needs to splice y out of its current location and replace ´ by y in the tree. If y is 
´’s right child (Figure 12.4(c)), then lines 10312 replace ´ as a child of its parent 
by y and replace y ’s left child by ´’s left child. Node y retains its right child 
(x in Figure 12.4(c)), and so no change to y: right needs to occur. If y is not ´’s 
right child (Figure 12.4(d)), then two nodes have to move. Lines 739 replace y as a 
child of its parent by y ’s right child (x in Figure 12.4(c)) and make ´’s right child 
(r in the ûgure) become y ’s right child instead. Finally, lines 10312 replace ´ as a 
child of its parent by y and replace y ’s left child by ´’s left child. 

TREE-DELETE .T; ´/ 
1 if ´: left == NIL 
2 TRANSPLANT .T; ´; ´: right / // replace ´ by its right child 
3 elseif ´: right == NIL 
4 TRANSPLANT .T; ´; ´: left / // replace ´ by its left child 
5 else y D TREE-MINIMUM.´: right / // y is ´’s successor 
6 if y ¤ ´: right // is y farther down the tree? 
7 TRANSPLANT .T; y; y: right / // replace y by its right child 
8 y: right D ´: right // ´’s right child becomes 
9 y: right : p D y // y ’s right child 
10 TRANSPLANT .T; ´; y/ // replace ´ by its successor y 
11 y: left D ´: left // and give ´’s left child to y, 
12 y: left: p D y // which had no left child 

Each line of TREE-DELETE, including the calls to TRANSPLANT, takes constant 
time, except for the call to TREE-MINIMUM in line 5. Thus, TREE-DELETE runs 
in O.h/ time on a tree of height h. 

In summary, we have proved the following theorem. 

Theorem 12.3 
The dynamic-set operations I NSERT and DELETE can be implemented so that each 
one runs in O.h/ time on a binary search tree of height h. 
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Exercises 
12.3-1 
Give a recursive version of the TREE-I NSERT procedure. 
12.3-2 
Suppose that you construct a binary search tree by repeatedly inserting distinct 
values into the tree. Argue that the number of nodes examined in searching for a 
value in the tree is 1 plus the number of nodes examined when the value was ûrst 
inserted into the tree. 
12.3-3 
You can sort a given set of n numbers by ûrst building a binary search tree contain- 
ing these numbers (using TREE-I NSERT repeatedly to insert the numbers one by 
one) and then printing the numbers by an inorder tree walk. What are the worst- 
case and best-case running times for this sorting algorithm? 
12.3-4 
When TREE-DELETE calls TRANSPLANT, under what circumstances can the pa- 
rameter v of TRANSPLANT be NIL? 
12.3-5 
Is the operation of deletion <commutative= in the sense that deleting x and then y 
from a binary search tree leaves the same tree as deleting y and then x ? Argue why 
it is or give a counterexample. 
12.3-6 
Suppose that instead of each node x keeping the attribute x: p, pointing to x ’s 
parent, it keeps x: succ, pointing to x ’s successor. Give pseudocode for TREE- 
SEARCH, TREE-I NSERT, and TREE-DELETE on a binary search tree T using this 
representation. These procedures should operate in O.h/ time, where h is the 
height of the tree T . You may assume that all keys in the binary search tree are 
distinct. (Hint: You might wish to implement a subroutine that returns the parent 
of a node.) 
12.3-7 
When node ´ in TREE-DELETE has two children, you can choose node y to be 
its predecessor rather than its successor. What other changes to TREE-DELETE 
are necessary if you do so? Some have argued that a fair strategy, giving equal 
priority to predecessor and successor, yields better empirical performance. How 
might TREE-DELETE be minimally changed to implement such a fair strategy? 
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Problems 

12-1 Binary search trees with equal keys 
Equal keys pose a problem for the implementation of binary search trees. 
a. What is the asymptotic performance of TREE-I NSERT when used to insert n 

items with identical keys into an initially empty binary search tree? 
Consider changing TREE-I NSERT to test whether ´: key D x: key before line 5 and 
to test whether ´: key D y: key before line 11. If equality holds, implement one 
of the following strategies. For each strategy, ûnd the asymptotic performance of 
inserting n items with identical keys into an initially empty binary search tree. (The 
strategies are described for line 5, which compares the keys of ´ and x . Substitute 
y for x to arrive at the strategies for line 11.) 
b. Keep a boolean üag x: b at node x , and set x to either x: left or x: right based on 

the value of x: b, which alternates between FALSE and TRUE each time TREE- 
I NSERT visits x while inserting a node with the same key as x . 

c. Keep a list of nodes with equal keys at x , and insert ´ into the list. 

d. Randomly set x to either x: left or x: right. (Give the worst-case performance 
and informally derive the expected running time.) 

12-2 Radix trees 
Given two strings a D a 0 a 1 : : : a p and b D b 0 b 1 : : : b q , where each a i and each b j 
belongs to some ordered set of characters, we say that string a is lexicographically 
less than string b if either 
1. there exists an integer j , where 0 හ j හ min fp; qg, such that a i D b i for all 
i D 0; 1; : : : ; j  1 and a j < b j , or 

2. p < q and a i D b i for all i D 0; 1; : : : ; p. 
For example, if a and b are bit strings, then 10100 < 10110 by rule 1 (letting 
j D 3) and 10100 < 101000 by rule 2. This ordering is similar to that used in 
English-language dictionaries. 

The radix tree data structure shown in Figure 12.5 (also known as a trie) stores 
the bit strings 1011, 10, 011, 100, and 0. When searching for a key a D a 0 a 1 : : : a p , 
go left at a node of depth i if a i D 0 and right if a i D 1. Let S be a set of 
distinct bit strings whose lengths sum to n. Show how to use a radix tree to sort S 
lexicographically in ‚.n/ time. For the example in Figure 12.5, the output of the 
sort should be the sequence 0, 011, 10, 100, 1011. 
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Figure 12.5 A radix tree storing the bit strings 1011, 10, 011, 100, and 0. To determine each node’s 
key, traverse the simple path from the root to that node. There is no need, therefore, to store the keys 
in the nodes. The keys appear here for illustrative purposes only. Keys corresponding to blue nodes 
are not in the tree. Such nodes are present only to establish a path to other nodes. 

12-3 Average node depth in a randomly built binary search tree 
A randomly built binary search tree on n keys is a binary search tree created by 
starting with an empty tree and inserting the keys in random order, where each of 
the nŠ permutations of the keys is equally likely. In this problem, you will prove 
that the average depth of a node in a randomly built binary search tree with n nodes 
is O.lg n/. The technique reveals a surprising similarity between the building of 
a binary search tree and the execution of RANDOMIZED-QUICKSORT from Sec- 
tion 7.3. 

Denote the depth of any node x in tree T by d.x; T /. Then the total path 
length P.T / of a tree T is the sum, over all nodes x in T , of d.x; T /. 
a. Argue that the average depth of a node in T is 

1 
n 

X 

x2T 

d.x; T / D 
1 
n 
P.T / : 

Thus, you need to show that the expected value of P.T / is O.n lg n/. 
b. Let T L and T R denote the left and right subtrees of tree T , respectively. Argue 

that if T has n nodes, then 

P.T / D P.T L / C P.T R / C n  1 : 

c. Let P.n/ denote the average total path length of a randomly built binary search 
tree with n nodes. Show that 
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P.n/ D 
1 
n 

n1 X 

i D0 

.P.i/ C P.n  i  1/ C n  1/ : 

d. Show how to rewrite P.n/ as 

P.n/ D 
2 
n 

n1 X 

kD1 

P.k/ C ‚.n/ : 

e. Recalling the alternative analysis of the randomized version of quicksort given 
in Problem 7-3, conclude that P.n/ D O.n lg n/. 

Each recursive invocation of randomized quicksort chooses a random pivot element 
to partition the set of elements being sorted. Each node of a binary search tree 
partitions the set of elements that fall into the subtree rooted at that node. 
f. Describe an implementation of quicksort in which the comparisons to sort a set 

of elements are exactly the same as the comparisons to insert the elements into 
a binary search tree. (The order in which comparisons are made may differ, but 
the same comparisons must occur.) 

12-4 Number of different binary trees 
Let b n denote the number of different binary trees with n nodes. In this problem, 
you will ûnd a formula for b n , as well as an asymptotic estimate. 
a. Show that b 0 D 1 and that, for n  1, 

b n D 
n1 X 

kD0 

b k b n1k : 

b. Referring to Problem 4-5 on page 121 for the deûnition of a generating function, 
let B.x/ be the generating function 

B.x/ D 
1 X 

nD0 

b n x n : 

Show that B.x/ D xB.x/ 2 C 1, and hence one way to express B.x/ in closed 
form is 
B.x/ D 

1 
2x 

ã 
1  

p 
1  4x 

ä 
: 

The Taylor expansion of f .x/ around the point x D a is given by 
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f .x/ D 
1 X 

kD0 

f .k/ .a/ 
kŠ 

.x  a/ k ; 

where f .k/ .x/ is the kth derivative of f evaluated at x . 
c. Show that 

b n D 
1 

n C 1 

 
2n 
n 

! 

(the nth Catalan number) by using the Taylor expansion of p 
1  4x around 

x D 0. (If you wish, instead of using the Taylor expansion, you may use 
the generalization of the binomial theorem, equation (C.4) on page 1181, to 
noninteger exponents n, where for any real number n and for any integer k, you 
can interpret ã n 

k 

ä to be n.n  1/    .n  k C 1/=kŠ if k  0, and 0 otherwise.) 
d. Show that 

b n D 
4 n 

p 
�n 3=2 

.1 C O.1=n// : 

Chapter notes 

Knuth [261] contains a good discussion of simple binary search trees as well as 
many variations. Binary search trees seem to have been independently discovered 
by a number of people in the late 1950s. Radix trees are often called <tries,= which 
comes from the middle letters in the word retrieval. Knuth [261] also discusses 
them. 
Many texts, including the ûrst two editions of this book, describe a somewhat 

simpler method of deleting a node from a binary search tree when both of its chil- 
dren are present. Instead of replacing node ´ by its successor y , delete node y but 
copy its key and satellite data into node ´. The downside of this approach is that 
the node actually deleted might not be the node passed to the delete procedure. If 
other components of a program maintain pointers to nodes in the tree, they could 
mistakenly end up with <stale= pointers to nodes that have been deleted. Although 
the deletion method presented in this edition of this book is a bit more complicated, 
it guarantees that a call to delete node ´ deletes node ´ and only node ´. 
Section 14.5 will show how to construct an optimal binary search tree when 

you know the search frequencies before constructing the tree. That is, given the 
frequencies of searching for each key and the frequencies of searching for values 
that fall between keys in the tree, a set of searches in the constructed binary search 
tree examines the minimum number of nodes. 



13 Red-Black Trees 

Chapter 12 showed that a binary search tree of height h can support any of the basic 
dynamic-set operations4such as SEARCH, PREDECESSOR, SUCCESSOR, MINI - 
MUM, MAXIMUM, I NSERT, and DELETE4in O.h/ time. Thus, the set operations 
are fast if the height of the search tree is small. If its height is large, however, the 
set operations may run no faster than with a linked list. Red-black trees are one 
of many search-tree schemes that are <balanced= in order to guarantee that basic 
dynamic-set operations take O.lg n/ time in the worst case. 

13.1 Properties of red-black trees 

A red-black tree is a binary search tree with one extra bit of storage per node: its 
color, which can be either RED or BLACK. By constraining the node colors on 
any simple path from the root to a leaf, red-black trees ensure that no such path is 
more than twice as long as any other, so that the tree is approximately balanced. 
Indeed, as we’re about to see, the height of a red-black tree with n keys is at most 
2 lg.n C 1/, which is O.lg n/. 

Each node of the tree now contains the attributes color , key, left , right , and p. If 
a child or the parent of a node does not exist, the corresponding pointer attribute of 
the node contains the value NIL. Think of these NILs as pointers to leaves (external 
nodes) of the binary search tree and the normal, key-bearing nodes as internal nodes 
of the tree. 
A red-black tree is a binary search tree that satisûes the following red-black 

properties: 
1. Every node is either red or black. 
2. The root is black. 
3. Every leaf (NIL) is black. 
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4. If a node is red, then both its children are black. 
5. For each node, all simple paths from the node to descendant leaves contain the 

same number of black nodes. 
Figure 13.1(a) shows an example of a red-black tree. 

As a matter of convenience in dealing with boundary conditions in red-black 
tree code, we use a single sentinel to represent NIL (see page 262). For a red-black 
tree T , the sentinel T: nil is an object with the same attributes as an ordinary node 
in the tree. Its color attribute is BLACK, and its other attributes4p, left , right , 
and key4can take on arbitrary values. As Figure 13.1(b) shows, all pointers to NIL 
are replaced by pointers to the sentinel T: nil. 
Why use the sentinel? The sentinel makes it possible to treat a NIL child of a 

node x as an ordinary node whose parent is x . An alternative design would use a 
distinct sentinel node for each NIL in the tree, so that the parent of each NIL is well 
deûned. That approach needlessly wastes space, however. Instead, just the one 
sentinel T: nil represents all the NILs4all leaves and the root’s parent. The values 
of the attributes p, left, right , and key of the sentinel are immaterial. The red-black 
tree procedures can place whatever values in the sentinel that yield simpler code. 
We generally conûne our interest to the internal nodes of a red-black tree, since 

they hold the key values. The remainder of this chapter omits the leaves in drawings 
of red-black trees, as shown in Figure 13.1(c). 

We call the number of black nodes on any simple path from, but not including, a 
node x down to a leaf the black-height of the node, denoted bh.x/. By property 5, 
the notion of black-height is well deûned, since all descending simple paths from 
the node have the same number of black nodes. The black-height of a red-black 
tree is the black-height of its root. 
The following lemma shows why red-black trees make good search trees. 

Lemma 13.1 
A red-black tree with n internal nodes has height at most 2 lg.n C 1/. 

Proof We start by showing that the subtree rooted at any node x contains at least 
2 bh.x/  1 internal nodes. We prove this claim by induction on the height of x . If 
the height of x is 0, then x must be a leaf (T: nil), and the subtree rooted at x indeed 
contains at least 2 bh.x/  1 D 2 0  1 D 0 internal nodes. For the inductive step, 
consider a node x that has positive height and is an internal node. Then node x 
has two children, either or both of which may be a leaf. If a child is black, then 
it contributes 1 to x ’s black-height but not to its own. If a child is red, then it 
contributes to neither x ’s black-height nor its own. Therefore, each child has a 
black-height of either bh.x/  1 (if it’s black) or bh.x/ (if it’s red). Since the 
height of a child of x is less than the height of x itself, we can apply the inductive 
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T: nil 

Figure 13.1 A red-black tree. Every node in a red-black tree is either red or black, the children 
of a red node are both black, and every simple path from a node to a descendant leaf contains the 
same number of black nodes. (a) Every leaf, shown as a NIL, is black. Each non-NIL node is marked 
with its black-height, where NILs have black-height 0. (b) The same red-black tree but with each NIL 
replaced by the single sentinel T: nil, which is always black, and with black-heights omitted. The 
root’s parent is also the sentinel. (c) The same red-black tree but with leaves and the root’s parent 
omitted entirely. The remainder of this chapter uses this drawing style. 
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hypothesis to conclude that each child has at least 2 bh.x/1  1 internal nodes. Thus, 
the subtree rooted at x contains at least .2 bh.x/1 1/ C.2 bh.x/1 1/ C1 D 2 bh.x/ 1 
internal nodes, which proves the claim. 

To complete the proof of the lemma, let h be the height of the tree. According 
to property 4, at least half the nodes on any simple path from the root to a leaf, not 
including the root, must be black. Consequently, the black-height of the root must 
be at least h=2, and thus, 
n  2 h=2  1 : 

Moving the 1 to the left-hand side and taking logarithms on both sides yields 
lg.n C 1/  h=2, or h හ 2 lg.n C 1/. 

As an immediate consequence of this lemma, each of the dynamic-set opera- 
tions SEARCH, MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR runs 
in O.lg n/ time on a red-black tree, since each can run in O.h/ time on a bi- 
nary search tree of height h (as shown in Chapter 12) and any red-black tree on 
n nodes is a binary search tree with height O.lg n/. (Of course, references to NIL 
in the algorithms of Chapter 12 have to be replaced by T: nil.) Although the pro- 
cedures TREE-I NSERT and TREE-DELETE from Chapter 12 run in O.lg n/ time 
when given a red-black tree as input, you cannot just use them to implement the 
dynamic-set operations I NSERT and DELETE. They do not necessarily maintain 
the red-black properties, so you might not end up with a legal red-black tree. The 
remainder of this chapter shows how to insert into and delete from a red-black tree 
in O.lg n/ time. 

Exercises 
13.1-1 
In the style of Figure 13.1(a), draw the complete binary search tree of height 3 on 
the keys f1; 2; : : : ; 15g. Add the NIL leaves and color the nodes in three different 
ways such that the black-heights of the resulting red-black trees are 2, 3, and 4. 
13.1-2 
Draw the red-black tree that results after TREE-I NSERT is called on the tree in 
Figure 13.1 with key 36. If the inserted node is colored red, is the resulting tree a 
red-black tree? What if it is colored black? 
13.1-3 
Deûne a relaxed red-black tree as a binary search tree that satisûes red-black prop- 
erties 1, 3, 4, and 5, but whose root may be either red or black. Consider a relaxed 
red-black tree T whose root is red. If the root of T is changed to black but no other 
changes occur, is the resulting tree a red-black tree? 
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13.1-4 
Suppose that every black node in a red-black tree <absorbs= all of its red children, 
so that the children of any red node become children of the black parent. (Ignore 
what happens to the keys.) What are the possible degrees of a black node after all 
its red children are absorbed? What can you say about the depths of the leaves of 
the resulting tree? 
13.1-5 
Show that the longest simple path from a node x in a red-black tree to a descendant 
leaf has length at most twice that of the shortest simple path from node x to a 
descendant leaf. 
13.1-6 
What is the largest possible number of internal nodes in a red-black tree with black- 
height k? What is the smallest possible number? 
13.1-7 
Describe a red-black tree on n keys that realizes the largest possible ratio of red in- 
ternal nodes to black internal nodes. What is this ratio? What tree has the smallest 
possible ratio, and what is the ratio? 
13.1-8 
Argue that in a red-black tree, a red node cannot have exactly one non-NIL child. 

13.2 Rotations 

The search-tree operations TREE-I NSERT and TREE-DELETE, when run on a red- 
black tree with n keys, take O.lg n/ time. Because they modify the tree, the result 
may violate the red-black properties enumerated in Section 13.1. To restore these 
properties, colors and pointers within nodes need to change. 

The pointer structure changes through rotation, which is a local operation in a 
search tree that preserves the binary-search-tree property. Figure 13.2 shows the 
two kinds of rotations: left rotations and right rotations. Let’s look at a left rotation 
on a node x , which transforms the structure on the right side of the ûgure to the 
structure on the left. Node x has a right child y , which must not be T: nil. The left 
rotation changes the subtree originally rooted at x by <twisting= the link between x 
and y to the left. The new root of the subtree is node y , with x as y ’s left child and 
y ’s original left child (the subtree represented by ˇ in the ûgure) as x ’s right child. 

The pseudocode for LEFT-ROTATE appearing on the following page assumes 
that x: right ¤ T: nil and that the root’s parent is T: nil. Figure 13.3 shows an 
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Figure 13.2 The rotation operations on a binary search tree. The operation L EFT-ROTATE.T; x/ 
transforms the conûguration of the two nodes on the right into the conûguration on the left by chang- 
ing a constant number of pointers. The inverse operation R IGHT-ROTATE.T; y/ transforms the con- 
ûguration on the left into the conûguration on the right. The letters ˛, ˇ, and � represent arbitrary 
subtrees. A rotation operation preserves the binary-search-tree property: the keys in ˛ precede x: key, 
which precedes the keys in ˇ, which precede y: key, which precedes the keys in � . 

example of how LEFT-ROTATE modiûes a binary search tree. The code for R IGHT- 
ROTATE is symmetric. Both LEFT-ROTATE and RIGHT-ROTATE run in O.1/ time. 
Only pointers are changed by a rotation, and all other attributes in a node remain 
the same. 

LEFT-ROTATE .T; x/ 
1 y D x: right 
2 x: right D y: left // turn y ’s left subtree into x ’s right subtree 
3 if y: left ¤ T: nil // if y ’s left subtree is not empty . . . 
4 y: left: p D x // . . . then x becomes the parent of the subtree’s root 
5 y: p D x: p // x ’s parent becomes y ’s parent 
6 if x: p == T: nil // if x was the root . . . 
7 T: root D y // . . . then y becomes the root 
8 elseif x == x: p: left // otherwise, if x was a left child . . . 
9 x: p: left D y // . . . then y becomes a left child 
10 else x: p: right D y // otherwise, x was a right child, and now y is 
11 y: left D x // make x become y ’s left child 
12 x: p D y 

Exercises 
13.2-1 
Write pseudocode for RIGHT-ROTATE. 
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Figure 13.3 An example of how the procedure LEFT-ROTATE.T; x/ modiûes a binary search tree. 
Inorder tree walks of the input tree and the modiûed tree produce the same listing of key values. 

13.2-2 
Argue that in every n-node binary search tree, there are exactly n  1 possible 
rotations. 
13.2-3 
Let a, b, and c be arbitrary nodes in subtrees ˛, ˇ, and � , respectively, in the right 
tree of Figure 13.2. How do the depths of a, b, and c change when a left rotation 
is performed on node x in the ûgure? 
13.2-4 
Show that any arbitrary n-node binary search tree can be transformed into any other 
arbitrary n-node binary search tree using O.n/ rotations. (Hint: First show that at 
most n  1 right rotations sufûce to transform the tree into a right-going chain.) 

? 13.2-5 
We say that a binary search tree T 1 can be right-converted to binary search tree T 2 
if it is possible to obtain T 2 from T 1 via a series of calls to RIGHT-ROTATE. Give 
an example of two trees T 1 and T 2 such that T 1 cannot be right-converted to T 2 . 
Then, show that if a tree T 1 can be right-converted to T 2 , it can be right-converted 
using O.n 2 / calls to RIGHT-ROTATE. 
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13.3 Insertion 

In order to insert a node into a red-black tree with n internal nodes in O.lg n/ time 
and maintain the red-black properties, we’ll need to slightly modify the TREE- 
I NSERT procedure on page 321. The procedure RB-I NSERT starts by inserting 
node ´ into the tree T as if it were an ordinary binary search tree, and then it col- 
ors ´ red. (Exercise 13.3-1 asks you to explain why to make node ´ red rather 
than black.) To guarantee that the red-black properties are preserved, an auxiliary 
procedure RB-I NSERT-FIXUP on the facing page recolors nodes and performs ro- 
tations. The call RB-I NSERT .T; ´/ inserts node ´, whose key is assumed to have 
already been ûlled in, into the red-black tree T . 

RB-I NSERT .T; ´/ 
1 x D T: root // node being compared with ´ 
2 y D T: nil // y will be parent of ´ 
3 while x ¤ T: nil // descend until reaching the sentinel 
4 y D x 
5 if ´: key < x: key 
6 x D x: left 
7 else x D x: right 
8 ´: p D y // found the location4insert ´ with parent y 
9 if y = = T: nil 
10 T: root D ´ // tree T was empty 
11 elseif ´: key < y: key 
12 y: left D ´ 
13 else y: right D ´ 
14 ´: left D T: nil // both of ´’s children are the sentinel 
15 ´: right D T: nil 
16 ´: color D RED // the new node starts out red 
17 RB-I NSERT-FIXUP .T; ´/ // correct any violations of red-black properties 

The procedures TREE-I NSERT and RB-I NSERT differ in four ways. First, all 
instances of NIL in TREE-I NSERT are replaced by T: nil. Second, lines 14315 of 
RB-I NSERT set ´: left and ´: right to T: nil, in order to maintain the proper tree 
structure. (TREE-I NSERT assumed that ´’s children were already NIL.) Third, 
line 16 colors ´ red. Fourth, because coloring ´ red may cause a violation of one 
of the red-black properties, line 17 of RB-I NSERT calls RB-I NSERT-FIXUP .T; ´/ 
in order to restore the red-black properties. 
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RB-I NSERT-FIXUP .T; ´/ 
1 while ´: p: color == RED 
2 if ´: p = = ´: p: p: left // is ´’s parent a left child? 
3 y D ´: p: p: right // y is ´’s uncle 
4 if y: color == RED // are ´’s parent and uncle both red? 
5 ´: p: color D BLACK * 

case 1 
6 y: color D BLACK 
7 ´: p: p: color D RED 
8 ´ D ´: p: p 
9 else 
10 if ´ == ´: p: right 
11 ´ D ´: p 

ð 
case 2 12 LEFT-ROTATE .T; ´/ 

13 ´: p: color D BLACK ) 

case 3 14 ´: p: p: color D RED 
15 RIGHT-ROTATE .T; ´: p: p/ 
16 else // same as lines 3315, but with <right= and <left= exchanged 
17 y D ´: p: p: left 
18 if y: color == RED 
19 ´: p: color D BLACK 
20 y: color D BLACK 
21 ´: p: p: color D RED 
22 ´ D ´: p: p 
23 else 
24 if ´ == ´: p: left 
25 ´ D ´: p 
26 RIGHT-ROTATE .T; ´/ 
27 ´: p: color D BLACK 
28 ´: p: p: color D RED 
29 LEFT-ROTATE .T; ´: p: p/ 
30 T: root : color D BLACK 

To understand how RB-I NSERT-FIXUP works, let’s examine the code in three 
major steps. First, we’ll determine which violations of the red-black properties 
might arise in RB-I NSERT upon inserting node ´ and coloring it red. Second, we’ll 
consider the overall goal of the while loop in lines 1329. Finally, we’ll explore each 
of the three cases within the while loop’s body (case 2 falls through into case 3, so 
these two cases are not mutually exclusive) and see how they accomplish the goal. 
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In describing the structure of a red-black tree, we’ll often need to refer to the 
sibling of a node’s parent. We use the term uncle for such a node. 1 Figure 13.4 
shows how RB-I NSERT-FIXUP operates on a sample red-black tree, with cases 
depending in part on the colors of a node, its parent, and its uncle. 
What violations of the red-black properties might occur upon the call to 

RB-I NSERT-FIXUP ? Property 1 certainly continues to hold (every node is either 
red or black), as does property 3 (every leaf is black), since both children of the 
newly inserted red node are the sentinel T: nil. Property 5, which says that the 
number of black nodes is the same on every simple path from a given node, is sat- 
isûed as well, because node ´ replaces the (black) sentinel, and node ´ is red with 
sentinel children. Thus, the only properties that might be violated are property 2, 
which requires the root to be black, and property 4, which says that a red node 
cannot have a red child. Both possible violations may arise because ´ is colored 
red. Property 2 is violated if ´ is the root, and property 4 is violated if ´’s parent 
is red. Figure 13.4(a) shows a violation of property 4 after the node ´ has been 
inserted. 

The while loop of lines 1329 has two symmetric possibilities: lines 3315 deal 
with the situation in which node ´’s parent ´: p is a left child of ´’s grandpar- 
ent ´: p: p, and lines 17329 apply when ´’s parent is a right child. Our proof will 
focus only on lines 3315, relying on the symmetry in lines 17329. 
We’ll show that the while loop maintains the following three-part invariant at 

the start of each iteration of the loop: 
a. Node ´ is red. 
b. If ´: p is the root, then ´: p is black. 
c. If the tree violates any of the red-black properties, then it violates at most 

one of them, and the violation is of either property 2 or property 4, but 
not both. If the tree violates property 2, it is because ´ is the root and is 
red. If the tree violates property 4, it is because both ´ and ´: p are red. 

Part (c), which deals with violations of red-black properties, is more central to 
showing that RB-I NSERT-FIXUP restores the red-black properties than parts (a) 
and (b), which we’ll use along the way to understand situations in the code. Be- 
cause we’ll be focusing on node ´ and nodes near it in the tree, it helps to know 
from part (a) that ´ is red. Part (b) will help show that ´’s grandparent ´: p: p exists 
when it’s referenced in lines 2, 3, 7, 8, 14, and 15 (recall that we’re focusing only 
on lines 3315). 

1 Although we try to avoid gendered language in this book, the English language lacks a gender- 
neutral word for a parent’s sibling. 
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Figure 13.4 The operation of RB-I NSERT-FIXUP. (a) A node ´ after insertion. Because both ´ 
and its parent ´: p are red, a violation of property 4 occurs. Since ´’s uncle y is red, case 1 in the code 
applies. Node ´’s grandparent ´: p: p must be black, and its blackness transfers down one level to ´’s 
parent and uncle. Once the pointer ´ moves up two levels in the tree, the tree shown in (b) results. 
Once again, ´ and its parent are both red, but this time ´’s uncle y is black. Since ´ is the right child 
of ´: p, case 2 applies. Performing a left rotation results in the tree in (c). Now ´ is the left child 
of its parent, and case 3 applies. Recoloring and right rotat ion yield the tree in (d), which is a legal 
red-black tree. 
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Recall that to use a loop invariant, we need to show that the invariant is true 
upon entering the ûrst iteration of the loop, that each iteration maintains it, that 
the loop terminates, and that the loop invariant gives us a useful property at loop 
termination. We’ll see that each iteration of the loop has two possible outcomes: 
either the pointer ´ moves up the tree, or some rotations occur and then the loop 
terminates. 
Initialization: Before RB-I NSERT is called, the red-black tree has no violations. 

RB-I NSERT adds a red node ´ and calls RB-I NSERT-FIXUP. We’ll show that 
each part of the invariant holds at the time RB-I NSERT-FIXUP is called: 
a. When RB-I NSERT-FIXUP is called, ´ is the red node that was added. 
b. If ´: p is the root, then ´: p started out black and did not change before the 
call of RB-I NSERT-FIXUP. 

c. We have already seen that properties 1, 3, and 5 hold when RB-I NSERT- 
FIXUP is called. 
If the tree violates property 2 (the root must be black), then the red root 
must be the newly added node ´, which is the only internal node in the tree. 
Because the parent and both children of ´ are the sentinel, which is black, the 
tree does not also violate property 4 (both children of a red node are black). 
Thus this violation of property 2 is the only violation of red-black properties 
in the entire tree. 
If the tree violates property 4, then, because the children of node ´ are black 
sentinels and the tree had no other violations prior to ´ being added, the 
violation must be because both ´ and ´: p are red. Moreover, the tree violates 
no other red-black properties. 

Maintenance: There are six cases within the while loop, but we’ll examine only 
the three cases in lines 3315, when node ´’s parent ´: p is a left child of ´’s 
grandparent ´: p: p. The proof for lines 17329 is symmetric. The node ´: p: p 
exists, since by part (b) of the loop invariant, if ´: p is the root, then ´: p is 
black. Since RB-I NSERT-FIXUP enters a loop iteration only if ´: p is red, we 
know that ´: p cannot be the root. Hence, ´: p: p exists. 
Case 1 differs from cases 2 and 3 by the color of ´’s uncle y . Line 3 makes 
y point to ´’s uncle ´: p: p: right , and line 4 tests y ’s color. If y is red, then 
case 1 executes. Otherwise, control passes to cases 2 and 3. In all three cases, 
´’s grandparent ´: p: p is black, since its parent ´: p is red, and property 4 is 
violated only between ´ and ´: p. 
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Figure 13.5 Case 1 of the procedure RB-I NSERT-FIXUP. Both ´ and its parent ´: p are red, violat- 
ing property 4. In case 1, ´’s uncle y is red. The same action occurs regardless of whether (a) ´ is a 
right child or (b) ´ is a left child. Each of the subtrees ˛, ˇ, � , ı, and " has a black root4possibly 
the sentinel4and each has the same black-height. The code for case 1 moves the blackness of ´’s 
grandparent down to ´’s parent and uncle, preserving property 5: all downward simple paths from a 
node to a leaf have the same number of blacks. The while loop continues with node ´’s grandpar- 
ent ´: p: p as the new ´. If the action of case 1 causes a new violation of property 4 to occur, it must 
be only between the new ´, which is red, and its parent, if it is red as well. 

Case 1: ´’s uncle y is red 
Figure 13.5 shows the situation for case 1 (lines 538), which occurs when 
both ´: p and y are red. Because ´’s grandparent ´: p: p is black, its blackness 
can transfer down one level to both ´: p and y , thereby ûxing the problem of ´ 
and ´: p both being red. Having had its blackness transferred down one level, 
´’s grandparent becomes red, thereby maintaining property 5. The while loop 
repeats with ´: p: p as the new node ´, so that the pointer ´ moves up two levels 
in the tree. 
Now, we show that case 1 maintains the loop invariant at the start of the next 
iteration. We use ´ to denote node ´ in the current iteration, and ´ 0 D ´: p: p 
to denote the node that will be called node ´ at the test in line 1 upon the next 
iteration. 
a. Because this iteration colors ´: p: p red, node ´ 0 is red at the start of the next 

iteration. 
b. The node ´ 0 : p is ´: p: p: p in this iteration, and the color of this node does not 

change. If this node is the root, it was black prior to this iteration, and it 
remains black at the start of the next iteration. 
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Figure 13.6 Cases 2 and 3 of the procedure RB-I NSERT-FIXUP. As in case 1, property 4 is violated 
in either case 2 or case 3 because ´ and its parent ´: p are both red. Each of the subtrees ˛, ˇ, � , 
and ı has a black root (˛, ˇ, and � from property 4, and ı because otherwise case 1 would apply), 
and each has the same black-height. Case 2 transforms into case 3 by a left rotation, which preserves 
property 5: all downward simple paths from a node to a leaf have the same number of blacks. Case 3 
causes some color changes and a right rotation, which also preserve property 5. The while loop then 
terminates, because property 4 is satisûed: there are no longer two red nodes in a row. 

c. We have already argued that case 1 maintains property 5, and it does not 
introduce a violation of properties 1 or 3. 
If node ´ 0 is the root at the start of the next iteration, then case 1 corrected 
the lone violation of property 4 in this iteration. Since ´ 0 is red and it is the 
root, property 2 becomes the only one that is violated, and this violation is 
due to ´ 0 . 
If node ´ 0 is not the root at the start of the next iteration, then case 1 has 
not created a violation of property 2. Case 1 corrected the lone violation 
of property 4 that existed at the start of this iteration. It then made ´ 0 red 
and left ´ 0 : p alone. If ´ 0 : p was black, there is no violation of property 4. 
If ́  0 : p was red, coloring ´ 0 red created one violation of property 4, between ´ 0 
and ´ 0 : p. 

Case 2: ´’s uncle y is black and ´ is a right child 
Case 3: ´’s uncle y is black and ´ is a left child 
In cases 2 and 3, the color of ´’s uncle y is black. We distinguish the two cases, 
which assume that ´’s parent ´: p is red and a left child, according to whether ´ 
is a right or left child of ´: p. Lines 11312 constitute case 2, which is shown in 
Figure 13.6 together with case 3. In case 2, node ´ is a right child of its parent. 
A left rotation immediately transforms the situation into case 3 (lines 13315), in 
which node ´ is a left child. Because both ´ and ´: p are red, the rotation affects 
neither the black-heights of nodes nor property 5. Whether case 3 executes 
directly or through case 2, ´’s uncle y is black, since otherwise case 1 would 
have run. Additionally, the node ´: p: p exists, since we have argued that this 
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node existed at the time that lines 2 and 3 were executed, and after moving ´ 
up one level in line 11 and then down one level in line 12, the identity of ´: p: p 
remains unchanged. Case 3 performs some color changes and a right rotation, 
which preserve property 5. At this point, there are no longer two red nodes in 
a row. The while loop terminates upon the next test in line 1, since ´: p is now 
black. 
We now show that cases 2 and 3 maintain the loop invariant. (As we have just 
argued, ´: p will be black upon the next test in line 1, and the loop body will not 
execute again.) 
a. Case 2 makes ´ point to ´: p, which is red. No further change to ´ or its color 
occurs in cases 2 and 3. 

b. Case 3 makes ´: p black, so that if ´: p is the root at the start of the next 
iteration, it is black. 

c. As in case 1, properties 1, 3, and 5 are maintained in cases 2 and 3. 
Since node ´ is not the root in cases 2 and 3, we know that there is no viola- 
tion of property 2. Cases 2 and 3 do not introduce a violation of property 2, 
since the only node that is made red becomes a child of a black node by the 
rotation in case 3. 
Cases 2 and 3 correct the lone violation of property 4, and they do not intro- 
duce another violation. 

Termination: To see that the loop terminates, observe that if only case 1 occurs, 
then the node pointer ´ moves toward the root in each iteration, so that eventu- 
ally ´: p is black. (If ´ is the root, then ´: p is the sentinel T: nil, which is black.) 
If either case 2 or case 3 occurs, then we’ve seen that the loop terminates. Since 
the loop terminates because ´: p is black, the tree does not violate property 4 
at loop termination. By the loop invariant, the only property that might fail to 
hold is property 2. Line 30 restores this property by coloring the root black, so 
that when RB-I NSERT-FIXUP terminates, all the red-black properties hold. 
Thus, we have shown that RB-I NSERT-FIXUP correctly restores the red-black 

properties. 

Analysis 
What is the running time of RB-I NSERT? Since the height of a red-black tree on n 
nodes is O.lg n/, lines 1316 of RB-I NSERT take O.lg n/ time. In RB-I NSERT- 
FIXUP, the while loop repeats only if case 1 occurs, and then the pointer ´ moves 
two levels up the tree. The total number of times the while loop can be executed 
is therefore O.lg n/. Thus, RB-I NSERT takes a total of O.lg n/ time. Moreover, it 
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never performs more than two rotations, since the while loop terminates if case 2 
or case 3 is executed. 

Exercises 
13.3-1 
Line 16 of RB-I NSERT sets the color of the newly inserted node ´ to red. If in- 
stead ´’s color were set to black, then property 4 of a red-black tree would not be 
violated. Why not set ´’s color to black? 
13.3-2 
Show the red-black trees that result after successively inserting the keys 41; 38; 31; 
12; 19; 8 into an initially empty red-black tree. 
13.3-3 
Suppose that the black-height of each of the subtrees ˛; ˇ; �; ı; " in Figures 13.5 
and 13.6 is k. Label each node in each ûgure with its black-height to verify that 
the indicated transformation preserves property 5. 
13.3-4 
Professor Teach is concerned that RB-I NSERT-FIXUP might set T: nil: color to 
RED, in which case the test in line 1 would not cause the loop to terminate when ´ 
is the root. Show that the professor’s concern is unfounded by arguing that RB- 
I NSERT-FIXUP never sets T: nil: color to RED. 
13.3-5 
Consider a red-black tree formed by inserting n nodes with RB-I NSERT. Argue 
that if n > 1, the tree has at least one red node. 
13.3-6 
Suggest how to implement RB-I NSERT efûciently if the representation for red- 
black trees includes no storage for parent pointers. 

13.4 Deletion 

Like the other basic operations on an n-node red-black tree, deletion of a node 
takes O.lg n/ time. Deleting a node from a red-black tree is more complicated 
than inserting a node. 
The procedure for deleting a node from a red-black tree is based on the TREE- 

DELETE procedure on page 325. First, we need to customize the TRANSPLANT 
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subroutine on page 324 that TREE-DELETE calls so that it applies to a red-black 
tree. Like TRANSPLANT, the new procedure RB-TRANSPLANT replaces the sub- 
tree rooted at node u by the subtree rooted at node v. The RB-TRANSPLANT pro- 
cedure differs from TRANSPLANT in two ways. First, line 1 references the sentinel 
T: nil instead of NIL. Second, the assignment to v: p in line 6 occurs uncondition- 
ally: the procedure can assign to v: p even if v points to the sentinel. We’ll take 
advantage of the ability to assign to v: p when v D T: nil. 

RB-TRANSPLANT .T; u; v/ 
1 if u: p == T: nil 
2 T: root D v 
3 elseif u == u: p: left 
4 u: p: left D v 
5 else u: p: right D v 
6 v: p D u: p 

The procedure RB-DELETE on the next page is like the TREE-DELETE proce- 
dure, but with additional lines of pseudocode. The additional lines deal with nodes 
x and y that may be involved in violations of the red-black properties. When the 
node ´ being deleted has at most one child, then y will be ´. When ´ has two 
children, then, as in TREE-DELETE, y will be ´’s successor, which has no left 
child and moves into ´’s position in the tree. Additionally, y takes on ´’s color. 
In either case, node y has at most one child: node x , which takes y ’s place in the 
tree. (Node x will be the sentinel T: nil if y has no children.) Since node y will 
be either removed from the tree or moved within the tree, the procedure needs to 
keep track of y ’s original color. If the red-black properties might be violated after 
deleting node ´, RB-DELETE calls the auxiliary procedure RB-DELETE-FIXUP, 
which changes colors and performs rotations to restore the red-black properties. 
Although RB-DELETE contains almost twice as many lines of pseudocode as 

TREE-DELETE, the two procedures have the same basic structure. You can ûnd 
each line of TREE-DELETE within RB-DELETE (with the changes of replacing 
NIL by T: nil and replacing calls to TRANSPLANT by calls to RB-TRANSPLANT), 
executed under the same conditions. 

In detail, here are the other differences between the two procedures: 
 Lines 1 and 9 set node y as described above: line 1 when node ´ has at most 

one child and line 9 when ´ has two children. 
 Because node y ’s color might change, the variable y-original-color stores y ’s 

color before any changes occur. Lines 2 and 10 set this variable immediately 
after assignments to y . When node ´ has two children, then nodes y and ´ are 
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RB-DELETE .T; ´/ 
1 y D ´ 
2 y-original-color D y: color 
3 if ´: left = = T: nil 
4 x D ´: right 
5 RB-TRANSPLANT .T; ´; ´: right / // replace ´ by its right child 
6 elseif ´: right = = T: nil 
7 x D ´: left 
8 RB-TRANSPLANT .T; ´; ´: left / // replace ´ by its left child 
9 else y D TREE-MINIMUM.´: right / // y is ´’s successor 
10 y-original-color D y: color 
11 x D y: right 
12 if y ¤ ´: right // is y farther down the tree? 
13 RB-TRANSPLANT .T; y; y: right / // replace y by its right child 
14 y: right D ´: right // ´’s right child becomes 
15 y: right : p D y // y ’s right child 
16 else x: p D y // in case x is T: nil 
17 RB-TRANSPLANT .T; ´; y/ // replace ´ by its successor y 
18 y: left D ´: left // and give ´’s left child to y , 
19 y: left: p D y // which had no left child 
20 y: color D ´: color 
21 if y-original-color = = BLACK // if any red-black violations occurred, 
22 RB-DELETE-FIXUP .T; x/ // correct them 

distinct. In this case, line 17 moves y into ´’s original position in the tree (that 
is, ´’s location in the tree at the time RB-DELETE was called), and line 20 gives 
y the same color as ´. When node y was originally black, removing or moving 
it could cause violations of the red-black properties, which are corrected by the 
call of RB-DELETE-FIXUP in line 22. 

 As discussed, the procedure keeps track of the node x that moves into node y ’s 
original position at the time of call. The assignments in lines 4, 7, and 11 set x 
to point to either y ’s only child or, if y has no children, the sentinel T: nil. 

 Since node x moves into node y ’s original position, the attribute x: p must be set 
correctly. If node ´ has two children and y is ´’s right child, then y just moves 
into ´’s position, with x remaining a child of y . Line 12 checks for this case. 
Although you might think that setting x: p to y in line 16 is unnecessary since 
x is a child of y , the call of RB-DELETE-FIXUP relies on x: p being y even if 
x is T: nil. Thus, when ´ has two children and y is ´’s right child, executing 
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line 16 is necessary if y ’s right child is T: nil, and otherwise it does not change 
anything. 
Otherwise, node ´ is either the same as node y or it is a proper ancestor of 
y ’s original parent. In these cases, the calls of RB-TRANSPLANT in lines 5, 
8, and 13 set x: p correctly in line 6 of RB-TRANSPLANT. (In these calls of 
RB-TRANSPLANT, the third parameter passed is the same as x .) 

 Finally, if node y was black, one or more violations of the red-black properties 
might arise. The call of RB-DELETE-FIXUP in line 22 restores the red-black 
properties. If y was red, the red-black properties still hold when y is removed 
or moved, for the following reasons: 
1. No black-heights in the tree have changed. (See Exercise 13.4-1.) 
2. No red nodes have been made adjacent. If ´ has at most one child, then y 

and ´ are the same node. That node is removed, with a child taking its place. 
If the removed node was red, then neither its parent nor its children can also 
be red, so moving a child to take its place cannot cause two red nodes to 
become adjacent. If, on the other hand, ´ has two children, then y takes ´’s 
place in the tree, along with ´’s color, so there cannot be two adjacent red 
nodes at y ’s new position in the tree. In addition, if y was not ´’s right child, 
then y ’s original right child x replaces y in the tree. Since y is red, x must 
be black, and so replacing y by x cannot cause two red nodes to become 
adjacent. 

3. Because y could not have been the root if it was red, the root remains black. 
If node y was black, three problems may arise, which the call of RB-DELETE- 

FIXUP will remedy. First, if y was the root and a red child of y became the new 
root, property 2 is violated. Second, if both x and its new parent are red, then a 
violation of property 4 occurs. Third, moving y within the tree causes any simple 
path that previously contained y to have one less black node. Thus, property 5 is 
now violated by any ancestor of y in the tree. We can correct the violation of prop- 
erty 5 by saying that when the black node y is removed or moved, its blackness 
transfers to the node x that moves into y ’s original position, giving x an <extra= 
black. That is, if we add 1 to the count of black nodes on any simple path that con- 
tains x , then under this interpretation, property 5 holds. But now another problem 
emerges: node x is neither red nor black, thereby violating property 1. Instead, 
node x is either <doubly black= or <red-and-black,= and it contributes either 2 or 1, 
respectively, to the count of black nodes on simple paths containing x . The color 
attribute of x will still be either RED (if x is red-and-black) or BLACK (if x is dou- 
bly black). In other words, the extra black on a node is reüected in x ’s pointing to 
the node rather than in the color attribute. 
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The procedure RB-DELETE-FIXUP on the next page restores properties 1, 2, 
and 4. Exercises 13.4-2 and 13.4-3 ask you to show that the procedure restores 
properties 2 and 4, and so in the remainder of this section, we focus on property 1. 
The goal of the while loop in lines 1343 is to move the extra black up the tree until 
1. x points to a red-and-black node, in which case line 44 colors x (singly) black; 
2. x points to the root, in which case the extra black simply vanishes; or 
3. having performed suitable rotations and recolorings, the loop exits. 
Like RB-I NSERT-FIXUP, the RB-DELETE-FIXUP procedure handles two sym- 
metric situations: lines 3322 for when node x is a left child, and lines 24343 for 
when x is a right child. Our proof focuses on the four cases shown in lines 3322. 

Within the while loop, x always points to a nonroot doubly black node. Line 2 
determines whether x is a left child or a right child of its parent x: p so that either 
lines 3322 or 24343 will execute in a given iteration. The sibling of x is always 
denoted by a pointer w. Since node x is doubly black, node w cannot be T: nil, 
because otherwise, the number of blacks on the simple path from x: p to the (singly 
black) leaf w would be smaller than the number on the simple path from x: p to x . 
Recall that the RB-DELETE procedure always assigns to x: p before calling RB- 

DELETE-FIXUP (either within the call of RB-TRANSPLANT in line 13 or the as- 
signment in line 16), even when node x is the sentinel T: nil. That is because 
RB-DELETE-FIXUP references x ’s parent x: p in several places, and this attribute 
must point to the node that became x ’s parent in RB-DELETE4even if x is T: nil. 
Figure 13.7 demonstrates the four cases in the code when node x is a left child. 

(As in RB-I NSERT-FIXUP, the cases in RB-DELETE-FIXUP are not mutually ex- 
clusive.) Before examining each case in detail, let’s look more generally at how 
we can verify that the transformation in each of the cases preserves property 5. 
The key idea is that in each case, the transformation applied preserves the num- 
ber of black nodes (including x ’s extra black) from (and including) the root of the 
subtree shown to the roots of each of the subtrees ˛; ˇ; : : : ; � . Thus, if property 5 
holds prior to the transformation, it continues to hold afterward. For example, in 
Figure 13.7(a), which illustrates case 1, the number of black nodes from the root 
to the root of either subtree ˛ or ˇ is 3, both before and after the transformation. 
(Again, remember that node x adds an extra black.) Similarly, the number of black 
nodes from the root to the root of any of � , ı , ", and � is 2, both before and after 
the transformation. 2 In Figure 13.7(b), the counting must involve the value c of the 
color attribute of the root of the subtree shown, which can be either RED or BLACK. 

2 If property 5 holds, we can assume that paths from the roots of � , ı, ", and � down to leaves contain 
one more black than do paths from the roots of ˛ and ˇ down to leaves. 
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RB-DELETE-FIXUP .T; x/ 
1 while x ¤ T: root and x: color == BLACK 
2 if x == x: p: left // is x a left child? 
3 w D x: p: right // w is x’s sibling 
4 if w: color == RED 
5 w: color D BLACK * 

case 1 
6 x: p: color D RED 
7 LEFT-ROTATE .T; x: p/ 
8 w D x: p: right 
9 if w: left: color == BLACK and w: right: color == BLACK 
10 w: color D RED 

ð 
case 2 11 x D x: p 

12 else 
13 if w: right: color == BLACK 
14 w: left: color D BLACK 

* 
case 3 15 w: color D RED 

16 RIGHT-ROTATE .T;w/ 
17 w D x: p: right 
18 w: color D x: p: color … 

case 4 
19 x: p: color D BLACK 
20 w: right: color D BLACK 
21 LEFT-ROTATE .T; x: p/ 
22 x D T: root 
23 else // same as lines 3322, but with <right= and <left= exchanged 
24 w D x: p: left 
25 if w: color == RED 
26 w: color D BLACK 
27 x: p: color D RED 
28 RIGHT-ROTATE .T; x: p/ 
29 w D x: p: left 
30 if w: right: color == BLACK and w: left: color == BLACK 
31 w: color D RED 
32 x D x: p 
33 else 
34 if w: left: color == BLACK 
35 w: right: color D BLACK 
36 w: color D RED 
37 LEFT-ROTATE .T;w/ 
38 w D x: p: left 
39 w: color D x: p: color 
40 x: p: color D BLACK 
41 w: left: color D BLACK 
42 RIGHT-ROTATE .T; x: p/ 
43 x D T: root 
44 x: color D BLACK 
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Figure 13.7 The cases in lines 3322 of the procedure RB-DELETE-FIXUP. Brown nodes have 
color attributes represented by c and c 0 , which may be either RED or BLACK. The letters ˛; ˇ; : : : ; � 
represent arbitrary subtrees. Each case transforms the conûguration on the left into the conûguration 
on the right by changing some colors and/or performing a rotation. Any node pointed to by x has 
an extra black and is either doubly black or red-and-black. Only case 2 causes the loop to repeat. 
(a) Case 1 is transformed into case 2, 3, or 4 by exchanging the colors of nodes B and D and 
performing a left rotation. (b) In case 2, the extra black represented by the pointer x moves up the 
tree by coloring node D red and setting x to point to node B . If case 2 is entered through case 1, the 
while loop terminates because the new node x is red-and-black, and therefore the value c of its color 
attribute is RED. (c) Case 3 is transformed to case 4 by exchanging the colors of nodes C and D and 
performing a right rotation. (d) Case 4 removes the extra black represented by x by changing some 
colors and performing a left rotation (without violating the red-black properties), and then the loop 
terminates. 
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If we deûne count.RED/ D 0 and count.BLACK/ D 1, then the number of black 
nodes from the root to ˛ is 2 C count.c/, both before and after the transformation. 
In this case, after the transformation, the new node x has color attribute c , but this 
node is really either red-and-black (if c D RED) or doubly black (if c D BLACK). 
You can verify the other cases similarly (see Exercise 13.4-6). 

Case 1: x’s sibling w is red 
Case 1 (lines 538 and Figure 13.7(a)) occurs when node w, the sibling of node x , 
is red. Because w is red, it must have black children. This case switches the colors 
of w and x: p and then performs a left-rotation on x: p without violating any of the 
red-black properties. The new sibling of x , which is one of w’s children prior to 
the rotation, is now black, and thus case 1 converts into one of cases 2, 3, or 4. 
Cases 2, 3, and 4 occur when node w is black and are distinguished by the colors 

of w’s children. 

Case 2: x’s sibling w is black, and both of w’s children are black 
In case 2 (lines 10311 and Figure 13.7(b)), both of w’s children are black. Since w 
is also black, this case removes one black from both x and w, leaving x with only 
one black and leaving w red. To compensate for x and w each losing one black, 
x ’s parent x: p can take on an extra black. Line 11 does so by moving x up one 
level, so that the while loop repeats with x: p as the new node x . If case 2 enters 
through case 1, the new node x is red-and-black, since the original x: p was red. 
Hence, the value c of the color attribute of the new node x is RED, and the loop 
terminates when it tests the loop condition. Line 44 then colors the new node x 
(singly) black. 

Case 3: x’s sibling w is black, w’s left child is red, and w’s right child is black 
Case 3 (lines 14317 and Figure 13.7(c)) occurs when w is black, its left child is 
red, and its right child is black. This case switches the colors of w and its left 
child w: left and then performs a right rotation on w without violating any of the 
red-black properties. The new sibling w of x is now a black node with a red right 
child, and thus case 3 falls through into case 4. 

Case 4: x’s sibling w is black, and w’s right child is red 
Case 4 (lines 18322 and Figure 13.7(d)) occurs when node x ’s sibling w is black 
and w’s right child is red. Some color changes and a left rotation on x: p allow 
the extra black on x to vanish, making it singly black, without violating any of the 
red-black properties. Line 22 sets x to be the root, and the while loop terminates 
when it next tests the loop condition. 
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Analysis 
What is the running time of RB-DELETE? Since the height of a red-black tree of n 
nodes is O.lg n/, the total cost of the procedure without the call to RB-DELETE- 
FIXUP takes O.lg n/ time. Within RB-DELETE-FIXUP, each of cases 1, 3, and 4 
lead to termination after performing a constant number of color changes and at 
most three rotations. Case 2 is the only case in which the while loop can be re- 
peated, and then the pointer x moves up the tree at most O.lg n/ times, performing 
no rotations. Thus, the procedure RB-DELETE-FIXUP takes O.lg n/ time and per- 
forms at most three rotations, and the overall time for RB-DELETE is therefore 
also O.lg n/. 

Exercises 
13.4-1 
Show that if node y in RB-DELETE is red, then no black-heights change. 
13.4-2 
Argue that after RB-DELETE-FIXUP executes, the root of the tree must be black. 
13.4-3 
Argue that if in RB-DELETE both x and x: p are red, then property 4 is restored by 
the call to RB-DELETE-FIXUP .T; x/. 
13.4-4 
In Exercise 13.3-2 on page 346, you found the red-black tree that results from suc- 
cessively inserting the keys 41; 38; 31; 12; 19; 8 into an initially empty tree. Now 
show the red-black trees that result from the successive deletion of the keys in the 
order 8; 12; 19; 31; 38; 41. 
13.4-5 
Which lines of the code for RB-DELETE-FIXUP might examine or modify the 
sentinel T: nil? 
13.4-6 
In each of the cases of Figure 13.7, give the count of black nodes from the root of 
the subtree shown to the roots of each of the subtrees ˛; ˇ; : : : ; � , and verify that 
each count remains the same after the transformation. When a node has a color 
attribute c or c 0 , use the notation count.c/ or count.c 0 / symbolically in your count. 
13.4-7 
Professors Skelton and Baron worry that at the start of case 1 of RB-DELETE- 
FIXUP, the node x: p might not be black. If x: p is not black, then lines 536 are 
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wrong. Show that x: p must be black at the start of case 1, so that the professors 
need not be concerned. 
13.4-8 
A node x is inserted into a red-black tree with RB-I NSERT and then is immediately 
deleted with RB-DELETE. Is the resulting red-black tree always the same as the 
initial red-black tree? Justify your answer. 

? 13.4-9 
Consider the operation RB-ENUMERATE .T; r; a; b/, which outputs all the keys k 
such that a හ k හ b in a subtree rooted at node r in an n-node red-black tree T . 
Describe how to implement RB-ENUMERATE in ‚.m C lg n/ time, where m is 
the number of keys that are output. Assume that the keys in T are unique and that 
the values a and b appear as keys in T . How does your solution change if a and b 
might not appear in T ? 

Problems 

13-1 Persistent dynamic sets 
During the course of an algorithm, you sometimes ûnd that you need to maintain 
past versions of a dynamic set as it is updated. We call such a set persistent. One 
way to implement a persistent set is to copy the entire set whenever it is modi- 
ûed, but this approach can slow down a program and also consume a lot of space. 
Sometimes, you can do much better. 

Consider a persistent set S with the operations I NSERT, DELETE, and SEARCH, 
which you implement using binary search trees as shown in Figure 13.8(a). Main- 
tain a separate root for every version of the set. In order to insert the key 5 into the 
set, create a new node with key 5. This node becomes the left child of a new node 
with key 7, since you cannot modify the existing node with key 7. Similarly, the 
new node with key 7 becomes the left child of a new node with key 8 whose right 
child is the existing node with key 10. The new node with key 8 becomes, in turn, 
the right child of a new root r 0 with key 4 whose left child is the existing node with 
key 3. Thus, you copy only part of the tree and share some of the nodes with the 
original tree, as shown in Figure 13.8(b). 

Assume that each tree node has the attributes key, left , and right but no parent. 
(See also Exercise 13.3-6 on page 346.) 
a. For a persistent binary search tree (not a red-black tree, just a binary search 

tree), identify the nodes that need to change to insert or delete a node. 
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Figure 13.8 (a) A binary search tree with keys 2; 3; 4; 7; 8; 10. (b) The persistent binary search 
tree that results from the insertion of key 5. The most recent version of the set consists of the nodes 
reachable from the root r 0 , and the previous version consists of the nodes reachable from r . Blue 
nodes are added when key 5 is inserted. 

b. Write a procedure PERSISTENT-TREE-I NSERT .T; ´/ that, given a persistent 
binary search tree T and a node ´ to insert, returns a new persistent tree T 0 
that is the result of inserting ´ into T . Assume that you have a procedure 
COPY-NODE.x/ that makes a copy of node x , including all of its attributes. 

c. If the height of the persistent binary search tree T is h, what are the time and 
space requirements of your implementation of PERSISTENT-TREE-I NSERT? 
(The space requirement is proportional to the number of nodes that are copied.) 

d. Suppose that you include the parent attribute in each node. In this case, the 
PERSISTENT-TREE-I NSERT procedure needs to perform additional copying. 
Prove that PERSISTENT-TREE-I NSERT then requires �.n/ time and space, 
where n is the number of nodes in the tree. 

e. Show how to use red-black trees to guarantee that the worst-case running time 
and space are O.lg n/ per insertion or deletion. You may assume that all keys 
are distinct. 

13-2 Join operation on red-black trees 
The join operation takes two dynamic sets S 1 and S 2 and an element x such that 
for any x 1 2 S 1 and x 2 2 S 2 , we have x 1 : key හ x: key හ x 2 : key. It returns a set 
S D S 1 [ fx g [ S 2 . In this problem, we investigate how to implement the join 
operation on red-black trees. 
a. Suppose that you store the black-height of a red-black tree T as the new at- 

tribute T: bh. Argue that RB-I NSERT and RB-DELETE can maintain the bh 
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attribute without requiring extra storage in the nodes of the tree and without 
increasing the asymptotic running times. Show how to determine the black- 
height of each node visited while descending through T , using O.1/ time per 
node visited. 

Let T 1 and T 2 be red-black trees and x be a key value such that for any nodes 
x 1 in T 1 and x 2 in T 2 , we have x 1 : key හ x: key හ x 2 : key. You will show how 
to implement the operation RB-J OIN.T 1 ; x; T 2 /, which destroys T 1 and T 2 and 
returns a red-black tree T D T 1 [ fx g [ T 2 . Let n be the total number of nodes in 
T 1 and T 2 . 
b. Assume that T 1 : bh  T 2 : bh. Describe an O.lg n/-time algorithm that ûnds a 

black node y in T 1 with the largest key from among those nodes whose black- 
height is T 2 : bh. 

c. Let T y be the subtree rooted at y . Describe how T y [ fx g [ T 2 can replace T y 
in O.1/ time without destroying the binary-search-tree property. 

d. What color should you make x so that red-black properties 1, 3, and 5 are 
maintained? Describe how to enforce properties 2 and 4 in O.lg n/ time. 

e. Argue that no generality is lost by making the assumption in part (b). Describe 
the symmetric situation that arises when T 1 : bh හ T 2 : bh. 

f. Argue that the running time of RB-J OIN is O.lg n/. 

13-3 AVL trees 
An AVL tree is a binary search tree that is height balanced: for each node x , the 
heights of the left and right subtrees of x differ by at most 1. To implement an 
AVL tree, maintain an extra attribute h in each node such that x: h is the height of 
node x . As for any other binary search tree T , assume that T: root points to the root 
node. 
a. Prove that an AVL tree with n nodes has height O.lg n/. (Hint: Prove that 

an AVL tree of height h has at least F h nodes, where F h is the hth Fibonacci 
number.) 

b. To insert into an AVL tree, ûrst place a node into the appropriate place in bi- 
nary search tree order. Afterward, the tree might no longer be height balanced. 
Speciûcally, the heights of the left and right children of some node might differ 
by 2. Describe a procedure BALANCE.x/, which takes a subtree rooted at x 
whose left and right children are height balanced and have heights that differ 
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by at most 2, so that jx: right : h  x: left: hj හ 2, and alters the subtree rooted 
at x to be height balanced. The procedure should return a pointer to the node 
that is the root of the subtree after alterations occur. (Hint: Use rotations.) 

c. Using part (b), describe a recursive procedure AVL-I NSERT .T; ´/ that takes 
an AVL tree T and a newly created node ´ (whose key has already been ûlled 
in), and adds ´ into T , maintaining the property that T is an AVL tree. As in 
TREE-I NSERT from Section 12.3, assume that ´: key has already been ûlled in 
and that ´: left D NIL and ´: right D NIL. Assume as well that ´: h D 0. 

d. Show that AVL-I NSERT, run on an n-node AVL tree, takes O.lg n/ time and 
performs O.lg n/ rotations. 

Chapter notes 

The idea of balancing a search tree is due to Adel’son-Vel’ski˘ ı and Landis [2], who 
introduced a class of balanced search trees called <AVL trees= in 1962, described in 
Problem 13-3. Another class of search trees, called <2-3 trees,= was introduced by 
J. E. Hopcroft (unpublished) in 1970. A 2-3 tree maintains balance by manipulating 
the degrees of nodes in the tree, where each node has either two or three children. 
Chapter 18 covers a generalization of 2-3 trees introduced by Bayer and McCreight 
[39], called <B-trees.= 
Red-black trees were invented by Bayer [38] under the name <symmetric binary 

B-trees.= Guibas and Sedgewick [202] studied their properties at length and in- 
troduced the red/black color convention. Andersson [16] gives a simpler-to-code 
variant of red-black trees. Weiss [451] calls this variant AA-trees. An AA-tree is 
similar to a red-black tree except that left children can never be red. 
Sedgewick and Wayne [402] present red-black trees as a modiûed version of 2-3 

trees in which a node with three children is split into two nodes with two children 
each. One of these nodes becomes the left child of the other, and only left children 
can be red. They call this structure a <left-leaning red-black binary search tree.= 
Although the code for left-leaning red-black binary search trees is more concise 
than the red-black tree pseudocode in this chapter, operations on left-leaning red- 
black binary search trees do not limit the number of rotations per operation to a 
constant. This distinction will matter in Chapter 17. 

Treaps, a hybrid of binary search trees and heaps, were proposed by Seidel and 
Aragon [404]. They are the default implementation of a dictionary in LEDA [324], 
which is a well-implemented collection of data structures and algorithms. 

There are many other variations on balanced binary trees, including weight- 
balanced trees [344], k-neighbor trees [318], and scapegoat trees [174]. Perhaps 
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the most intriguing are the <splay trees= introduced by Sleator and Tarjan [418], 
which are <self-adjusting.= (See Tarjan [429] for a good description of splay trees.) 
Splay trees maintain balance without any explicit balance condition such as color. 
Instead, <splay operations= (which involve rotations) are performed within the tree 
every time an access is made. The amortized cost (see Chapter 16) of each oper- 
ation on an n-node tree is O.lg n/. Splay trees have been conjectured to perform 
within a constant factor of the best ofüine rotation-based tree. The best known 
competitive ratio (see Chapter 27) for a rotation-based tree is the Tango Tree of 
Demaine et al. [109]. 
Skip lists [369] provide an alternative to balanced binary trees. A skip list is a 

linked list that is augmented with a number of additional pointers. Each dictionary 
operation runs in O.lg n/ expected time on a skip list of n items. 



Part IV Advanced Design and Analysis Techniques 



Introduction 

This part covers three important techniques used in designing and analyzing efû- 
cient algorithms: dynamic programming (Chapter 14), greedy algorithms (Chap- 
ter 15), and amortized analysis (Chapter 16). Earlier parts have presented other 
widely applicable techniques, such as divide-and-conquer , randomization, and how 
to solve recurrences. The techniques in this part are somewhat more sophisticated, 
but you will be able to use them solve many computational problems. The themes 
introduced in this part will recur later in this book. 

Dynamic programming typically applies to optimization problems in which you 
make a set of choices in order to arrive at an optimal solution, each choice generates 
subproblems of the same form as the original problem, and the same subproblems 
arise repeatedly. The key strategy is to store the solution to each such subproblem 
rather than recompute it. Chapter 14 shows how this simple idea can sometimes 
transform exponential-time algorithms into polynomial-time algorithms. 
Like dynamic-programming algorithms, greedy algorithms typically apply to 

optimization problems in which you make a set of choices in order to arrive at an 
optimal solution. The idea of a greedy algorithm is to make each choice in a locally 
optimal manner, resulting in a faster algorithm than you get with dynamic program- 
ming. Chapter 15 will help you determine when the greedy approach works. 

The technique of amortized analysis applies to certain algorithms that perform 
a sequence of similar operations. Instead of bounding the cost of the sequence of 
operations by bounding the actual cost of each operation separately, an amortized 
analysis provides a worst-case bound on the actual cost of the entire sequence. One 
advantage of this approach is that although some operations might be expensive, 
many others might be cheap. You can use amortized analysis when designing 
algorithms, since the design of an algorithm and the analysis of its running time 
are often closely intertwined. Chapter 16 introduces three ways to perform an 
amortized analysis of an algorithm. 



14 Dynamic Programming 

Dynamic programming, like the divide-and-conquer method, solves problems by 
combining the solutions to subproblems. (<Programming= in this context refers 
to a tabular method, not to writing computer code.) As we saw in Chapters 2 
and 4, divide-and-conquer algorithms partition the problem into disjoint subprob- 
lems, solve the subproblems recursively, and then combine their solutions to solve 
the original problem. In contrast, dynamic programming applies when the subprob- 
lems overlap4that is, when subproblems share subsubproblems. In this context, 
a divide-and-conquer algorithm does more work than necessary, repeatedly solv- 
ing the common subsubproblems. A dynamic-programming algorithm solves each 
subsubproblem just once and then saves its answer in a table, thereby avoiding the 
work of recomputing the answer every time it solves each subsubproblem. 

Dynamic programming typically applies to optimization problems. Such prob- 
lems can have many possible solutions. Each solution has a value, and you want 
to ûnd a solution with the optimal (minimum or maximum) value. We call such 
a solution an optimal solution to the problem, as opposed to the optimal solution, 
since there may be several solutions that achieve the optimal value. 
To develop a dynamic-programming algorithm, follow a sequence of four steps: 

1. Characterize the structure of an optimal solution. 
2. Recursively deûne the value of an optimal solution. 
3. Compute the value of an optimal solution, typically in a bottom-up fashion. 
4. Construct an optimal solution from computed information. 
Steps 133 form the basis of a dynamic-programming solution to a problem. If you 
need only the value of an optimal solution, and not the solution itself, then you 
can omit step 4. When you do perform step 4, it often pays to maintain additional 
information during step 3 so that you can easily construct an optimal solution. 
The sections that follow use the dynamic-programming method to solve some 

optimization problems. Section 14.1 examines the problem of cutting a rod into 
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rods of smaller length in a way that maximizes their total value. Section 14.2 
shows how to multiply a chain of matrices while performing the fewest total scalar 
multiplications. Given these examples of dynamic programming, Section 14.3 dis- 
cusses two key characteristics that a problem must have for dynamic programming 
to be a viable solution technique. Section 14.4 then shows how to ûnd the longest 
common subsequence of two sequences via dynamic programming. Finally, Sec- 
tion 14.5 uses dynamic programming to construct binary search trees that are opti- 
mal, given a known distribution of keys to be looked up. 

14.1 Rod cutting 

Our ûrst example uses dynamic programming to solve a simple problem in decid- 
ing where to cut steel rods. Serling Enterprises buys long steel rods and cuts them 
into shorter rods, which it then sells. Each cut is free. The management of Serling 
Enterprises wants to know the best way to cut up the rods. 

Serling Enterprises has a table giving, for i D 1; 2; : : :, the price p i in dollars 
that they charge for a rod of length i inches. The length of each rod in inches is 
always an integer. Figure 14.1 gives a sample price table. 

The rod-cutting problem is the following. Given a rod of length n inches and 
a table of prices p i for i D 1; 2; : : : ; n, determine the maximum revenue r n ob- 
tainable by cutting up the rod and selling the pieces. If the price p n for a rod of 
length n is large enough, an optimal solution might require no cutting at all. 

Consider the case when n D 4. Figure 14.2 shows all the ways to cut up a rod 
of 4 inches in length, including the way with no cuts at all. Cutting a 4-inch rod 
into two 2-inch pieces produces revenue p 2 C p 2 D 5 C 5 D 10, which is optimal. 

Serling Enterprises can cut up a rod of length n in 2 n1 different ways, since they 
have an independent option of cutting, or not cutting, at distance i inches from the 
left end, for i D 1; 2; : : : ; n  1. 1 We denote a decomposition into pieces using 
ordinary additive notation, so that 7 D 2 C 2 C 3 indicates that a rod of length 7 is 
cut into three pieces4two of length 2 and one of length 3. If an optimal solution 
cuts the rod into k pieces, for some 1 හ k හ n, then an optimal decomposition 
n D i 1 C i 2 C    C i k 

1 If pieces are required to be cut in order of monotonically increasing size, there are fewer ways to 
consider. For n D 4, only 5 such ways are possible: parts (a), (b), (c), (e), and (h) in Figure 14.2. The 
number of ways is called the partition function, which is approximately equal to e  

p 
2n=3 =4n 

p 
3. 

This quantity is less than 2 n1 , but still much greater than any polynomial in n. We won’t pursue 
this line of inquiry further, however. 
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length i 1 2 3 4 5 6 7 8 9 10 
price p i 1 5 8 9 10 17 17 20 24 30 

Figure 14.1 A sample price table for rods. Each rod of length i inches earns the company p i 
dollars of revenue. 
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Figure 14.2 The 8 possible ways of cutting up a rod of length 4. Above each piece is the value 
of that piece, according to the sample price chart of Figure 14.1. The optimal strategy is part (c)4 
cutting the rod into two pieces of length 24which has total value 10. 

of the rod into pieces of lengths i 1 , i 2 , . . . , i k provides maximum corresponding 
revenue 
r n D p i 1 C p i 2 C    C p i k : 

For the sample problem in Figure 14.1, you can determine the optimal revenue 
ûgures r i , for i D 1; 2; : : : ; 10, by inspection, with the corresponding optimal 
decompositions 
r 1 D 1 from solution 1 D 1 (no cuts) ; 
r 2 D 5 from solution 2 D 2 (no cuts) ; 
r 3 D 8 from solution 3 D 3 (no cuts) ; 
r 4 D 10 from solution 4 D 2 C 2 ; 
r 5 D 13 from solution 5 D 2 C 3 ; 
r 6 D 17 from solution 6 D 6 (no cuts) ; 
r 7 D 18 from solution 7 D 1 C 6 or 7 D 2 C 2 C 3 ; 
r 8 D 22 from solution 8 D 2 C 6 ; 
r 9 D 25 from solution 9 D 3 C 6 ; 
r 10 D 30 from solution 10 D 10 (no cuts) : 
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More generally, we can express the values r n for n  1 in terms of optimal 
revenues from shorter rods: 
r n D max fp n ; r 1 C r n1 ; r 2 C r n2 ; : : : ; r n1 C r 1 g : (14.1) 
The ûrst argument, p n , corresponds to making no cuts at all and selling the rod of 
length n as is. The other n  1 arguments to max correspond to the maximum rev- 
enue obtained by making an initial cut of the rod into two pieces of size i and n  i , 
for each i D 1; 2; : : : ; n  1, and then optimally cutting up those pieces further, ob- 
taining revenues r i and r ni from those two pieces. Since you don’t know ahead of 
time which value of i optimizes revenue, you have to consider all possible values 
for i and pick the one that maximizes revenue. You also have the option of picking 
no i at all if the greatest revenue comes from selling the rod uncut. 

To solve the original problem of size n, you solve smaller problems of the same 
type. Once you make the ûrst cut, the two resulting pieces form independent in- 
stances of the rod-cutting problem. The overall optimal solution incorporates op- 
timal solutions to the two resulting subproblems, maximizing revenue from each 
of those two pieces. We say that the rod-cutting problem exhibits optimal sub- 
structure: optimal solutions to a problem incorporate optimal solutions to related 
subproblems, which you may solve independently. 

In a related, but slightly simpler, way to arrange a recursive structure for the 
rod-cutting problem, let’s view a decomposition as consisting of a ûrst piece of 
length i cut off the left-hand end, and then a right-hand remainder of length n  i . 
Only the remainder, and not the ûrst piece, may be further divided. Think of every 
decomposition of a length-n rod in this way: as a ûrst piece followed by some 
decomposition of the remainder. Then we can express the solution with no cuts 
at all by saying that the ûrst piece has size i D n and revenue p n and that the 
remainder has size 0 with corresponding revenue r 0 D 0. We thus obtain the 
following simpler version of equation (14.1): 
r n D max fp i C r ni W 1 හ i හ ng : (14.2) 
In this formulation, an optimal solution embodies the solution to only one related 
subproblem4the remainder4rather than two. 

Recursive top-down implementation 

The CUT-ROD procedure on the following page implements the computation im- 
plicit in equation (14.2) in a straightforward, top-down, recursive manner. It takes 
as input an array pŒ1 W n� of prices and an integer n, and it returns the maxi- 
mum revenue possible for a rod of length n. For length n D 0, no revenue 
is possible, and so CUT-ROD returns 0 in line 2. Line 3 initializes the max- 
imum revenue q to 1, so that the for loop in lines 435 correctly computes 
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q D max fp i C CUT-ROD.p; n  i/ W 1 හ i හ ng. Line 6 then returns this value. 
A simple induction on n proves that this answer is equal to the desired answer r n , 
using equation (14.2). 

CUT-ROD.p; n/ 
1 if n == 0 
2 return 0 
3 q D 1 
4 for i D 1 to n 
5 q D max fq; pŒi � C CUT-ROD.p; n  i/g 
6 return q 

If you code up CUT-ROD in your favorite programming language and run it on 
your computer, you’ll ûnd that once the input size becomes moderately large, your 
program takes a long time to run. For n D 40, your program may take several 
minutes and possibly more than an hour. For large values of n, you’ll also discover 
that each time you increase n by 1, your program’s running time approximately 
doubles. 

Why is CUT-ROD so inefûcient? The problem is that CUT-ROD calls itself re- 
cursively over and over again with the same parameter values, which means that 
it solves the same subproblems repeatedly. Figure 14.3 shows a recursion tree 
demonstrating what happens for n D 4: CUT-ROD.p; n/ calls CUT-ROD.p; n  i/ 
for i D 1; 2; : : : ; n. Equivalently, CUT-ROD.p; n/ calls CUT-ROD.p; j / for each 
j D 0; 1; : : : ; n  1. When this process unfolds recursively, the amount of work 
done, as a function of n, grows explosively. 

To analyze the running time of CUT-ROD, let T .n/ denote the total number of 
calls made to CUT-ROD.p; n/ for a particular value of n. This expression equals 
the number of nodes in a subtree whose root is labeled n in the recursion tree. The 
count includes the initial call at its root. Thus, T .0/ D 1 and 

T .n/ D 1 C 
n1 X 

j D0 

T .j / : (14.3) 

The initial 1 is for the call at the root, and the term T .j / counts the number of calls 
(including recursive calls) due to the call CUT-ROD.p; n  i/, where j D n  i . 
As Exercise 14.1-1 asks you to show, 
T .n/ D 2 n ; (14.4) 
and so the running time of CUT-ROD is exponential in n. 

In retrospect, this exponential running time is not so surprising. CUT-ROD ex- 
plicitly considers all possible ways of cutting up a rod of length n. How many ways 
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Figure 14.3 The recursion tree showing recursive calls resulting from a call C UT-ROD.p; n/ for 
n D 4. Each node label gives the size n of the corresponding subproblem, so that an edge from 
a parent with label s to a child with label t corresponds to cutting off an initial piece of size s  t 
and leaving a remaining subproblem of size t . A path from the root to a leaf corresponds to one of 
the 2 n1 ways of cutting up a rod of length n. In general, this recursion tree has 2 n nodes and 2 n1 

leaves. 

are there? A rod of length n has n  1 potential locations to cut. Each possible way 
to cut up the rod makes a cut at some subset of these n  1 locations, including the 
empty set, which makes for no cuts. Viewing each cut location as a distinct mem- 
ber of a set of n  1 elements, you can see that there are 2 n1 subsets. Each leaf 
in the recursion tree of Figure 14.3 corresponds to one possible way to cut up the 
rod. Hence, the recursion tree has 2 n1 leaves. The labels on the simple path from 
the root to a leaf give the sizes of each remaining right-hand piece before making 
each cut. That is, the labels give the corresponding cut points, measured from the 
right-hand end of the rod. 

Using dynamic programming for optimal rod cutting 

Now, let’s see how to use dynamic programming to convert CUT-ROD into an 
efûcient algorithm. 
The dynamic-programming method works as follows. Instead of solving the 

same subproblems repeatedly, as in the naive recursion solution, arrange for each 
subproblem to be solved only once. There’s actually an obvious way to do so: the 
ûrst time you solve a subproblem, save its solution. If you need to refer to this 
subproblem’s solution again later, just look it up, rather than recomputing it. 

Saving subproblem solutions comes with a cost: the additional memory needed 
to store solutions. Dynamic programming thus serves as an example of a time- 
memory trade-off . The savings may be dramatic. For example, we’re about to use 
dynamic programming to go from the exponential-time algorithm for rod cutting 
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down to a ‚.n 2 /-time algorithm. A dynamic-programming approach runs in poly- 
nomial time when the number of distinct subproblems involved is polynomial in 
the input size and you can solve each such subproblem in polynomial time. 

There are usually two equivalent ways to implement a dynamic-programming 
approach. Solutions to the rod-cutting problem illustrate both of them. 
The ûrst approach is top-down with memoization. 2 In this approach, you write 

the procedure recursively in a natural manner, but modiûed to save the result of 
each subproblem (usually in an array or hash table). The procedure now ûrst checks 
to see whether it has previously solved this subproblem. If so, it returns the saved 
value, saving further computation at this level. If not, the procedure computes the 
value in the usual manner but also saves it. We say that the recursive procedure has 
been memoized: it <remembers= what results it has computed previously. 

The second approach is the bottom-up method. This approach typically de- 
pends on some natural notion of the <size= of a subproblem, such that solving any 
particular subproblem depends only on solving <smaller= subproblems. Solve the 
subproblems in size order, smallest ûrst, storing the solution to each subproblem 
when it is ûrst solved. In this way, when solving a particular subproblem, there 
are already saved solutions for all of the smaller subproblems its solution depends 
upon. You need to solve each subproblem only once, and when you ûrst see it, you 
have already solved all of its prerequisite subproblems. 

These two approaches yield algorithms with the same asymptotic running time, 
except in unusual circumstances where the top-down approach does not actually 
recurse to examine all possible subproblems. The bottom-up approach often has 
much better constant factors, since it has lower overhead for procedure calls. 

The procedures MEMOIZED-CUT-ROD and MEMOIZED-CUT-ROD-AUX on 
the facing page demonstrate how to memoize the top-down CUT-ROD proce- 
dure. The main procedure MEMOIZED-CUT-ROD initializes a new auxiliary array 
rŒ0 W n� with the value 1 which, since known revenue values are always nonneg- 
ative, is a convenient choice for denoting <unknown.= MEMOIZED-CUT-ROD then 
calls its helper procedure, MEMOIZED-CUT-ROD-AUX, which is just the memo- 
ized version of the exponential-time procedure, CUT-ROD. It ûrst checks in line 1 
to see whether the desired value is already known and, if it is, then line 2 returns it. 
Otherwise, lines 337 compute the desired value q in the usual manner, line 8 saves 
it in rŒn�, and line 9 returns it. 
The bottom-up version, BOTTOM-UP-CUT-ROD on the next page, is even sim- 

pler. Using the bottom-up dynamic-programming approach, BOTTOM-UP-CUT- 
ROD takes advantage of the natural ordering of the subproblems: a subproblem of 

2 The technical term <memoization= is not a misspelling of <memorization.= The word <memoiza- 
tion= comes from <memo,= since the technique consists of recording a value to be looked up later. 
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MEMOIZED-CUT-ROD .p; n/ 
1 let rŒ0 W n� be a new array // will remember solution values in r 
2 for i D 0 to n 
3 rŒi � D 1 
4 return MEMOIZED-CUT-ROD-AUX .p; n; r/ 

MEMOIZED-CUT-ROD-AUX .p; n; r/ 
1 if rŒn�  0 // already have a solution for length n? 
2 return rŒn� 
3 if n = = 0 
4 q D 0 
5 else q D 1 
6 for i D 1 to n // i is the position of the ûrst cut 
7 q D max fq; pŒi � C MEMOIZED-CUT-ROD-AUX .p; n  i; r/g 
8 rŒn� D q // remember the solution value for length n 
9 return q 

BOTTOM-UP-CUT-ROD .p; n/ 
1 let rŒ0 W n� be a new array // will remember solution values in r 
2 rŒ0� D 0 
3 for j D 1 to n // for increasing rod length j 
4 q D 1 
5 for i D 1 to j // i is the position of the ûrst cut 
6 q D max fq; pŒi � C rŒj  i �g 
7 rŒj � D q // remember the solution value for length j 
8 return rŒn� 

size i is <smaller= than a subproblem of size j if i < j . Thus, the procedure solves 
subproblems of sizes j D 0; 1; : : : ; n, in that order. 
Line 1 of BOTTOM-UP-CUT-ROD creates a new array rŒ0 W n� in which to save 

the results of the subproblems, and line 2 initializes rŒ0� to 0, since a rod of length 0 
earns no revenue. Lines 336 solve each subproblem of size j , for j D 1; 2; : : : ; n, 
in order of increasing size. The approach used to solve a problem of a particular 
size j is the same as that used by CUT-ROD, except that line 6 now directly refer- 
ences array entry rŒj i � instead of making a recursive call to solve the subproblem 
of size j  i . Line 7 saves in rŒj � the solution to the subproblem of size j . Finally, 
line 8 returns rŒn�, which equals the optimal value r n . 
The bottom-up and top-down versions have the same asymptotic running time. 

The running time of BOTTOM-UP-CUT-ROD is ‚.n 2 /, due to its doubly nested 
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Figure 14.4 The subproblem graph for the rod-cutting problem with n D 4. The vertex labels give 
the sizes of the corresponding subproblems. A directed edge .x; y/ indicates that solving subprob- 
lem x requires a solution to subproblem y. This graph is a reduced version of the recursion tree of 
Figure 14.3, in which all nodes with the same label are collapsed into a single vertex and all edges 
go from parent to child. 

loop structure. The number of iterations of its inner for loop, in lines 536, forms 
an arithmetic series. The running time of its top-down counterpart, MEMOIZED- 
CUT-ROD, is also ‚.n 2 /, although this running time may be a little harder to see. 
Because a recursive call to solve a previously solved subproblem returns immedi- 
ately, MEMOIZED-CUT-ROD solves each subproblem just once. It solves subprob- 
lems for sizes 0; 1; : : : ; n. To solve a subproblem of size n, the for loop of lines 637 
iterates n times. Thus, the total number of iterations of this for loop, over all re- 
cursive calls of MEMOIZED-CUT-ROD, forms an arithmetic series, giving a total 
of ‚.n 2 / iterations, just like the inner for loop of BOTTOM-UP-CUT-ROD. (We 
actually are using a form of aggregate analysis here. We’ll see aggregate analysis 
in detail in Section 16.1.) 

Subproblem graphs 
When you think about a dynamic-programming problem, you need to understand 
the set of subproblems involved and how subproblems depend on one another. 

The subproblem graph for the problem embodies exactly this information. Fig- 
ure 14.4 shows the subproblem graph for the rod-cutting problem with n D 4. It 
is a directed graph, containing one vertex for each distinct subproblem. The sub- 
problem graph has a directed edge from the vertex for subproblem x to the vertex 
for subproblem y if determining an optimal solution for subproblem x involves 
directly considering an optimal solution for subproblem y . For example, the sub- 
problem graph contains an edge from x to y if a top-down recursive procedure for 
solving x directly calls itself to solve y . You can think of the subproblem graph as 
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a <reduced= or <collapsed= version of the recursion tree for the top-down recursive 
method, with all nodes for the same subproblem coalesced into a single vertex and 
all edges directed from parent to child. 
The bottom-up method for dynamic programming considers the vertices of the 

subproblem graph in such an order that you solve the subproblems y adjacent to 
a given subproblem x before you solve subproblem x . (As Section B.4 notes, the 
adjacency relation in a directed graph is not necessarily symmetric.) Using ter- 
minology that we’ll see in Section 20.4, in a bottom-up dynamic-programming 
algorithm, you consider the vertices of the subproblem graph in an order that is a 
<reverse topological sort,= or a <topological sort of the transpose= of the subprob- 
lem graph. In other words, no subproblem is considered until all of the subprob- 
lems it depends upon have been solved. Similarly, using notions that we’ll visit in 
Section 20.3, you can view the top-down method (with memoization) for dynamic 
programming as a <depth-ûrst search= of the subproblem graph. 

The size of the subproblem graph G D .V;E/ can help you determine the 
running time of the dynamic-programming algorithm. Since you solve each sub- 
problem just once, the running time is the sum of the times needed to solve each 
subproblem. Typically, the time to compute the solution to a subproblem is propor- 
tional to the degree (number of outgoing edges) of the corresponding vertex in the 
subproblem graph, and the number of subproblems is equal to the number of ver- 
tices in the subproblem graph. In this common case, the running time of dynamic 
programming is linear in the number of vertices and edges. 

Reconstructing a solution 

The procedures MEMOIZED-CUT-ROD and BOTTOM-UP-CUT-ROD return the 
value of an optimal solution to the rod-cutting problem, but they do not return 
the solution itself : a list of piece sizes. 
Let’s see how to extend the dynamic-programming approach to record not only 

the optimal value computed for each subproblem, but also a choice that led to the 
optimal value. With this information, you can readily print an optimal solution. 
The procedure EXTENDED-BOTTOM-UP-CUT-ROD on the next page computes, 
for each rod size j , not only the maximum revenue r j , but also s j , the optimal size 
of the ûrst piece to cut off. It’s similar to BOTTOM-UP-CUT-ROD, except that it 
creates the array s in line 1, and it updates sŒj � in line 8 to hold the optimal size i 
of the ûrst piece to cut off when solving a subproblem of size j . 

The procedure PRINT-CUT-ROD-SOLUTION on the following page takes as in- 
put an array pŒ1 W n� of prices and a rod size n. It calls EXTENDED-BOTTOM- 
UP-CUT-ROD to compute the array sŒ1 W n� of optimal ûrst-piece sizes. Then 
it prints out the complete list of piece sizes in an optimal decomposition of a 
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rod of length n. For the sample price chart appearing in Figure 14.1, the call 
EXTENDED-BOTTOM-UP-CUT-ROD .p; 10/ returns the following arrays: 
i 0 1 2 3 4 5 6 7 8 9 10 
rŒi � 0 1 5 8 10 13 17 18 22 25 30 
sŒi � 1 2 3 2 2 6 1 2 3 10 

A call to PRINT-CUT-ROD-SOLUTION .p; 10/ prints just 10, but a call with n D 7 
prints the cuts 1 and 6, which correspond to the ûrst optimal decomposition for r 7 
given earlier. 

EXTENDED-BOTTOM-UP-CUT-ROD .p; n/ 
1 let rŒ0 W n� and sŒ1 W n� be new arrays 
2 rŒ0� D 0 
3 for j D 1 to n // for increasing rod length j 
4 q D 1 
5 for i D 1 to j // i is the position of the ûrst cut 
6 if q < pŒi � C rŒj  i � 
7 q D pŒi � C rŒj  i � 
8 sŒj � D i // best cut location so far for length j 
9 rŒj � D q // remember the solution value for length j 
10 return r and s 

PRINT-CUT-ROD-SOLUTION .p; n/ 
1 .r; s/ D EXTENDED-BOTTOM-UP-CUT-ROD .p; n/ 
2 while n > 0 
3 print sŒn� // cut location for length n 
4 n D n  sŒn� // length of the remainder of the rod 

Exercises 
14.1-1 
Show that equation (14.4) follows from equation (14.3) and the initial condition 
T .0/ D 1. 
14.1-2 
Show, by means of a counterexample, that the following <greedy= strategy does 
not always determine an optimal way to cut rods. Deûne the density of a rod of 
length i to be p i =i , that is, its value per inch. The greedy strategy for a rod of 
length n cuts off a ûrst piece of length i , where 1 හ i හ n, having maximum 
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density. It then continues by applying the greedy strategy to the remaining piece of 
length n  i . 
14.1-3 
Consider a modiûcation of the rod-cutting problem in which, in addition to a 
price p i for each rod, each cut incurs a ûxed cost of c . The revenue associated with 
a solution is now the sum of the prices of the pieces minus the costs of making the 
cuts. Give a dynamic-programming algorithm to solve this modiûed problem. 
14.1-4 
Modify CUT-ROD and MEMOIZED-CUT-ROD-AUX so that their for loops go up 
to only bn=2c, rather than up to n. What other changes to the procedures do you 
need to make? How are their running times affected? 
14.1-5 
Modify MEMOIZED-CUT-ROD to return not only the value but the actual solution. 
14.1-6 
The Fibonacci numbers are deûned by recurrence (3.31) on page 69. Give an 
O.n/-time dynamic-programming algorithm to compute the nth Fibonacci number. 
Draw the subproblem graph. How many vertices and edges does the graph contain? 

14.2 Matrix-chain multiplication 

Our next example of dynamic programming is an algorithm that solves the problem 
of matrix-chain multiplication. Given a sequence (chain) hA 1 ; A 2 ; : : : ; A n i of n 
matrices to be multiplied, where the matrices aren’t necessarily square, the goal is 
to compute the product 
A 1 A 2    A n : (14.5) 
using the standard algorithm 3 for multiplying rectangular matrices, which we’ll see 
in a moment, while minimizing the number of scalar multiplications. 
You can evaluate the expression (14.5) using the algorithm for multiplying pairs 

of rectangular matrices as a subroutine once you have parenthesized it to resolve 
all ambiguities in how the matrices are multiplied together. Matrix multiplication 
is associative, and so all parenthesizations yield the same product. A product of 

3 None of the three methods from Sections 4.1 and Section 4.2 can be used directly, because they 
apply only to square matrices. 
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matrices is fully parenthesized if it is either a single matrix or the product of two 
fully parenthesized matrix products, surrounded by parentheses. For example, if 
the chain of matrices is hA 1 ; A 2 ; A 3 ; A 4 i, then you can fully parenthesize the prod- 
uct A 1 A 2 A 3 A 4 in ûve distinct ways: 
.A 1 .A 2 .A 3 A 4 /// ; 
.A 1 ..A 2 A 3 /A 4 // ; 
..A 1 A 2 /.A 3 A 4 // ; 
..A 1 .A 2 A 3 //A 4 / ; 
...A 1 A 2 /A 3 /A 4 / : 

How you parenthesize a chain of matrices can have a dramatic impact on the 
cost of evaluating the product. Consider ûrst the cost of multiplying two rectangu- 
lar matrices. The standard algorithm is given by the procedure RECTANGULAR- 
MATRIX-MULTIPLY, which generalizes the square-matrix multiplication proce- 
dure MATRIX-MULTIPLY on page 81. The RECTANGULAR-MATRIX-MULTIPLY 
procedure computes C D C C A  B for three matrices A D .a ij /, B D .b ij /, and 
C D .c ij /, where A is p  q, B is q  r , and C is p  r . 

RECTANGULAR-MATRIX-MULTIPLY .A;B;C; p; q; r/ 
1 for i D 1 to p 
2 for j D 1 to r 
3 for k D 1 to q 
4 c ij D c ij C a ik  b kj 

The running time of RECTANGULAR-MATRIX-MULTIPLY is dominated by the 
number of scalar multiplications in line 4, which is pqr . Therefore, we’ll consider 
the cost of multiplying matrices to be the number of scalar multiplications. (The 
number of scalar multiplications dominates even if we consider initializing C D 0 
to perform just C D A  B .) 

To illustrate the different costs incurred by different parenthesizations of a ma- 
trix product, consider the problem of a chain hA 1 ; A 2 ; A 3 i of three matrices. Sup- 
pose that the dimensions of the matrices are 10  100, 100  5, and 5  50, re- 
spectively. Multiplying according to the parenthesization ..A 1 A 2 /A 3 / performs 
10  100  5 D 5000 scalar multiplications to compute the 10  5 matrix prod- 
uct A 1 A 2 , plus another 10  5  50 D 2500 scalar multiplications to multiply this 
matrix by A 3 , for a total of 7500 scalar multiplications. Multiplying according 
to the alternative parenthesization .A 1 .A 2 A 3 // performs 100  5  50 D 25,000 
scalar multiplications to compute the 100  50 matrix product A 2 A 3 , plus another 
10  100  50 D 50,000 scalar multiplications to multiply A 1 by this matrix, for a 
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total of 75,000 scalar multiplications. Thus, computing the product according to 
the ûrst parenthesization is 10 times faster. 

We state the matrix-chain multiplication problem as follows: given a chain 
hA 1 ;A 2 ; : : : ;A n i of n matrices, where for i D 1; 2; : : : ; n, matrix A i has dimension 
p i 1  p i , fully parenthesize the product A 1 A 2    A n in a way that minimizes 
the number of scalar multiplications. The input is the sequence of dimensions 
hp 0 ; p 1 ; p 2 ; : : : ; p n i. 
The matrix-chain multiplication problem does not entail actually multiplying 

matrices. The goal is only to determine an order for multiplying matrices that 
has the lowest cost. Typically, the time invested in determining this optimal order 
is more than paid for by the time saved later on when actually performing the 
matrix multiplications (such as performing only 7500 scalar multiplications instead 
of 75,000). 

Counting the number of parenthesizations 
Before solving the matrix-chain multiplication problem by dynamic programming, 
let us convince ourselves that exhaustively checking all possible parenthesizations 
is not an efûcient algorithm. Denote the number of alternative parenthesizations 
of a sequence of n matrices by P.n/. When n D 1, the sequence consists of just 
one matrix, and therefore there is only one way to fully parenthesize the matrix 
product. When n  2, a fully parenthesized matrix product is the product of two 
fully parenthesized matrix subproducts, and the split between the two subproducts 
may occur between the kth and .k C 1/st matrices for any k D 1; 2; : : : ; n  1. 
Thus, we obtain the recurrence 

P.n/ D 

) 
1 if n D 1 ; 
n1 X 

kD1 

P.k/P.n  k/ if n  2 : 
(14.6) 

Problem 12-4 on page 329 asked you to show that the solution to a similar recur- 
rence is the sequence of Catalan numbers, which grows as �.4 n =n 3=2 /. A simpler 
exercise (see Exercise 14.2-3) is to show that the solution to the recurrence (14.6) 
is �.2 n /. The number of solutions is thus exponential in n, and the brute-force 
method of exhaustive search makes for a poor strategy when determining how to 
optimally parenthesize a matrix chain. 

Applying dynamic programming 

Let’s use the dynamic-programming method to determine how to optimally paren- 
thesize a matrix chain, by following the four-step sequence that we stated at the 
beginning of this chapter: 
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1. Characterize the structure of an optimal solution. 
2. Recursively deûne the value of an optimal solution. 
3. Compute the value of an optimal solution. 
4. Construct an optimal solution from computed information. 
We’ll go through these steps in order, demonstrating how to apply each step to the 
problem. 

Step 1: The structure of an optimal parenthesization 

In the ûrst step of the dynamic-programming method, you ûnd the optimal sub- 
structure and then use it to construct an optimal solution to the problem from opti- 
mal solutions to subproblems. To perform this step for the matrix-chain multipli- 
cation problem, it’s convenient to ûrst introduce some notation. Let A i Wj , where 
i හ j , denote the matrix that results from evaluating the product A i A i C1    A j . 
If the problem is nontrivial, that is, i < j , then to parenthesize the product 
A i A i C1    A j , the product must split between A k and A kC1 for some integer k 
in the range i හ k < j . That is, for some value of k, ûrst compute the matrices 
A i Wk and A kC1Wj , and then multiply them together to produce the ûnal product A i Wj . 
The cost of parenthesizing this way is the cost of computing the matrix A i Wk , plus 
the cost of computing A kC1Wj , plus the cost of multiplying them together. 

The optimal substructure of this problem is as follows. Suppose that to op- 
timally parenthesize A i A i C1    A j , you split the product between A k and A kC1 . 
Then the way you parenthesize the <preûx= subchain A i A i C1    A k within this 
optimal parenthesization of A i A i C1    A j must be an optimal parenthesization of 
A i A i C1    A k . Why? If there were a less costly way to parenthesize A i A i C1    A k , 
then you could substitute that parenthesization in the optimal parenthesization 
of A i A i C1    A j to produce another way to parenthesize A i A i C1    A j whose cost 
is lower than the optimum: a contradiction. A similar observation holds for how 
to parenthesize the subchain A kC1 A kC2    A j in the optimal parenthesization of 
A i A i C1    A j : it must be an optimal parenthesization of A kC1 A kC2    A j . 
Now let’s use the optimal substructure to show how to construct an optimal 

solution to the problem from optimal solutions to subproblems. Any solution to a 
nontrivial instance of the matrix-chain multiplication problem requires splitting the 
product, and any optimal solution contains within it optimal solutions to subprob- 
lem instances. Thus, to build an optimal solution to an instance of the matrix-chain 
multiplication problem, split the problem into two subproblems (optimally paren- 
thesizing A i A i C1    A k and A kC1 A kC2    A j ), ûnd optimal solutions to the two 
subproblem instances, and then combine these optimal subproblem solutions. To 
ensure that you’ve examined the optimal split, you must consider all possible splits. 
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Step 2: A recursive solution 

The next step is to deûne the cost of an optimal solution recursively in terms of the 
optimal solutions to subproblems. For the matrix-chain multiplication problem, a 
subproblem is to determine the minimum cost of parenthesizing A i A i C1    A j for 
1 හ i හ j හ n. Given the input dimensions hp 0 ; p 1 ; p 2 ; : : : ; p n i, an index pair 
i; j speciûes a subproblem. Let mŒi; j � be the minimum number of scalar multi- 
plications needed to compute the matrix A i Wj . For the full problem, the lowest-cost 
way to compute A 1Wn is thus mŒ1; n�. 
We can deûne mŒi; j � recursively as follows. If i D j , the problem is trivial: 

the chain consists of just one matrix A i Wi D A i , so that no scalar multiplications 
are necessary to compute the product. Thus, mŒi; i � D 0 for i D 1; 2; : : : ; n. To 
compute mŒi; j � when i < j , we take advantage of the structure of an optimal 
solution from step 1. Suppose that an optimal parenthesization splits the product 
A i A i C1    A j between A k and A kC1 , where i හ k < j . Then, mŒi; j � equals 
the minimum cost mŒi; k� for computing the subproduct A i Wk , plus the minimum 
cost mŒk C 1; j � for computing the subproduct, A kC1Wj , plus the cost of multiplying 
these two matrices together. Because each matrix A i is p i 1  p i , computing the 
matrix product A i Wk A kC1Wj takes p i 1 p k p j scalar multiplications. Thus, we obtain 
mŒi; j � D mŒi; k� C mŒk C 1; j � C p i 1 p k p j : 

This recursive equation assumes that you know the value of k. But you don’t, 
at least not yet. You have to try all possible values of k. How many are there? 
Just j  i , namely k D i; i C 1; : : : ; j  1. Since the optimal parenthesization 
must use one of these values for k, you need only check them all to ûnd the best. 
Thus, the recursive deûnition for the minimum cost of parenthesizing the product 
A i A i C1    A j becomes 

mŒi; j � D 

( 
0 if i D j ; 
min fmŒi; k� C mŒk C 1; j � C p i 1 p k p j W i හ k < j g if i < j : 

(14.7) 
The mŒi; j � values give the costs of optimal solutions to subproblems, but they 

do not provide all the information you need to construct an optimal solution. To 
help you do so, let’s deûne sŒi; j � to be a value of k at which you split the product 
A i A i C1    A j in an optimal parenthesization. That is, sŒi; j � equals a value k such 
that mŒi; j � D mŒi; k� C mŒk C 1; j � C p i 1 p k p j . 

Step 3: Computing the optimal costs 
At this point, you could write a recursive algorithm based on recurrence (14.7) to 
compute the minimum cost mŒ1; n� for multiplying A 1 A 2    A n . But as we saw 
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for the rod-cutting problem, and as we shall see in Section 14.3, this recursive 
algorithm takes exponential time. That’s no better than the brute-force method of 
checking each way of parenthesizing the product. 
Fortunately, there aren’t all that many distinct subproblems: just one subproblem 

for each choice of i and j satisfying 1 හ i හ j හ n, or ã n 
2 

ä C n D ‚.n 2 / in all. 4 

A recursive algorithm may encounter each subproblem many times in different 
branches of its recursion tree. This property of overlapping subproblems is the 
second hallmark of when dynamic programming applies (the ûrst hallmark being 
optimal substructure). 
Instead of computing the solution to recurrence (14.7) recursively, let’s com- 

pute the optimal cost by using a tabular, bottom-up approach, as in the procedure 
MATRIX-CHAIN-ORDER. (The corresponding top-down approach using memo- 
ization appears in Section 14.3.) The input is a sequence p D hp 0 ; p 1 ; : : : ; p n i 
of matrix dimensions, along with n, so that for i D 1; 2; : : : ; n, matrix A i has di- 
mensions p i 1  p i . The procedure uses an auxiliary table mŒ1 W n; 1 W n� to store 
the mŒi; j � costs and another auxiliary table sŒ1 W n  1; 2 W n� that records which 
index k achieved the optimal cost in computing mŒi; j �. The table s will help in 
constructing an optimal solution. 

MATRIX-CHAIN-ORDER .p; n/ 
1 let mŒ1 W n; 1 W n� and sŒ1 W n  1; 2 W n� be new tables 
2 for i D 1 to n // chain length 1 
3 mŒi; i � D 0 
4 for l D 2 to n // l is the chain length 
5 for i D 1 to n  l C 1 // chain begins at A i 
6 j D i C l  1 // chain ends at A j 
7 mŒi; j � D 1 
8 for k D i to j  1 // try A i Wk A kC1Wj 
9 q D mŒi; k� C mŒk C 1; j � C p i 1 p k p j 
10 if q < mŒi; j � 
11 mŒi; j � D q // remember this cost 
12 sŒi; j � D k // remember this index 
13 return m and s 

In what order should the algorithm ûll in the table entries? To answer this ques- 
tion, let’s see which entries of the table need to be accessed when computing the 

4 The ã n 
2 
ä term counts all pairs in which i < j . Because i and j may be equal, we need to add in 

the n term. 
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cost mŒi; j �. Equation (14.7) tells us that to compute the cost of matrix prod- 
uct A i Wj , ûrst the costs of the products A i Wk and A kC1Wj need to have been com- 
puted for all k D i; i C 1; : : : ; j  1. The chain A i A i C1    A j consists of j  i C 1 
matrices, and the chains A i A i C1 : : : A k and A kC1 A kC2 : : : A j consist of k  i C 1 
and j  k matrices, respectively. Since k < j , a chain of k  i C 1 matrices 
consists of fewer than j  i C 1 matrices. Likewise, since k  i , a chain of j  k 
matrices consists of fewer than j  i C 1 matrices. Thus, the algorithm should ûll 
in the table m from shorter matrix chains to longer matrix chains. That is, for the 
subproblem of optimally parenthesizing the chain A i A i C1    A j , it makes sense to 
consider the subproblem size as the length j  i C 1 of the chain. 
Now, let’s see how the MATRIX-CHAIN-ORDER procedure ûlls in the mŒi; j � 

entries in order of increasing chain length. Lines 233 initialize mŒi; i � D 0 for 
i D 1; 2; : : : ; n, since any matrix chain with just one matrix requires no scalar 
multiplications. In the for loop of lines 4312, the loop variable l denotes the length 
of matrix chains whose minimum costs are being computed. Each iteration of this 
loop uses recurrence (14.7) to compute mŒi; i C l  1� for i D 1; 2; : : : ; n  l C 1. In 
the ûrst iteration, l D 2, and so the loop computes mŒi; i C1� for i D 1; 2; : : : ; n1: 
the minimum costs for chains of length l D 2. The second time through the loop, 
it computes mŒi; i C 2� for i D 1; 2; : : : ; n  2: the minimum costs for chains of 
length l D 3. And so on, ending with a single matrix chain of length l D n and 
computing mŒ1; n�. When lines 7312 compute an mŒi; j � cost, this cost depends 
only on table entries mŒi; k� and mŒk C 1; j �, which have already been computed. 
Figure 14.5 illustrates the m and s tables, as ûlled in by the MATRIX-CHAIN- 

ORDER procedure on a chain of n D 6 matrices. Since mŒi; j � is deûned only 
for i හ j , only the portion of the table m on or above the main diagonal is used. 
The ûgure shows the table rotated to make the main diagonal run horizontally. The 
matrix chain is listed along the bottom. Using this layout, the minimum cost mŒi; j � 
for multiplying a subchain A i A i C1    A j of matrices appears at the intersection of 
lines running northeast from A i and northwest from A j . Reading across, each 
diagonal in the table contains the entries for matrix chains of the same length. 
MATRIX-CHAIN-ORDER computes the rows from bottom to top and from left to 
right within each row. It computes each entry mŒi; j � using the products p i 1 p k p j 
for k D i; i C 1; : : : ; j  1 and all entries southwest and southeast from mŒi; j �. 

A simple inspection of the nested loop structure of MATRIX-CHAIN-ORDER 
yields a running time of O.n 3 / for the algorithm. The loops are nested three deep, 
and each loop index (l , i , and k) takes on at most n  1 values. Exercise 14.2-5 asks 
you to show that the running time of this algorithm is in fact also �.n 3 /. The al- 
gorithm requires ‚.n 2 / space to store the m and s tables. Thus, MATRIX-CHAIN- 
ORDER is much more efûcient than the exponential-time method of enumerating 
all possible parenthesizations and checking each one. 
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Figure 14.5 The m and s tables computed by MATRIX-CHAIN-ORDER for n D 6 and the follow- 
ing matrix dimensions: 

matrix A 1 A 2 A 3 A 4 A 5 A 6 
dimension 30  35 35  15 15  5 5  10 10  20 20  25 

The tables are rotated so that the main diagonal runs horizontally. The m table uses only the main 
diagonal and upper triangle, and the s table uses only the upper triangle. The minimum number of 
scalar multiplications to multiply the 6 matrices is mŒ1; 6� D 15,125. Of the entries that are not tan, 
the pairs that have the same color are taken together in line 9 when computing 

mŒ2; 5� D min 

8 ˆ < 

ˆ : 

mŒ2; 2� C mŒ3; 5� C p 1 p 2 p 5 D 0 C 2500 C 35  15  20 D 13,000 ; 
mŒ2; 3� C mŒ4; 5� C p 1 p 3 p 5 D 2625 C 1000 C 35  5  20 D 7125 ; 
mŒ2; 4� C mŒ5; 5� C p 1 p 4 p 5 D 4375 C 0 C 35  10  20 D 11,375 

D 7125 : 

Step 4: Constructing an optimal solution 

Although MATRIX-CHAIN-ORDER determines the optimal number of scalar mul- 
tiplications needed to compute a matrix-chain product, it does not directly show 
how to multiply the matrices. The table sŒ1 W n  1; 2 W n� provides the information 
needed to do so. Each entry sŒi; j � records a value of k such that an optimal paren- 
thesization of A i A i C1    A j splits the product between A k and A kC1 . The ûnal 
matrix multiplication in computing A 1Wn optimally is A 1WsŒ1;nŁ A sŒ1;nŁC1Wn . The s ta- 
ble contains the information needed to determine the earlier matrix multiplications 
as well, using recursion: sŒ1; sŒ1; n�� determines the last matrix multiplication when 
computing A 1WsŒ1;nŁ and sŒsŒ1; n� C 1; n� determines the last matrix multiplication 
when computing A sŒ1;nŁC1Wn . The recursive procedure PRINT-OPTIMAL-PARENS 
on the facing page prints an optimal parenthesization of the matrix chain product 
A i A i C1    A j , given the s table computed by MATRIX-CHAIN-ORDER and the in- 
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dices i and j . The initial call PRINT-OPTIMAL-PARENS .s; 1; n/ prints an optimal 
parenthesization of the full matrix chain product A 1 A 2    A n . In the example of 
Figure 14.5, the call PRINT-OPTIMAL-PARENS .s; 1; 6/ prints the optimal paren- 
thesization ..A 1 .A 2 A 3 //..A 4 A 5 /A 6 //. 

PRINT-OPTIMAL-PARENS .s; i; j / 
1 if i = = j 
2 print <A= i 
3 else print <(= 
4 PRINT-OPTIMAL-PARENS .s; i; sŒi; j �/ 
5 PRINT-OPTIMAL-PARENS .s; sŒi; j � C 1; j / 
6 print <)= 

Exercises 
14.2-1 
Find an optimal parenthesization of a matrix-chain product whose sequence of 
dimensions is h5; 10; 3; 12; 5; 50; 6i. 
14.2-2 
Give a recursive algorithm MATRIX-CHAIN-MULTIPLY .A; s; i; j / that actually 
performs the optimal matrix-chain multiplication, given the sequence of matri- 
ces hA 1 ; A 2 ; : : : ; A n i, the s table computed by MATRIX-CHAIN-ORDER, and the 
indices i and j . (The initial call is MATRIX-CHAIN-MULTIPLY .A; s; 1; n/.) As- 
sume that the call RECTANGULAR-MATRIX-MULTIPLY .A;B/ returns the product 
of matrices A and B . 
14.2-3 
Use the substitution method to show that the solution to the recurrence (14.6) 
is �.2 n /. 
14.2-4 
Describe the subproblem graph for matrix-chain multiplication with an input chain 
of length n. How many vertices does it have? How many edges does it have, and 
which edges are they? 
14.2-5 
Let R.i; j / be the number of times that table entry mŒi; j � is referenced while 
computing other table entries in a call of MATRIX-CHAIN-ORDER. Show that the 
total number of references for the entire table is 
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n X 

i D1 

n X 

j Di 

R.i; j / D 
n 3  n 
3 

: 

(Hint: You may ûnd equation (A.4) on page 1141 useful.) 
14.2-6 
Show that a full parenthesization of an n-element expression has exactly n  1 pairs 
of parentheses. 

14.3 Elements of dynamic programming 

Although you have just seen two complete examples of the dynamic-programming 
method, you might still be wondering just when the method applies. From an engi- 
neering perspective, when should you look for a dynamic-programming solution to 
a problem? In this section, we’ll examine the two key ingredients that an optimiza- 
tion problem must have in order for dynamic programming to apply: optimal sub- 
structure and overlapping subproblems. We’ll also revisit and discuss more fully 
how memoization might help you take advantage of the overlapping-subproblems 
property in a top-down recursive approach. 

Optimal substructure 
The ûrst step in solving an optimization problem by dynamic programming is to 
characterize the structure of an optimal solution. Recall that a problem exhibits 
optimal substructure if an optimal solution to the problem contains within it opti- 
mal solutions to subproblems. When a problem exhibits optimal substructure, that 
gives you a good clue that dynamic programming might apply. (As Chapter 15 
discusses, it also might mean that a greedy strategy applies, however.) Dynamic 
programming builds an optimal solution to the problem from optimal solutions to 
subproblems. Consequently, you must take care to ensure that the range of sub- 
problems you consider includes those used in an optimal solution. 
Optimal substructure was key to solving both of the previous problems in this 

chapter. In Section 14.1, we observed that the optimal way of cutting up a rod of 
length n (if Serling Enterprises makes any cuts at all) involves optimally cutting 
up the two pieces resulting from the ûrst cut. In Section 14.2, we noted that an 
optimal parenthesization of the matrix chain product A i A i C1    A j that splits the 
product between A k and A kC1 contains within it optimal solutions to the problems 
of parenthesizing A i A i C1    A k and A kC1 A kC2    A j . 
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You will ûnd yourself following a common pattern in discovering optimal sub- 
structure: 
1. You show that a solution to the problem consists of making a choice, such as 

choosing an initial cut in a rod or choosing an index at which to split the matrix 
chain. Making this choice leaves one or more subproblems to be solved. 

2. You suppose that for a given problem, you are given the choice that leads to an 
optimal solution. You do not concern yourself yet with how to determine this 
choice. You just assume that it has been given to you. 

3. Given this choice, you determine which subproblems ensue and how to best 
characterize the resulting space of subproblems. 

4. You show that the solutions to the subproblems used within an optimal solution 
to the problem must themselves be optimal by using a <cut-and-paste= tech- 
nique. You do so by supposing that each of the subproblem solutions is not 
optimal and then deriving a contradiction. In particular, by <cutting out= the 
nonoptimal solution to each subproblem and <pasting in= the optimal one, you 
show that you can get a better solution to the original problem, thus contradict- 
ing your supposition that you already had an optimal solution. If an optimal 
solution gives rise to more than one subproblem, they are typically so similar 
that you can modify the cut-and-paste argument for one to apply to the others 
with little effort. 

To characterize the space of subproblems, a good rule of thumb says to try to 
keep the space as simple as possible and then expand it as necessary. For example, 
the space of subproblems for the rod-cutting problem contained the problems of 
optimally cutting up a rod of length i for each size i . This subproblem space 
worked well, and it was not necessary to try a more general space of subproblems. 

Conversely, suppose that you tried to constrain the subproblem space for matrix- 
chain multiplication to matrix products of the form A 1 A 2    A j . As before, an 
optimal parenthesization must split this product between A k and A kC1 for some 
1 හ k < j . Unless you can guarantee that k always equals j  1, you will ûnd that 
you have subproblems of the form A 1 A 2    A k and A kC1 A kC2    A j . Moreover, 
the latter subproblem does not have the form A 1 A 2    A j . To solve this problem by 
dynamic programming, you need to allow the subproblems to vary at <both ends.= 
That is, both i and j need to vary in the subproblem of parenthesizing the product 
A i A i C1    A j . 
Optimal substructure varies across problem domains in two ways: 

1. how many subproblems an optimal solution to the original problem uses, and 
2. how many choices you have in determining which subproblem(s) to use in an 

optimal solution. 
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In the rod-cutting problem, an optimal solution for cutting up a rod of size n uses 
just one subproblem (of size n  i ), but we have to consider n choices for i in order 
to determine which one yields an optimal solution. Matrix-chain multiplication for 
the subchain A i A i C1    A j serves an example with two subproblems and j  i 
choices. For a given matrix A k where the product splits, two subproblems arise4 
parenthesizing A i A i C1    A k and parenthesizing A kC1 A kC2    A j 4and we have 
to solve both of them optimally. Once we determine the optimal solutions to sub- 
problems, we choose from among j  i candidates for the index k. 
Informally, the running time of a dynamic-programming algorithm depends on 

the product of two factors: the number of subproblems overall and how many 
choices you look at for each subproblem. In rod cutting, we had ‚.n/ subproblems 
overall, and at most n choices to examine for each, yielding an O.n 2 / running time. 
Matrix-chain multiplication had ‚.n 2 / subproblems overall, and each had at most 
n  1 choices, giving an O.n 3 / running time (actually, a ‚.n 3 / running time, by 
Exercise 14.2-5). 

Usually, the subproblem graph gives an alternative way to perform the same 
analysis. Each vertex corresponds to a subproblem, and the choices for a subprob- 
lem are the edges incident from that subproblem. Recall that in rod cutting, the 
subproblem graph has n vertices and at most n edges per vertex, yielding an O.n 2 / 
running time. For matrix-chain multiplication, if you were to draw the subprob- 
lem graph, it would have ‚.n 2 / vertices and each vertex would have degree at 
most n  1, giving a total of O.n 3 / vertices and edges. 

Dynamic programming often uses optimal substructure in a bottom-up fashion. 
That is, you ûrst ûnd optimal solutions to subproblems and, having solved the 
subproblems, you ûnd an optimal solution to the problem. Finding an optimal so- 
lution to the problem entails making a choice among subproblems as to which you 
will use in solving the problem. The cost of the problem solution is usually the 
subproblem costs plus a cost that is directly attributable to the choice itself. In 
rod cutting, for example, ûrst we solved the subproblems of determining optimal 
ways to cut up rods of length i for i D 0; 1; : : : ; n  1, and then we determined 
which of these subproblems yielded an optimal solution for a rod of length n, us- 
ing equation (14.2). The cost attributable to the choice itself is the term p i in 
equation (14.2). In matrix-chain multiplication, we determined optimal parenthe- 
sizations of subchains of A i A i C1    A j , and then we chose the matrix A k at which 
to split the product. The cost attributable to the choice itself is the term p i 1 p k p j . 
Chapter 15 explores <greedy algorithms,= which have many similarities to dy- 

namic programming. In particular, problems to which greedy algorithms apply 
have optimal substructure. One major difference between greedy algorithms and 
dynamic programming is that instead of ûrst ûnding optimal solutions to subprob- 
lems and then making an informed choice, greedy algorithms ûrst make a <greedy= 
choice4the choice that looks best at the time4and then solve a resulting subprob- 
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lem, without bothering to solve all possible related smaller subproblems. Surpris- 
ingly, in some cases this strategy works! 

Subtleties 
You should be careful not to assume that optimal substructure applies when it does 
not. Consider the following two problems whose input consists of a directed graph 
G D .V;E/ and vertices u; v 2 V . 
Unweighted shortest path: 5 Find a path from u to v consisting of the fewest 

edges. Such a path must be simple, since removing a cycle from a path produces 
a path with fewer edges. 

Unweighted longest simple path: Find a simple path from u to v consisting of 
the most edges. (Without the requirement that the path must be simple, the 
problem is undeûned, since repeatedly traversing a cycle creates paths with an 
arbitrarily large number of edges.) 
The unweighted shortest-path problem exhibits optimal substructure. Here’s 

how. Suppose that u ¤ v, so that the problem is nontrivial. Then, any path p 
from u to v must contain an intermediate vertex, say w. (Note that w may be u 
or v.) Then, we can decompose the path u p 

❀ v into subpaths u p 1 
❀ w p 2 

❀ v. The 
number of edges in p equals the number of edges in p 1 plus the number of edges 
in p 2 . We claim that if p is an optimal (i.e., shortest) path from u to v, then p 1 
must be a shortest path from u to w. Why? As suggested earlier, use a <cut-and- 
paste= argument: if there were another path, say p 0 1 , from u to w with fewer edges 
than p 1 , then we could cut out p 1 and paste in p 0 1 to produce a path u 

p 0 
1 
❀ w p 2 

❀ v 
with fewer edges than p, thus contradicting p’s optimality. Likewise, p 2 must be 
a shortest path from w to v. Thus, to ûnd a shortest path from u to v, consider 
all intermediate vertices w, ûnd a shortest path from u to w and a shortest path 
from w to v, and choose an intermediate vertex w that yields the overall shortest 
path. Section 23.2 uses a variant of this observation of optimal substructure to ûnd 
a shortest path between every pair of vertices on a weighted, directed graph. 
You might be tempted to assume that the problem of ûnding an unweighted 

longest simple path exhibits optimal substructure as well. After all, if we decom- 
pose a longest simple path u p 

❀ v into subpaths u p 1 
❀ w p 2 

❀ v, then mustn’t p 1 
be a longest simple path from u to w, and mustn’t p 2 be a longest simple path 
from w to v? The answer is no! Figure 14.6 supplies an example. Consider the 

5 We use the term <unweighted= to distinguish this problem from that of ûnding shortest paths with 
weighted edges, which we shall see in Chapters 22 and 23. You can use the breadth-ûrst search 
technique of Chapter 20 to solve the unweighted problem. 
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q r 

s t 

Figure 14.6 A directed graph showing that the problem of ûnding a longest simple path in an 
unweighted directed graph does not have optimal substructure. The path q ! r ! t is a longest 
simple path from q to t , but the subpath q ! r is not a longest simple path from q to r , nor is the 
subpath r ! t a longest simple path from r to t . 

path q ! r ! t , which is a longest simple path from q to t . Is q ! r a longest 
simple path from q to r ? No, for the path q ! s ! t ! r is a simple path 
that is longer. Is r ! t a longest simple path from r to t ? No again, for the path 
r ! q ! s ! t is a simple path that is longer. 

This example shows that for longest simple paths, not only does the problem 
lack optimal substructure, but you cannot necessarily assemble a <legal= solution 
to the problem from solutions to subproblems. If you combine the longest simple 
paths q ! s ! t ! r and r ! q ! s ! t , you get the path q ! s ! t ! r ! 
q ! s ! t , which is not simple. Indeed, the problem of ûnding an unweighted 
longest simple path does not appear to have any sort of optimal substructure. No 
efûcient dynamic-programming algorithm for this problem has ever been found. In 
fact, this problem is NP-complete, which4as we shall see in Chapter 344means 
that we are unlikely to ûnd a way to solve it in polynomial time. 

Why is the substructure of a longest simple path so different from that of a short- 
est path? Although a solution to a problem for both longest and shortest paths uses 
two subproblems, the subproblems in ûnding the longest simple path are not inde- 
pendent, whereas for shortest paths they are. What do we mean by subproblems 
being independent? We mean that the solution to one subproblem does not affect 
the solution to another subproblem of the same problem. For the example of Fig- 
ure 14.6, we have the problem of ûnding a longest simple path from q to t with 
two subproblems: ûnding longest simple paths from q to r and from r to t . For 
the ûrst of these subproblems, we chose the path q ! s ! t ! r , which used 
the vertices s and t . These vertices cannot appear in a solution to the second sub- 
problem, since the combination of the two solutions to subproblems yields a path 
that is not simple. If vertex t cannot be in the solution to the second problem, then 
there is no way to solve it, since t is required to be on the path that forms the solu- 
tion, and it is not the vertex where the subproblem solutions are <spliced= together 
(that vertex being r ). Because vertices s and t appear in one subproblem solution, 
they cannot appear in the other subproblem solution. One of them must be in the 
solution to the other subproblem, however, and an optimal solution requires both. 
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Thus, we say that these subproblems are not independent. Looked at another way, 
using resources in solving one subproblem (those resources being vertices) renders 
them unavailable for the other subproblem. 
Why, then, are the subproblems independent for ûnding a shortest path? The 

answer is that by nature, the subproblems do not share resources. We claim that 
if a vertex w is on a shortest path p from u to v, then we can splice together any 
shortest path u p 1 

❀ w and any shortest path w p 2 
❀ v to produce a shortest path from u 

to v. We are assured that, other than w, no vertex can appear in both paths p 1 
and p 2 . Why? Suppose that some vertex x ¤ w appears in both p 1 and p 2 , so that 
we can decompose p 1 as u p ux 

❀ x ❀ w and p 2 as w ❀ x p xv 
❀ v. By the optimal 

substructure of this problem, path p has as many edges as p 1 and p 2 together. Let’s 
say that p has e edges. Now let us construct a path p 0 D u p ux 

❀ x p xv 
❀ v from u to v. 

Because we have excised the paths from x to w and from w to x , each of which 
contains at least one edge, path p 0 contains at most e  2 edges, which contradicts 
the assumption that p is a shortest path. Thus, we are assured that the subproblems 
for the shortest-path problem are independent. 
The two problems examined in Sections 14.1 and 14.2 have independent sub- 

problems. In matrix-chain multiplication, the subproblems are multiplying sub- 
chains A i A i C1    A k and A kC1 A kC2    A j . These subchains are disjoint, so that 
no matrix could possibly be included in both of them. In rod cutting, to determine 
the best way to cut up a rod of length n, we looked at the best ways of cutting up 
rods of length i for i D 0; 1; : : : ; n  1. Because an optimal solution to the length-n 
problem includes just one of these subproblem solutions (after cutting off the ûrst 
piece), independence of subproblems is not an issue. 

Overlapping subproblems 
The second ingredient that an optimization problem must have for dynamic pro- 
gramming to apply is that the space of subproblems must be <small= in the sense 
that a recursive algorithm for the problem solves the same subproblems over and 
over, rather than always generating new subproblems. Typically, the total number 
of distinct subproblems is a polynomial in the input size. When a recursive algo- 
rithm revisits the same problem repeatedly, we say that the optimization problem 
has overlapping subproblems. 6 In contrast, a problem for which a divide-and- 

6 It may seem strange that dynamic programming relies on subproblems being both independent 
and overlapping. Although these requirements may sound contradictory, they describe two different 
notions, rather than two points on the same axis. Two subprob lems of the same problem are inde- 
pendent if they do not share resources. Two subproblems are overlapping if they are really the same 
subproblem that occurs as a subproblem of different problems. 
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1,4 

1,1 2,4 1,2 3,4 1,3 4,4 

2,2 3,4 2,3 4,4 1,1 2,2 3,3 4,4 1,1 2,3 1,2 3,3 

3,3 4,4 2,2 3,3 2,2 3,3 1,1 2,2 

Figure 14.7 The recursion tree for the computation of RECURSIVE-MATRIX-CHAIN.p; 1; 4/. 
Each node contains the parameters i and j . The computations performed in a subtree shaded blue 
are replaced by a single table lookup in MEMOIZED-MATRIX-CHAIN. 

conquer approach is suitable usually generates brand-new problems at each step 
of the recursion. Dynamic-programming algorithms typically take advantage of 
overlapping subproblems by solving each subproblem once and then storing the 
solution in a table where it can be looked up when needed, using constant time per 
lookup. 
In Section 14.1, we brieüy examined how a recursive solution to rod cutting 

makes exponentially many calls to ûnd solutions of smaller subproblems. The 
dynamic-programming solution reduces the running time from the exponential 
time of the recursive algorithm down to quadratic time. 
To illustrate the overlapping-subproblems property in greater detail, let’s revisit 

the matrix-chain multiplication problem. Referring back to Figure 14.5, observe 
that MATRIX-CHAIN-ORDER repeatedly looks up the solution to subproblems in 
lower rows when solving subproblems in higher rows. For example, it references 
entry mŒ3; 4� four times: during the computations of mŒ2; 4�, mŒ1; 4�, mŒ3; 5�, 
and mŒ3; 6�. If the algorithm were to recompute mŒ3; 4� each time, rather than 
just looking it up, the running time would increase dramatically. To see how, con- 
sider the inefûcient recursive procedure RECURSIVE-MATRIX-CHAIN on the fac- 
ing page, which determines mŒi; j �, the minimum number of scalar multiplications 
needed to compute the matrix-chain product A i Wj D A i A i C1    A j . The procedure 
is based directly on the recurrence (14.7). Figure 14.7 shows the recursion tree 
produced by the call RECURSIVE-MATRIX-CHAIN.p; 1; 4/. Each node is labeled 
by the values of the parameters i and j . Observe that some pairs of values occur 
many times. 

In fact, the time to compute mŒ1; n� by this recursive procedure is at least expo- 
nential in n. To see why, let T .n/ denote the time taken by RECURSIVE-MATRIX- 
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RECURSIVE-MATRIX-CHAIN .p; i; j / 
1 if i = = j 
2 return 0 
3 mŒi; j � D 1 
4 for k D i to j  1 
5 q D RECURSIVE-MATRIX-CHAIN .p; i; k/ 

C RECURSIVE-MATRIX-CHAIN .p; k C 1; j / 
C p i 1 p k p j 

6 if q < mŒi; j � 
7 mŒi; j � D q 
8 return mŒi; j � 

CHAIN to compute an optimal parenthesization of a chain of n matrices. Because 
the execution of lines 132 and of lines 637 each take at least unit time, as does the 
multiplication in line 5, inspection of the procedure yields the recurrence 

T .n/  

Ĩ 
1 if n D 1 ; 

1 C 
n1 X 

kD1 

.T .k/ C T .n  k/ C 1/ if n > 1 : 

Noting that for i D 1; 2; : : : ; n  1, each term T .i/ appears once as T .k/ and once 
as T .n  k/, and collecting the n  1 1s in the summation together with the 1 out 
front, we can rewrite the recurrence as 

T .n/  2 
n1 X 

i D1 

T .i/ C n : (14.8) 

Let’s prove that T .n/ D �.2 n / using the substitution method. Speciûcally, we’ll 
show that T .n/  2 n1 for all n  1. For the base case n D 1, the summation is 
empty, and we get T .1/  1 D 2 0 . Inductively, for n  2 we have 

T .n/  2 
n1 X 

i D1 

2 i 1 C n 

D 2 
n2 X 

j D0 

2 j C n (letting j D i  1) 

D 2.2 n1  1/ C n (by equation (A.6) on page 1142) 
D 2 n  2 C n 
 2 n1 ; 
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which completes the proof. Thus, the total amount of work performed by the call 
RECURSIVE-MATRIX-CHAIN .p; 1; n/ is at least exponential in n. 
Compare this top-down, recursive algorithm (without memoization) with the 

bottom-up dynamic-programming algorithm. The latter is more efûcient because it 
takes advantage of the overlapping-subproblems property. Matrix-chain multipli- 
cation has only ‚.n 2 / distinct subproblems, and the dynamic-programming algo- 
rithm solves each exactly once. The recursive algorithm, on the other hand, must 
solve each subproblem every time it reappears in the recursion tree. Whenever a 
recursion tree for the natural recursive solution to a problem contains the same sub- 
problem repeatedly, and the total number of distinct subproblems is small, dynamic 
programming can improve efûciency, sometimes dramatically. 

Reconstructing an optimal solution 

As a practical matter, you’ll often want to store in a separate table which choice you 
made in each subproblem so that you do not have to reconstruct this information 
from the table of costs. 
For matrix-chain multiplication, the table sŒi; j � saves a signiûcant amount of 

work when we need to reconstruct an optimal solution. Suppose that the MATRIX- 
CHAIN-ORDER procedure on page 378 did not maintain the sŒi; j � table, so that it 
ûlled in only the table mŒi; j � containing optimal subproblem costs. The procedure 
chooses from among j  i possibilities when determining which subproblems to 
use in an optimal solution to parenthesizing A i A i C1    A j , and j  i is not a con- 
stant. Therefore, it would take ‚.j i/ D !.1/ time to reconstruct which subprob- 
lems it chose for a solution to a given problem. Because MATRIX-CHAIN-ORDER 
stores in sŒi; j � the index of the matrix at which it split the product A i A i C1    A j , 
the PRINT-OPTIMAL-PARENS procedure on page 381 can look up each choice in 
O.1/ time. 

Memoization 

As we saw for the rod-cutting problem, there is an alternative approach to dy- 
namic programming that often offers the efûciency of the bottom-up dynamic- 
programming approach while maintaining a top-down strategy. The idea is to 
memoize the natural, but inefûcient, recursive algorithm. As in the bottom-up ap- 
proach, you maintain a table with subproblem solutions, but the control structure 
for ûlling in the table is more like the recursive algorithm. 

A memoized recursive algorithm maintains an entry in a table for the solution to 
each subproblem. Each table entry initially contains a special value to indicate that 
the entry has yet to be ûlled in. When the subproblem is ûrst encountered as the 
recursive algorithm unfolds, its solution is computed and then stored in the table. 
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Each subsequent encounter of this subproblem simply looks up the value stored in 
the table and returns it. 7 

The procedure MEMOIZED-MATRIX-CHAIN is a memoized version of the pro- 
cedure RECURSIVE-MATRIX-CHAIN on page 389. Note where it resembles the 
memoized top-down method on page 369 for the rod-cutting problem. 

MEMOIZED-MATRIX-CHAIN .p; n/ 
1 let mŒ1 W n; 1 W n� be a new table 
2 for i D 1 to n 
3 for j D i to n 
4 mŒi; j � D 1 
5 return LOOKUP-CHAIN.m;p; 1; n/ 

LOOKUP-CHAIN.m;p; i; j / 
1 if mŒi; j � < 1 
2 return mŒi; j � 
3 if i = = j 
4 mŒi; j � D 0 
5 else for k D i to j  1 
6 q D LOOKUP-CHAIN.m;p; i; k/ 

C LOOKUP-CHAIN.m;p; k C 1; j / C p i 1 p k p j 
7 if q < mŒi; j � 
8 mŒi; j � D q 
9 return mŒi; j � 

The MEMOIZED-MATRIX-CHAIN procedure, like the bottom-up MATRIX- 
CHAIN-ORDER procedure on page 378, maintains a table mŒ1 W n; 1 W n� of com- 
puted values of mŒi; j �, the minimum number of scalar multiplications needed to 
compute the matrix A i Wj . Each table entry initially contains the value 1 to indicate 
that the entry has yet to be ûlled in. Upon calling LOOKUP-CHAIN.m;p; i; j /, 
if line 1 ûnds that mŒi; j � < 1, then the procedure simply returns the pre- 
viously computed cost mŒi; j � in line 2. Otherwise, the cost is computed 
as in RECURSIVE-MATRIX-CHAIN, stored in mŒi; j �, and returned. Thus, 
LOOKUP-CHAIN.m;p; i; j / always returns the value of mŒi; j �, but it computes 
it only upon the ûrst call of LOOKUP-CHAIN with these speciûc values of i and j . 

7 This approach presupposes that you know the set of all possible subproblem parameters and that 
you have established the relationship between table positions and subproblems. Another, more gen- 
eral, approach is to memoize by using hashing with the subproblem parameters as keys. 
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Figure 14.7 illustrates how MEMOIZED-MATRIX-CHAIN saves time compared 
with RECURSIVE-MATRIX-CHAIN. Subtrees shaded blue represent values that 
are looked up rather than recomputed. 
Like the bottom-up procedure MATRIX-CHAIN-ORDER, the memoized proce- 

dure MEMOIZED-MATRIX-CHAIN runs in O.n 3 / time. To begin with, line 4 of 
MEMOIZED-MATRIX-CHAIN executes ‚.n 2 / times, which dominates the running 
time outside of the call to LOOKUP-CHAIN in line 5. We can categorize the calls 
of LOOKUP-CHAIN into two types: 
1. calls in which mŒi; j � D 1, so that lines 339 execute, and 
2. calls in which mŒi; j � < 1, so that LOOKUP-CHAIN simply returns in line 2. 
There are ‚.n 2 / calls of the ûrst type, one per table entry. All calls of the sec- 
ond type are made as recursive calls by calls of the ûrst type. Whenever a given 
call of LOOKUP-CHAIN makes recursive calls, it makes O.n/ of them. There- 
fore, there are O.n 3 / calls of the second type in all. Each call of the second type 
takes O.1/ time, and each call of the ûrst type takes O.n/ time plus the time spent 
in its recursive calls. The total time, therefore, is O.n 3 /. Memoization thus turns 
an �.2 n /-time algorithm into an O.n 3 /-time algorithm. 
We have seen how to solve the matrix-chain multiplication problem by either a 

top-down, memoized dynamic-programming algorithm or a bottom-up dynamic- 
programming algorithm in O.n 3 / time. Both the bottom-up and memoized meth- 
ods take advantage of the overlapping-subproblems property. There are only ‚.n 2 / 
distinct subproblems in total, and either of these methods computes the solution to 
each subproblem only once. Without memoization, the natural recursive algorithm 
runs in exponential time, since solved subproblems are repeatedly solved. 

In general practice, if all subproblems must be solved at least once, a bottom-up 
dynamic-programming algorithm usually outperforms the corresponding top-down 
memoized algorithm by a constant factor, because the bottom-up algorithm has no 
overhead for recursion and less overhead for maintaining the table. Moreover, for 
some problems you can exploit the regular pattern of table accesses in the dynamic- 
programming algorithm to reduce time or space requirements even further. On the 
other hand, in certain situations, some of the subproblems in the subproblem space 
might not need to be solved at all. In that case, the memoized solution has the 
advantage of solving only those subproblems that are deûnitely required. 

Exercises 
14.3-1 
Which is a more efûcient way to determine the optimal number of multiplications 
in a matrix-chain multiplication problem: enumerating all the ways of parenthesiz- 
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ing the product and computing the number of multiplications for each, or running 
RECURSIVE-MATRIX-CHAIN? Justify your answer. 
14.3-2 
Draw the recursion tree for the MERGE-SORT procedure from Section 2.3.1 on an 
array of 16 elements. Explain why memoization fails to speed up a good divide- 
and-conquer algorithm such as MERGE-SORT. 
14.3-3 
Consider the antithetical variant of the matrix-chain multiplication problem where 
the goal is to parenthesize the sequence of matrices so as to maximize, rather than 
minimize, the number of scalar multiplications. Does this problem exhibit optimal 
substructure? 
14.3-4 
As stated, in dynamic programming, you ûrst solve the subproblems and then 
choose which of them to use in an optimal solution to the problem. Professor 
Capulet claims that she does not always need to solve all the subproblems in or- 
der to ûnd an optimal solution. She suggests that she can ûnd an optimal solution 
to the matrix-chain multiplication problem by always choosing the matrix A k at 
which to split the subproduct A i A i C1    A j (by selecting k to minimize the quan- 
tity p i 1 p k p j ) before solving the subproblems. Find an instance of the matrix- 
chain multiplication problem for which this greedy approach yields a suboptimal 
solution. 
14.3-5 
Suppose that the rod-cutting problem of Section 14.1 also had a limit l i on the 
number of pieces of length i allowed to be produced, for i D 1; 2; : : : ; n. Show 
that the optimal-substructure property described in Section 14.1 no longer holds. 

14.4 Longest common subsequence 

Biological applications often need to compare the DNA of two (or more) dif- 
ferent organisms. A strand of DNA consists of a string of molecules called 
bases, where the possible bases are adenine, cytosine, guanine, and thymine. 
Representing each of these bases by its initial letter, we can express a strand 
of DNA as a string over the 4-element set fA; C; G; Tg. (See Section C.1 for 
the deûnition of a string.) For example, the DNA of one organism may be 
S 1 D ACCGGTCGAGTGCGCGGAAGCCGGCCGAA , and the DNA of another organ- 
ism may be S 2 D GTCGTTCGGAATGCCGTTGCTCTGTAAA . One reason to com- 
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pare two strands of DNA is to determine how <similar= the two strands are, as some 
measure of how closely related the two organisms are. We can, and do, deûne sim- 
ilarity in many different ways. For example, we can say that two DNA strands are 
similar if one is a substring of the other. (Chapter 32 explores algorithms to solve 
this problem.) In our example, neither S 1 nor S 2 is a substring of the other. Alter- 
natively, we could say that two strands are similar if the number of changes needed 
to turn one into the other is small. (Problem 14-5 looks at this notion.) Yet another 
way to measure the similarity of strands S 1 and S 2 is by ûnding a third strand S 3 
in which the bases in S 3 appear in each of S 1 and S 2 . These bases must appear 
in the same order, but not necessarily consecutively. The longer the strand S 3 we 
can ûnd, the more similar S 1 and S 2 are. In our example, the longest strand S 3 is 
GTCGTCGGAAGCCGGCCGAA . 
We formalize this last notion of similarity as the longest-common-subsequence 

problem. A subsequence of a given sequence is just the given sequence with 0 or 
more elements left out. Formally, given a sequence X D hx 1 ; x 2 ; : : : ; x m i, another 
sequence Z D h´ 1 ; ´ 2 ; : : : ; ´ k i is a subsequence of X if there exists a strictly 
increasing sequence hi 1 ; i 2 ; : : : ; i k i of indices of X such that for all j D 1; 2; : : : ; k, 
we have x i j D ´ j . For example, Z D hB; C; D; B i is a subsequence of X D 
hA;B;C;B;D;A;B i with corresponding index sequence h2; 3; 5; 7i. 
Given two sequences X and Y , we say that a sequence Z is a common sub- 

sequence of X and Y if Z is a subsequence of both X and Y . For example, if 
X D hA;B;C;B;D;A;B i and Y D hB;D;C;A;B;Ai, the sequence hB;C;Ai is 
a common subsequence of both X and Y . The sequence hB;C;Ai is not a longest 
common subsequence (LCS) of X and Y , however, since it has length 3 and the 
sequence hB; C; B; Ai, which is also common to both sequences X and Y , has 
length 4. The sequence hB; C; B; Ai is an LCS of X and Y , as is the sequence 
hB;D;A;B i, since X and Y have no common subsequence of length 5 or greater. 

In the longest-common-subsequence problem, the input is two sequences X D 
hx 1 ; x 2 ; : : : ; x m i and Y D hy 1 ; y 2 ; : : : ; y n i, and the goal is to ûnd a maximum- 
length common subsequence of X and Y . This section shows how to efûciently 
solve the LCS problem using dynamic programming. 

Step 1: Characterizing a longest common subsequence 
You can solve the LCS problem with a brute-force approach: enumerate all subse- 
quences of X and check each subsequence to see whether it is also a subsequence 
of Y , keeping track of the longest subsequence you ûnd. Each subsequence of X 
corresponds to a subset of the indices f1; 2; : : : ;mg of X . Because X has 2 m sub- 
sequences, this approach requires exponential time, making it impractical for long 
sequences. 
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The LCS problem has an optimal-substructure property, however, as the fol- 
lowing theorem shows. As we’ll see, the natural classes of subproblems corre- 
spond to pairs of <preûxes= of the two input sequences. To be precise, given a 
sequence X D hx 1 ; x 2 ; : : : ; x m i, we deûne the i th preûx of X , for i D 0; 1; : : : ;m, 
as X i D hx 1 ; x 2 ; : : : ; x i i. For example, if X D hA; B; C; B; D; A; B i, then 
X 4 D hA;B;C;B i and X 0 is the empty sequence. 

Theorem 14.1 (Optimal substructure of an LCS) 
Let X D hx 1 ; x 2 ; : : : ; x m i and Y D hy 1 ; y 2 ; : : : ; y n i be sequences, and let Z D 
h´ 1 ; ´ 2 ; : : : ; ´ k i be any LCS of X and Y . 
1. If x m D y n , then ´ k D x m D y n and Z k1 is an LCS of X m1 and Y n1 . 
2. If x m ¤ y n and ´ k ¤ x m , then Z is an LCS of X m1 and Y . 
3. If x m ¤ y n and ´ k ¤ y n , then Z is an LCS of X and Y n1 . 

Proof (1) If ´ k ¤ x m , then we could append x m D y n to Z to obtain a common 
subsequence of X and Y of length k C 1, contradicting the supposition that Z is 
a longest common subsequence of X and Y . Thus, we must have ´ k D x m D y n . 
Now, the preûx Z k1 is a length-.k  1/ common subsequence of X m1 and Y n1 . 
We wish to show that it is an LCS. Suppose for the purpose of contradiction 
that there exists a common subsequence W of X m1 and Y n1 with length greater 
than k  1. Then, appending x m D y n to W produces a common subsequence of 
X and Y whose length is greater than k, which is a contradiction. 

(2) If ́  k ¤ x m , then Z is a common subsequence of X m1 and Y . If there were a 
common subsequence W of X m1 and Y with length greater than k, then W would 
also be a common subsequence of X m and Y , contradicting the assumption that Z 
is an LCS of X and Y . 
(3) The proof is symmetric to (2). 

The way that Theorem 14.1 characterizes longest common subsequences says 
that an LCS of two sequences contains within it an LCS of preûxes of the two se- 
quences. Thus, the LCS problem has an optimal-substructure property. A recursive 
solution also has the overlapping-subproblems property, as we’ll see in a moment. 

Step 2: A recursive solution 

Theorem 14.1 implies that you should examine either one or two subproblems 
when ûnding an LCS of X D hx 1 ; x 2 ; : : : ; x m i and Y D hy 1 ; y 2 ; : : : ; y n i. If 
x m D y n , you need to ûnd an LCS of X m1 and Y n1 . Appending x m D y n to 
this LCS yields an LCS of X and Y . If x m ¤ y n , then you have to solve two 
subproblems: ûnding an LCS of X m1 and Y and ûnding an LCS of X and Y n1 . 
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Whichever of these two LCSs is longer is an LCS of X and Y . Because these 
cases exhaust all possibilities, one of the optimal subproblem solutions must appear 
within an LCS of X and Y . 
The LCS problem has the overlapping-subproblems property. Here’s how. To 

ûnd an LCS of X and Y , you might need to ûnd the LCSs of X and Y n1 and of 
X m1 and Y . But each of these subproblems has the subsubproblem of ûnding an 
LCS of X m1 and Y n1 . Many other subproblems share subsubproblems. 
As in the matrix-chain multiplication problem, solving the LCS problem recur- 

sively involves establishing a recurrence for the value of an optimal solution. Let’s 
deûne cŒi; j � to be the length of an LCS of the sequences X i and Y j . If either i D 0 
or j D 0, one of the sequences has length 0, and so the LCS has length 0. The 
optimal substructure of the LCS problem gives the recursive formula 

cŒi; j � D 

Ĩ 
0 if i D 0 or j D 0 ; 
cŒi  1; j  1� C 1 if i; j > 0 and x i D y j ; 
max fcŒi; j  1�; cŒi  1; j �g if i; j > 0 and x i ¤ y j : 

(14.9) 

In this recursive formulation, a condition in the problem restricts which sub- 
problems to consider. When x i D y j , you can and should consider the subproblem 
of ûnding an LCS of X i 1 and Y j 1 . Otherwise, you instead consider the two 
subproblems of ûnding an LCS of X i and Y j 1 and of X i 1 and Y j . In the pre- 
vious dynamic-programming algorithms we have examined4for rod cutting and 
matrix-chain multiplication4we didn’t rule out any subproblems due to conditions 
in the problem. Finding an LCS is not the only dynamic-programming algorithm 
that rules out subproblems based on conditions in the problem. For example, the 
edit-distance problem (see Problem 14-5) has this characteristic. 

Step 3: Computing the length of an LCS 

Based on equation (14.9), you could write an exponential-time recursive algorithm 
to compute the length of an LCS of two sequences. Since the LCS problem has only 
‚.mn/ distinct subproblems (computing cŒi; j � for 0 හ i හ m and 0 හ j හ n), 
dynamic programming can compute the solutions bottom up. 
The procedure LCS-LENGTH on the next page takes two sequences X D hx 1 ; 

x 2 ; : : : ; x m i and Y D hy 1 ; y 2 ; : : : ; y n i as inputs, along with their lengths. It 
stores the cŒi; j � values in a table cŒ0 W m; 0 W n�, and it computes the entries in row- 
major order. That is, the procedure ûlls in the ûrst row of c from left to right, then 
the second row, and so on. The procedure also maintains the table bŒ1 W m; 1 W n� to 
help in constructing an optimal solution. Intuitively, bŒi; j � points to the table entry 
corresponding to the optimal subproblem solution chosen when computing cŒi; j �. 
The procedure returns the b and c tables, where cŒm; n� contains the length of an 
LCS of X and Y . Figure 14.8 shows the tables produced by LCS-LENGTH on the 
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sequences X D hA;B; C; B; D;A; B i and Y D hB;D; C; A; B; Ai. The running 
time of the procedure is ‚.mn/, since each table entry takes ‚.1/ time to compute. 

LCS-LENGTH.X; Y;m; n/ 
1 let bŒ1 W m; 1 W n� and cŒ0 W m; 0 W n� be new tables 
2 for i D 1 to m 
3 cŒi; 0� D 0 
4 for j D 0 to n 
5 cŒ0; j � D 0 
6 for i D 1 to m // compute table entries in row-major order 
7 for j D 1 to n 
8 if x i = = y j 
9 cŒi; j � D cŒi  1; j  1� C 1 
10 bŒi; j � D <-= 
11 elseif cŒi  1; j �  cŒi; j  1� 
12 cŒi; j � D cŒi  1; j � 
13 bŒi; j � D <"= 
14 else cŒi; j � D cŒi; j  1� 
15 bŒi; j � D <= 
16 return c and b 

PRINT-LCS.b;X; i; j / 
1 if i == 0 or j == 0 
2 return // the LCS has length 0 
3 if bŒi; j � == <-= 
4 PRINT-LCS.b;X; i  1; j  1/ 
5 print x i // same as y j 
6 elseif bŒi; j � == <"= 
7 PRINT-LCS.b;X; i  1; j / 
8 else PRINT-LCS.b;X; i; j  1/ 

Step 4: Constructing an LCS 

With the b table returned by LCS-LENGTH, you can quickly construct an LCS of 
X D hx 1 ;x 2 ; : : : ;x m i and Y D hy 1 ;y 2 ; : : : ;y n i. Begin at bŒm; n� and trace through 
the table by following the arrows. Each <-= encountered in an entry bŒi; j � im- 
plies that x i D y j is an element of the LCS that LCS-LENGTH found. This 
method gives you the elements of this LCS in reverse order. The recursive pro- 
cedure PRINT-LCS prints out an LCS of X and Y in the proper, forward order. 
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0 0 0 0 0 0 0 
0 0 0 0 1 1 1 
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Figure 14.8 The c and b tables computed by LCS-LENGTH on the sequences X D hA; B; C; B; 
D;A;Bi and Y D hB;D;C;A;B;Ai. The square in row i and column j contains the value of cŒi; j � 
and the appropriate arrow for the value of bŒi; j �. The entry 4 in cŒ7; 6�4the lower right-hand corner 
of the table4is the length of an LCS hB; C; B; Ai of X and Y . For i; j > 0, entry cŒi; j � depends 
only on whether x i D y j and the values in entries cŒi  1; j �, cŒi; j  1�, and cŒi  1; j  1�, which 
are computed before cŒi; j �. To reconstruct the elements of an LCS, follow the bŒi; j � arrows from 
the lower right-hand corner, as shown by the sequence shaded blue. Each <-= on the shaded-blue 
sequence corresponds to an entry (highlighted) for which x i D y j is a member of an LCS. 

The initial call is PRINT-LCS.b;X;m; n/. For the b table in Figure 14.8, this pro- 
cedure prints BCBA. The procedure takes O.m C n/ time, since it decrements at 
least one of i and j in each recursive call. 

Improving the code 
Once you have developed an algorithm, you will often ûnd that you can improve 
on the time or space it uses. Some changes can simplify the code and improve 
constant factors but otherwise yield no asymptotic improvement in performance. 
Others can yield substantial asymptotic savings in time and space. 

In the LCS algorithm, for example, you can eliminate the b table altogether. 
Each cŒi; j � entry depends on only three other c table entries: cŒi  1; j  1�, 
cŒi  1; j �, and cŒi; j  1�. Given the value of cŒi; j �, you can determine in O.1/ 
time which of these three values was used to compute cŒi; j �, without inspecting 
table b. Thus, you can reconstruct an LCS in O.mCn/ time using a procedure sim- 
ilar to PRINT-LCS. (Exercise 14.4-2 asks you to give the pseudocode.) Alt hough 
this method saves ‚.mn/ space, the auxiliary space requirement for computing 
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an LCS does not asymptotically decrease, since the c table takes ‚.mn/ space 
anyway. 

You can, however, reduce the asymptotic space requirements for LCS-LENGTH, 
since it needs only two rows of table c at a time: the row being computed and the 
previous row. (In fact, as Exercise 14.4-4 asks you to show, you can use only 
slightly more than the space for one row of c to compute the length of an LCS.) 
This improvement works if you need only the length of an LCS. If you need 
to reconstruct the elements of an LCS, the smaller table does not keep enough 
information to retrace the algorithm’s steps in O.m C n/ time. 

Exercises 
14.4-1 
Determine an LCS of h1; 0; 0; 1; 0; 1; 0; 1i and h0; 1; 0; 1; 1; 0; 1; 1; 0i. 
14.4-2 
Give pseudocode to reconstruct an LCS from the completed c table and the original 
sequences X D hx 1 ; x 2 ; : : : ; x m i and Y D hy 1 ; y 2 ; : : : ; y n i in O.m C n/ time, 
without using the b table. 
14.4-3 
Give a memoized version of LCS-LENGTH that runs in O.mn/ time. 
14.4-4 
Show how to compute the length of an LCS using only 2  min fm;ng entries in the 
c table plus O.1/ additional space. Then show how to do the same thing, but using 
min fm;ng entries plus O.1/ additional space. 
14.4-5 
Give an O.n 2 /-time algorithm to ûnd the longest monotonically increasing subse- 
quence of a sequence of n numbers. 

? 14.4-6 
Give an O.n lg n/-time algorithm to ûnd the longest monotonically increasing sub- 
sequence of a sequence of n numbers. (Hint: The last element of a candidate subse- 
quence of length i is at least as large as the last element of a candidate subsequence 
of length i  1. Maintain candidate subsequences by linking them through the input 
sequence.) 



400 Chapter 14 Dynamic Programming 

14.5 Optimal binary search trees 

Suppose that you are designing a program to translate text from English to Latvian. 
For each occurrence of each English word in the text, you need to look up its 
Latvian equivalent. You can perform these lookup operations by building a binary 
search tree with n English words as keys and their Latvian equivalents as satellite 
data. Because you will search the tree for each individual word in the text, you want 
the total time spent searching to be as low as possible. You can ensure an O.lg n/ 
search time per occurrence by using a red-black tree or any other balanced binary 
search tree. Words appear with different frequencies, however, and a frequently 
used word such as the can end up appearing far from the root while a rarely used 
word such as naumachia appears near the root. Such an organization would slow 
down the translation, since the number of nodes visited when searching for a key 
in a binary search tree equals 1 plus the depth of the node containing the key. You 
want words that occur frequently in the text to be placed nearer the root. 8 Moreover, 
some words in the text might have no Latvian translation, 9 and such words would 
not appear in the binary search tree at all. How can you organize a binary search 
tree so as to minimize the number of nodes visited in all searches, given that you 
know how often each word occurs? 

What you need is an optimal binary search tree. Formally, given a sequence 
K D hk 1 ; k 2 ; : : : ; k n i of n distinct keys such that k 1 < k 2 <    < k n , build a 
binary search tree containing them. For each key k i , you are given the probabil- 
ity p i that any given search is for key k i . Since some searches may be for values 
not in K, you also have n C 1 <dummy= keys d 0 ; d 1 ; d 2 ; : : : ; d n representing those 
values. In particular, d 0 represents all values less than k 1 , d n represents all val- 
ues greater than k n , and for i D 1; 2; : : : ; n  1, the dummy key d i represents all 
values between k i and k i C1 . For each dummy key d i , you have the probability q i 
that a search corresponds to d i . Figure 14.9 shows two binary search trees for a 
set of n D 5 keys. Each key k i is an internal node, and each dummy key d i is a 
leaf. Since every search is either successful (ûnding some key k i ) or unsuccessful 
(ûnding some dummy key d i ), we have 
n X 

i D1 

p i C 
n X 

i D0 

q i D 1 : (14.10) 

8 If the subject of the text is ancient Rome, you might want naumachia to appear near the root. 
9 Yes, naumachia has a Latvian counterpart: nomaˇ cija. 
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k 2 

k 1 k 4 

k 3 k 5 d 0 d 1 

d 2 d 3 d 4 d 5 

k 2 

k 1 

k 4 

k 3 

k 5 

d 0 d 1 

d 2 d 3 

d 4 

d 5 

node depth probability contribution 
k 1 1 0.15 0.30 
k 2 0 0.10 0.10 
k 3 2 0.05 0.15 
k 4 1 0.10 0.20 
k 5 2 0.20 0.60 
d 0 2 0.05 0.15 
d 1 2 0.10 0.30 
d 2 3 0.05 0.20 
d 3 3 0.05 0.20 
d 4 3 0.05 0.20 
d 5 3 0.10 0.40 
Total 2.80 

(a) 

node depth probability contribution 
k 1 1 0.15 0.30 
k 2 0 0.10 0.10 
k 3 3 0.05 0.20 
k 4 2 0.10 0.30 
k 5 1 0.20 0.40 
d 0 2 0.05 0.15 
d 1 2 0.10 0.30 
d 2 4 0.05 0.25 
d 3 4 0.05 0.25 
d 4 3 0.05 0.20 
d 5 2 0.10 0.30 
Total 2.75 

(b) 

Figure 14.9 Two binary search trees for a set of n D 5 keys with the following probabilities: 
i 0 1 2 3 4 5 
p i 0.15 0.10 0.05 0.10 0.20 
q i 0.05 0.10 0.05 0.05 0.05 0.10 

(a) A binary search tree with expected search cost 2.80. (b) A binary search tree with expected search 
cost 2.75. This tree is optimal. 

Knowing the probabilities of searches for each key and each dummy key allows 
us to determine the expected cost of a search in a given binary search tree T . Let 
us assume that the actual cost of a search equals the number of nodes examined, 
which is the depth of the node found by the search in T , plus 1. Then the expected 
cost of a search in T is 

E Œsearch cost in T � D 
n X 

i D1 

.depth T .k i / C 1/  p i C 
n X 

i D0 

.depth T .d i / C 1/  q i 

D 1 C 
n X 

i D1 

depth T .k i /  p i C 
n X 

i D0 

depth T .d i /  q i ; (14.11) 
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where depth T denotes a node’s depth in the tree T . The last equation follows from 
equation (14.10). Figure 14.9 shows how to calculate the expected search cost node 
by node. 

For a given set of probabilities, your goal is to construct a binary search tree 
whose expected search cost is smallest. We call such a tree an optimal binary 
search tree. Figure 14.9(a) shows one binary search tree, with expected cost 2:80, 
for the probabilities given in the ûgure caption. Part (b) of the ûgure displays an 
optimal binary search tree, with expected cost 2:75. This example demonstrates 
that an optimal binary search tree is not necessarily a tree whose overall height 
is smallest. Nor does an optimal binary search tree always have the key with the 
greatest probability at the root. Here, key k 5 has the greatest search probability of 
any key, yet the root of the optimal binary search tree shown is k 2 . (The lowest 
expected cost of any binary search tree with k 5 at the root is 2.85.) 
As with matrix-chain multiplication, exhaustive checking of all possibilities fails 

to yield an efûcient algorithm. You can label the nodes of any n-node binary tree 
with the keys k 1 ; k 2 ; : : : ; k n to construct a binary search tree, and then add in the 
dummy keys as leaves. In Problem 12-4 on page 329, we saw that the number 
of binary trees with n nodes is �.4 n =n 3=2 /. Thus you would need to examine an 
exponential number of binary search trees to perform an exhaustive search. We’ll 
see how to solve this problem more efûciently with dynamic programming. 

Step 1: The structure of an optimal binary search tree 
To characterize the optimal substructure of optimal binary search trees, we start 
with an observation about subtrees. Consider any subtree of a binary search tree. 
It must contain keys in a contiguous range k i ; : : : ; k j , for some 1 හ i හ j හ n. 
In addition, a subtree that contains keys k i ; : : : ; k j must also have as its leaves the 
dummy keys d i 1 ; : : : ; d j . 

Now we can state the optimal substructure: if an optimal binary search tree T 
has a subtree T 0 containing keys k i ; : : : ; k j , then this subtree T 0 must be optimal as 
well for the subproblem with keys k i ; : : : ; k j and dummy keys d i 1 ; : : : ; d j . The 
usual cut-and-paste argument applies. If there were a subtree T 00 whose expected 
cost is lower than that of T 0 , then cutting T 0 out of T and pasting in T 00 would 
result in a binary search tree of lower expected cost than T , thus contradicting the 
optimality of T . 

With the optimal substructure in hand, here is how to construct an optimal solu- 
tion to the problem from optimal solutions to subproblems. Given keys k i ; : : : ; k j , 
one of these keys, say k r (i හ r හ j ), is the root of an optimal subtree contain- 
ing these keys. The left subtree of the root k r contains the keys k i ; : : : ; k r 1 (and 
dummy keys d i 1 ; : : : ; d r 1 ), and the right subtree contains the keys k r C1 ; : : : ; k j 
(and dummy keys d r ; : : : ; d j ). As long as you examine all candidate roots k r , 
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where i හ r හ j , and you determine all optimal binary search trees contain- 
ing k i ; : : : ; k r 1 and those containing k r C1 ; : : : ; k j , you are guaranteed to ûnd an 
optimal binary search tree. 

There is one technical detail worth understanding about <empty= subtrees. Sup- 
pose that in a subtree with keys k i ; : : : ; k j , you select k i as the root. By the above 
argument, k i ’s left subtree contains the keys k i ; : : : ; k i 1 : no keys at all. Bear in 
mind, however, that subtrees also contain dummy keys. We adopt the convention 
that a subtree containing keys k i ; : : : ; k i 1 has no actual keys but does contain the 
single dummy key d i 1 . Symmetrically, if you select k j as the root, then k j ’s right 
subtree contains the keys k j C1 ; : : : ; k j . This right subtree contains no actual keys, 
but it does contain the dummy key d j . 

Step 2: A recursive solution 

To deûne the value of an optimal solution recursively, the subproblem domain is 
ûnding an optimal binary search tree containing the keys k i ; : : : ; k j , where i  1, 
j හ n, and j  i  1. (When j D i  1, there is just the dummy key d i 1 , 
but no actual keys.) Let eŒi; j � denote the expected cost of searching an optimal 
binary search tree containing the keys k i ; : : : ; k j . Your goal is to compute eŒ1; n�, 
the expected cost of searching an optimal binary search tree for all the actual and 
dummy keys. 

The easy case occurs when j D i  1. Then the subproblem consists of just the 
dummy key d i 1 . The expected search cost is eŒi; i  1� D q i 1 . 

When j  i , you need to select a root k r from among k i ; : : : ; k j and then 
make an optimal binary search tree with keys k i ; : : : ; k r 1 as its left subtree and 
an optimal binary search tree with keys k r C1 ; : : : ; k j as its right subtree. What 
happens to the expected search cost of a subtree when it becomes a subtree of a 
node? The depth of each node in the subtree increases by 1. By equation (14.11), 
the expected search cost of this subtree increases by the sum of all the probabilities 
in the subtree. For a subtree with keys k i ; : : : ; k j , denote this sum of probabilities 
as 

w.i; j / D 
j X 

l Di 

p l C 
j X 

l Di 1 

q l : (14.12) 

Thus, if k r is the root of an optimal subtree containing keys k i ; : : : ; k j , we have 
eŒi; j � D p r C .eŒi; r  1� C w.i; r  1// C .eŒr C 1; j � C w.r C 1; j // : 

Noting that 
w.i; j / D w.i; r  1/ C p r C w.r C 1; j / ; 

we rewrite eŒi; j � as 
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eŒi; j � D eŒi; r  1� C eŒr C 1; j � C w.i; j / : (14.13) 
The recursive equation (14.13) assumes that you know which node k r to use as 

the root. Of course, you choose the root that gives the lowest expected search cost, 
giving the ûnal recursive formulation: 

eŒi; j � D 

( 
q i 1 if j D i  1 ; 
min feŒi; r  1� C eŒr C 1; j � C w.i; j / W i හ r හ j g if i හ j : 

(14.14) 
The eŒi; j � values give the expected search costs in optimal binary search trees. 

To help keep track of the structure of optimal binary search trees, deûne root Œi; j �, 
for 1 හ i හ j හ n, to be the index r for which k r is the root of an optimal binary 
search tree containing keys k i ; : : : ; k j . Although we’ll see how to compute the 
values of root Œi; j �, the construction of an optimal binary search tree from these 
values is left as Exercise 14.5-1. 

Step 3: Computing the expected search cost of an optimal binary search tree 
At this point, you may have noticed some similarities between our characterizations 
of optimal binary search trees and matrix-chain multiplication. For both problem 
domains, the subproblems consist of contiguous index subranges. A direct, recur- 
sive implementation of equation (14.14) would be just as inefûcient as a direct, 
recursive matrix-chain multiplication algorithm. Instead, you can store the eŒi; j � 
values in a table eŒ1 W n C 1; 0 W n�. The ûrst index needs to run to n C 1 rather than n 
because in order to have a subtree containing only the dummy key d n , you need to 
compute and store eŒn C 1; n�. The second index needs to start from 0 because in 
order to have a subtree containing only the dummy key d 0 , you need to compute 
and store eŒ1; 0�. Only the entries eŒi; j � for which j  i  1 are ûlled in. The 
table root Œi; j � records the root of the subtree containing keys k i ; : : : ; k j and uses 
only the entries for which 1 හ i හ j හ n. 
One other table makes the dynamic-programming algorithm a little faster. In- 

stead of computing the value of w.i; j / from scratch every time you compute 
eŒi; j �, which would take ‚.j  i/ additions, store these values in a table 
wŒ1 W n C 1; 0 W n�. For the base case, compute wŒi; i  1� D q i 1 for 1 හ i හ n C 1. 
For j  i , compute 
wŒi; j � D wŒi; j  1� C p j C q j : (14.15) 
Thus, you can compute the ‚.n 2 / values of wŒi; j � in ‚.1/ time each. 
The OPTIMAL-BST procedure on the next page takes as inputs the probabilities 

p 1 ; : : : ; p n and q 0 ; : : : ; q n and the size n, and it returns the tables e and root . From 
the description above and the similarity to the MATRIX-CHAIN-ORDER procedure 
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in Section 14.2, you should ûnd the operation of this procedure to be fairly straight- 
forward. The for loop of lines 234 initializes the values of eŒi; i  1� and wŒi; i  1�. 
Then the for loop of lines 5314 uses the recurrences (14.14) and (14.15) to com- 
pute eŒi; j � and wŒi; j � for all 1 හ i හ j හ n. In the ûrst iteration, when l D 1, 
the loop computes eŒi; i � and wŒi; i � for i D 1; 2; : : : ; n. The second iteration, with 
l D 2, computes eŒi; i C 1� and wŒi; i C 1� for i D 1; 2; : : : ; n  1, and so on. The 
innermost for loop, in lines 10314, tries each candidate index r to determine which 
key k r to use as the root of an optimal binary search tree containing keys k i ; : : : ; k j . 
This for loop saves the current value of the index r in root Œi; j � whenever it ûnds a 
better key to use as the root. 

OPTIMAL-BST .p; q; n/ 
1 let eŒ1 W n C 1; 0 W n�, wŒ1 W n C 1; 0 W n�, 

and root Œ1 W n; 1 W n� be new tables 
2 for i D 1 to n C 1 // base cases 
3 eŒi; i  1� D q i 1 // equation (14.14) 
4 wŒi; i  1� D q i 1 
5 for l D 1 to n 
6 for i D 1 to n  l C 1 
7 j D i C l  1 
8 eŒi; j � D 1 
9 wŒi; j � D wŒi; j  1� C p j C q j // equation (14.15) 
10 for r D i to j // try all possible roots r 
11 t D eŒi; r  1� C eŒr C 1; j � C wŒi; j � // equation (14.14) 
12 if t < eŒi; j � // new minimum? 
13 eŒi; j � D t 
14 root Œi; j � D r 
15 return e and root 

Figure 14.10 shows the tables eŒi; j �, wŒi; j �, and root Œi; j � computed by the 
procedure OPTIMAL-BST on the key distribution shown in Figure 14.9. As in the 
matrix-chain multiplication example of Figure 14.5, the tables are rotated to make 
the diagonals run horizontally. OPTIMAL-BST computes the rows from bottom to 
top and from left to right within each row. 
The OPTIMAL-BST procedure takes ‚.n 3 / time, just like MATRIX-CHAIN- 

ORDER. Its running time is O.n 3 /, since its for loops are nested three deep and 
each loop index takes on at most n values. The loop indices in OPTIMAL-BST do 
not have exactly the same bounds as those in MATRIX-CHAIN-ORDER, but they 
are within at most 1 in all directions. Thus, like MATRIX-CHAIN-ORDER, the 
OPTIMAL-BST procedure takes �.n 3 / time. 



406 Chapter 14 Dynamic Programming 

2.75 
1.75 

1.25 
0.90 

0.45 
0.05 

2.00 
1.20 

0.70 
0.40 

0.10 

1.30 
0.60 

0.25 
0.05 

0.90 
0.30 

0.05 
0.50 

0.05 0.10 

e 

0 
1 

2 
3 

4 
5 

6 
5 

4 
3 

2 
1 

j i 1.00 
0.70 

0.55 
0.45 

0.30 
0.05 

0.80 
0.50 

0.35 
0.25 

0.10 

0.60 
0.30 

0.15 
0.05 

0.50 
0.20 

0.05 
0.35 

0.05 0.10 

w 

0 
1 

2 
3 

4 
5 

6 
5 

4 
3 

2 
1 

j i 

2 
2 

2 
1 

1 

4 
2 

2 
2 

5 
4 

3 
5 

4 5 

root 

1 
2 

3 
4 

5 

5 
4 

3 
2 

1 
j i 

Figure 14.10 The tables eŒi; j �, wŒi; j �, and rootŒi; j � computed by OPTIMAL-BST on the key 
distribution shown in Figure 14.9. The tables are rotated so that the diagonals run horizontally. 

Exercises 
14.5-1 
Write pseudocode for the procedure CONSTRUCT-OPTIMAL-BST .root ; n/ which, 
given the table root Œ1 W n; 1 W n�, outputs the structure of an optimal binary search 
tree. For the example in Figure 14.10, your procedure should print out the structure 
k 2 is the root 
k 1 is the left child of k 2 
d 0 is the left child of k 1 
d 1 is the right child of k 1 
k 5 is the right child of k 2 
k 4 is the left child of k 5 
k 3 is the left child of k 4 
d 2 is the left child of k 3 
d 3 is the right child of k 3 
d 4 is the right child of k 4 
d 5 is the right child of k 5 

corresponding to the optimal binary search tree shown in Figure 14.9(b). 
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14.5-2 
Determine the cost and structure of an optimal binary search tree for a set of n D 7 
keys with the following probabilities: 
i 0 1 2 3 4 5 6 7 
p i 0.04 0.06 0.08 0.02 0.10 0.12 0.14 
q i 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 

14.5-3 
Suppose that instead of maintaining the table wŒi; j �, you computed the value 
of w.i; j / directly from equation (14.12) in line 9 of OPTIMAL-BST and used this 
computed value in line 11. How would this change affect the asymptotic running 
time of OPTIMAL-BST? 

? 14.5-4 
Knuth [264] has shown that there are always roots of optimal subtrees such that 
root Œi; j  1� හ root Œi; j � හ root Œi C 1; j � for all 1 හ i < j හ n. Use this fact to 
modify the OPTIMAL-BST procedure to run in ‚.n 2 / time. 

Problems 

14-1 Longest simple path in a directed acyclic graph 
You are given a directed acyclic graph G D .V;E/ with real-valued edge weights 
and two distinguished vertices s and t . The weight of a path is the sum of the 
weights of the edges in the path. Describe a dynamic-programming approach for 
ûnding a longest weighted simple path from s to t . What is the running time of 
your algorithm? 

14-2 Longest palindrome subsequence 
A palindrome is a nonempty string over some alphabet that reads the same for- 
ward and backward. Examples of palindromes are all strings of length 1, civic, 
racecar, and aibohphobia (fear of palindromes). 
Give an efûcient algorithm to ûnd the longest palindrome that is a subsequence 

of a given input string. For example, given the input character, your algorithm 
should return carac. What is the running time of your algorithm? 

14-3 Bitonic euclidean traveling-salesperson problem 
In the euclidean traveling-salesperson problem, you are given a set of n points in 
the plane, and your goal is to ûnd the shortest closed tour that connects all n points. 
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(a) (b) 

Figure 14.11 Seven points in the plane, shown on a unit grid. (a) The shortest closed tour, with 
length approximately 24:89. This tour is not bitonic. (b) The shortest bitonic tour for the same set of 
points. Its length is approximately 25:58. 

Figure 14.11(a) shows the solution to a 7-point problem. The general problem is 
NP-hard, and its solution is therefore believed to require more than polynomial 
time (see Chapter 34). 
J. L. Bentley has suggested simplifying the problem by considering only bitonic 

tours, that is, tours that start at the leftmost point, go strictly rightward to the right- 
most point, and then go strictly leftward back to the starting point. Figure 14.11(b) 
shows the shortest bitonic tour of the same 7 points. In this case, a polynomial-time 
algorithm is possible. 

Describe an O.n 2 /-time algorithm for determining an optimal bitonic tour. You 
may assume that no two points have the same x -coordinate and that all operations 
on real numbers take unit time. (Hint: Scan left to right, maintaining optimal pos- 
sibilities for the two parts of the tour.) 

14-4 Printing neatly 
Consider the problem of neatly printing a paragraph with a monospaced font (all 
characters having the same width). The input text is a sequence of n words of 
lengths l 1 ; l 2 ; : : : ; l n , measured in characters, which are to be printed neatly on a 
number of lines that hold a maximum of M characters each. No word exceeds 
the line length, so that l i හ M for i D 1; 2; : : : ; n. The criterion of <neatness= is 
as follows. If a given line contains words i through j , where i හ j , and exactly 
one space appears between words, then the number of extra space characters at the 
end of the line is M  j C i  

P j 
kDi l k , which must be nonnegative so that the 

words ût on the line. The goal is to minimize the sum, over all lines except the last, 
of the cubes of the numbers of extra space characters at the ends of lines. Give a 
dynamic-programming algorithm to print a paragraph of n words neatly. Analyze 
the running time and space requirements of your algorithm. 
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14-5 Edit distance 
In order to transform a source string of text xŒ1 W m� to a target string yŒ1 W n�, you 
can perform various transformation operations. The goal is, given x and y , to 
produce a series of transformations that changes x to y . An array ´4assumed 
to be large enough to hold all the characters it needs4holds the intermediate re- 
sults. Initially, ´ is empty, and at termination, you should have ´Œj � D yŒj � for 
j D 1; 2; : : : ; n. The procedure for solving this problem maintains current indices 
i into x and j into ´, and the operations are allowed to alter ´ and these indices. 
Initially, i D j D 1. Every character in x must be examined during the transfor- 
mation, which means that at the end of the sequence of transformation operations, 
i D m C 1. 

You may choose from among six transformation operations, each of which has 
a constant cost that depends on the operation: 
Copy a character from x to ´ by setting ´Œj � D xŒi � and then incrementing both i 

and j . This operation examines xŒi � and has cost Q C . 
Replace a character from x by another character c , by setting ´Œj � D c , and then 

incrementing both i and j . This operation examines xŒi � and has cost Q R . 
Delete a character from x by incrementing i but leaving j alone. This operation 

examines xŒi � and has cost Q D . 
Insert the character c into ´ by setting ´Œj � D c and then incrementing j , but 

leaving i alone. This operation examines no characters of x and has cost Q I . 
Twiddle (i.e., exchange) the next two characters by copying them from x to ´ but 

in the opposite order: setting ´Œj � D xŒi C 1� and ´Œj C 1� D xŒi �, and then 
setting i D i C 2 and j D j C 2. This operation examines xŒi � and xŒi C 1� 
and has cost Q T . 

Kill the remainder of x by setting i D m C 1. This operation examines all char- 
acters in x that have not yet been examined. This operation, if performed, must 
be the ûnal operation. It has cost Q K . 
Figure 14.12 gives one way to transform the source string algorithm to the 

target string altruistic. Several other sequences of transformation operations 
can transform algorithm to altruistic. 

Assume that Q C < Q D C Q I and Q R < Q D C Q I , since otherwise, the 
copy and replace operations would not be used. The cost of a given sequence of 
transformation operations is the sum of the costs of the individual operations in 
the sequence. For the sequence above, the cost of transforming algorithm to 
altruistic is 3Q C C Q R C Q D C 4Q I C Q T C Q K . 
a. Given two sequences xŒ1 W m� and yŒ1 W n� and the costs of the transformation 

operations, the edit distance from x to y is the cost of the least expensive op- 
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Operation x ´ 
initial strings a lgorithm 
copy al gorithm a 
copy alg orithm al 
replace by t algo rithm alt 
delete algor ithm alt 
copy algori thm altr 
insert u algori thm altru 
insert i algori thm altrui 
insert s algori thm altruis 
twiddle algorith m altruisti 
insert c algorith m altruistic 
kill algorithm altruistic 

Figure 14.12 A sequence of operations that transforms the source algorithm to the target string 
altruistic. The underlined characters are xŒi� and ´Œj � after the operation. 

eration sequence that transforms x to y . Describe a dynamic-programming 
algorithm that ûnds the edit distance from xŒ1 W m� to yŒ1 W n� and prints an op- 
timal operation sequence. Analyze the running time and space requirements of 
your algorithm. 

The edit-distance problem generalizes the problem of aligning two DNA sequences 
(see, for example, Setubal and Meidanis [405, Section 3.2]). There are several 
methods for measuring the similarity of two DNA sequences by aligning them. 
One such method to align two sequences x and y consists of inserting spaces at 
arbitrary locations in the two sequences (including at either end) so that the result- 
ing sequences x 0 and y 0 have the same length but do not have a space in the same 
position (i.e., for no position j are both x 0 Œj � and y 0 Œj � a space). Then we assign a 
<score= to each position. Position j receives a score as follows: 
 C1 if x 0 Œj � D y 0 Œj � and neither is a space, 
 1 if x 0 Œj � ¤ y 0 Œj � and neither is a space, 
 2 if either x 0 Œj � or y 0 Œj � is a space. 
The score for the alignment is the sum of the scores of the individual positions. For 
example, given the sequences x D GATCGGCAT and y D CAATGTGAATC, one 
alignment is 
G ATCG GCAT 
CAAT GTGAATC 
- * ++ * + * +-++ * 
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A + under a position indicates a score of C1 for that position, a - indicates a score 
of 1, and a * indicates a score of 2, so that this alignment has a total score of 
6  1  2  1  4  2 D 4. 
b. Explain how to cast the problem of ûnding an optimal alignment as an edit- 

distance problem using a subset of the transformation operations copy, replace, 
delete, insert, twiddle, and kill. 

14-6 Planning a company party 
Professor Blutarsky is consulting for the president of a corporation that is planning 
a company party. The company has a hierarchical structure, that is, the supervisor 
relation forms a tree rooted at the president. The human resources department has 
ranked each employee with a conviviality rating, which is a real number. In order to 
make the party fun for all attendees, the president does not want both an employee 
and his or her immediate supervisor to attend. 

Professor Blutarsky is given the tree that describes the structure of the corpo- 
ration, using the left-child, right-sibling representation described in Section 10.3. 
Each node of the tree holds, in addition to the pointers, the name of an employee 
and that employee’s conviviality ranking. Describe an algorithm to make up a guest 
list that maximizes the sum of the conviviality ratings of the guests. Analyze the 
running time of your algorithm. 

14-7 Viterbi algorithm 
Dynamic programming on a directed graph can play a part in speech recogni- 
tion. A directed graph G D .V;E/ with labeled edges forms a formal model 
of a person speaking a restricted language. Each edge .u; v/ 2 E is labeled with 
a sound �.u; v/ from a ûnite set † of sounds. Each directed path in the graph 
starting from a distinguished vertex v 0 2 V corresponds to a possible sequence of 
sounds produced by the model, with the label of a path being the concatenation of 
the labels of the edges on that path. 
a. Describe an efûcient algorithm that, given an edge-labeled directed graph G 

with distinguished vertex v 0 and a sequence s D h� 1 ; � 2 ; : : : ; � k i of sounds 
from †, returns a path in G that begins at v 0 and has s as its label, if any such 
path exists. Otherwise, the algorithm should return NO- SUCH- PATH. Analyze 
the running time of your algorithm. (Hint: You may ûnd concepts from Chap- 
ter 20 useful.) 

Now suppose that every edge .u; v/ 2 E has an associated nonnegative probabil- 
ity p.u; v/ of being traversed, so that the corresponding sound is produced. The 
sum of the probabilities of the edges leaving any vertex equals 1. The probability 
of a path is deûned to be the product of the probabilities of its edges. Think of 
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the probability of a path beginning at vertex v 0 as the probability that a <random 
walk= beginning at v 0 follows the speciûed path, where the edge leaving a vertex u 
is taken randomly, according to the probabilities of the available edges leaving u. 
b. Extend your answer to part (a) so that if a path is returned, it is a most probable 

path starting at vertex v 0 and having label s . Analyze the running time of your 
algorithm. 

14-8 Image compression by seam carving 
Suppose that you are given a color picture consisting of an mn array AŒ1 W m; 1 W n� 
of pixels, where each pixel speciûes a triple of red, green, and blue (RGB) intensi- 
ties. You want to compress this picture slightly, by removing one pixel from each 
of the m rows, so that the whole picture becomes one pixel narrower. To avoid 
incongruous visual effects, however, the pixels removed in two adjacent rows must 
lie in either the same column or adjacent columns. In this way, the pixels removed 
form a <seam= from the top row to the bottom row, where successive pixels in the 
seam are adjacent vertically or diagonally. 
a. Show that the number of such possible seams grows at least exponentially in m, 

assuming that n > 1. 

b. Suppose now that along with each pixel AŒi; j �, you are given a real-valued 
disruption measure dŒi; j �, indicating how disruptive it would be to remove 
pixel AŒi; j �. Intuitively, the lower a pixel’s disruption measure, the more sim- 
ilar the pixel is to its neighbors. Deûne the disruption measure of a seam as the 
sum of the disruption measures of its pixels. 
Give an algorithm to ûnd a seam with the lowest disruption measure. How 
efûcient is your algorithm? 

14-9 Breaking a string 
A certain string-processing programming language allows you to break a string 
into two pieces. Because this operation copies the string, it costs n time units to 
break a string of n characters into two pieces. Suppose that you want to break a 
string into many pieces. The order in which the breaks occur can affect the total 
amount of time used. For example, suppose that you want to break a 20-character 
string after characters 2, 8, and 10 (numbering the characters in ascending order 
from the left-hand end, starting from 1). If you program the breaks to occur in 
left-to-right order, then the ûrst break costs 20 time units, the second break costs 
18 time units (breaking the string from characters 3 to 20 at character 8), and the 
third break costs 12 time units, totaling 50 time units. If you program the breaks 
to occur in right-to-left order, however, then the ûrst break costs 20 time units, the 
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second break costs 10 time units, and the third break costs 8 time units, totaling 38 
time units. In yet another order, you could break ûrst at 8 (costing 20), then break 
the left piece at 2 (costing another 8), and ûnally the right piece at 10 (costing 12), 
for a total cost of 40. 

Design an algorithm that, given the numbers of characters after which to break, 
determines a least-cost way to sequence those breaks. More formally, given an 
array LŒ1 W m� containing the break points for a string of n characters, compute the 
lowest cost for a sequence of breaks, along with a sequence of breaks that achieves 
this cost. 

14-10 Planning an investment strategy 
Your knowledge of algorithms helps you obtain an exciting job with a hot startup, 
along with a $10,000 signing bonus. You decide to invest this money with the 
goal of maximizing your return at the end of 10 years. You decide to use your 
investment manager, G. I. Luvcache, to manage your signing bonus. The company 
that Luvcache works with requires you to observe the following rules. It offers n 
different investments, numbered 1 through n. In each year j , investment i provides 
a return rate of r ij . In other words, if you invest d dollars in investment i in year j , 
then at the end of year j , you have dr ij dollars. The return rates are guaranteed, 
that is, you are given all the return rates for the next 10 years for each investment. 
You make investment decisions only once per year. At the end of each year, you can 
leave the money made in the previous year in the same investments, or you can shift 
money to other investments, by either shifting money between existing investments 
or moving money to a new investment. If you do not move your money between 
two consecutive years, you pay a fee of f 1 dollars, whereas if you switch your 
money, you pay a fee of f 2 dollars, where f 2 > f 1 . You pay the fee once per year 
at the end of the year, and it is the same amount, f 2 , whether you move money in 
and out of only one investment, or in and out of many investments. 
a. The problem, as stated, allows you to invest your money in multiple investments 

in each year. Prove that there exists an optimal investment strategy that, in 
each year, puts all the money into a single investment. (Recall that an optimal 
investment strategy maximizes the amount of money after 10 years and is not 
concerned with any other objectives, such as minimizing risk.) 

b. Prove that the problem of planning your optimal investment strategy exhibits 
optimal substructure. 

c. Design an algorithm that plans your optimal investment strategy. What is the 
running time of your algorithm? 
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d. Suppose that Luvcache’s company imposes the additional restriction that, at 
any point, you can have no more than $15,000 in any one investment. Show 
that the problem of maximizing your income at the end of 10 years no longer 
exhibits optimal substructure. 

14-11 Inventory planning 
The Rinky Dink Company makes machines that resurface ice rinks. The demand 
for such products varies from month to month, and so the company needs to de- 
velop a strategy to plan its manufacturing given the üuctuating, but predictable, 
demand. The company wishes to design a plan for the next n months. For each 
month i , the company knows the demand d i , that is, the number of machines that it 
will sell. Let D D 

P n 
i D1 d i be the total demand over the next n months. The com- 

pany keeps a full-time staff who provide labor to manufacture up to m machines 
per month. If the company needs to make more than m machines in a given month, 
it can hire additional, part-time labor, at a cost that works out to c dollars per ma- 
chine. Furthermore, if the company is holding any unsold machines at the end of a 
month, it must pay inventory costs. The company can hold up to D machines, with 
the cost for holding j machines given as a function h.j / for j D 1; 2; : : : ;D that 
monotonically increases with j . 
Give an algorithm that calculates a plan for the company that minimizes its costs 

while fulûlling all the demand. The running time should be polynomial in n and D. 

14-12 Signing free-agent baseball players 
Suppose that you are the general manager for a major-league baseball team. During 
the off-season, you need to sign some free-agent players for your team. The team 
owner has given you a budget of $X to spend on free agents. You are allowed to 
spend less than $X , but the owner will ûre you if you spend any more than $X . 

You are considering N different positions, and for each position, P free-agent 
players who play that position are available. 10 Because you do not want to overload 
your roster with too many players at any position, for each position you may sign 
at most one free agent who plays that position. (If you do not sign any players at a 
particular position, then you plan to stick with the players you already have at that 
position.) 

10 Although there are nine positions on a baseball team, N is not necessarily equal to 9 because some 
general managers have particular ways of thinking about positions. For example, a general manager 
might consider right-handed pitchers and left-handed pitchers to be separate <positions,= as well as 
starting pitchers, long relief pitchers (relief pitchers who can pitch several innings), and short relief 
pitchers (relief pitchers who normally pitch at most only one inning). 
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To determine how valuable a player is going to be, you decide to use a saber- 
metric statistic 11 known as <WAR,= or <wins above replacement.= A player with a 
higher WAR is more valuable than a player with a lower WAR. It is not necessarily 
more expensive to sign a player with a higher WAR than a player with a lower 
WAR, because factors other than a player’s value determine how much it costs to 
sign them. 
For each available free-agent player p, you have three pieces of information: 

 the player’s position, 
 p: cost , the amount of money it costs to sign the player, and 
 p: war, the player’s WAR. 

Devise an algorithm that maximizes the total WAR of the players you sign while 
spending no more than $X . You may assume that each player signs for a multiple 
of $100,000. Your algorithm should output the total WAR of the players you sign, 
the total amount of money you spend, and a list of which players you sign. Analyze 
the running time and space requirement of your algorithm. 

Chapter notes 

Bellman [44] began the systematic study of dynamic programming in 1955, pub- 
lishing a book about it in 1957. The word <programming,= both here and in linear 
programming, refers to using a tabular solution method. Although optimization 
techniques incorporating elements of dynamic programming were known earlier, 
Bellman provided the area with a solid mathematical basis. 
Galil and Park [172] classify dynamic-programming algorithms according to the 

size of the table and the number of other table entries each entry depends on. They 
call a dynamic-programming algorithm tD=eD if its table size is O.n t / and each 
entry depends on O.n e / other entries. For example, the matrix-chain multiplica- 
tion algorithm in Section 14.2 is 2D=1D, and the longest-common-subsequence 
algorithm in Section 14.4 is 2D=0D. 

The MATRIX-CHAIN-ORDER algorithm on page 378 is by Muraoka and Kuck 
[339]. Hu and Shing [230, 231] give an O.n lg n/-time algorithm for the matrix- 
chain multiplication problem. 

The O.mn/-time algorithm for the longest-common-subsequence problem ap- 
pears to be a folk algorithm. Knuth [95] posed the question of whether subquadratic 

11 Sabermetrics is the application of statistical analysis to baseball records. It provides several ways 
to compare the relative values of individual players. 
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algorithms for the LCS problem exist. Masek and Paterson [316] answered this 
question in the afûrmative by giving an algorithm that runs in O.mn= lg n/ time, 
where n හ m and the sequences are drawn from a set of bounded size. For the 
special case in which no element appears more than once in an input sequence, 
Szymanski [425] shows how to solve the problem in O..n C m/ lg.n C m// time. 
Many of these results extend to the problem of computing string edit distances 
(Problem 14-5). 
An early paper on variable-length binary encodings by Gilbert and Moore [181], 

which had applications to constructing optimal binary search trees for the case in 
which all probabilities p i are 0, contains an O.n 3 /-time algorithm. Aho, Hopcroft, 
and Ullman [5] present the algorithm from Section 14.5. Splay trees [418], which 
modify the tree in response to the search queries, come within a constant factor of 
the optimal bounds without being initialized with the frequencies. Exercise 14.5-4 
is due to Knuth [264]. Hu and Tucker [232] devised an algorithm for the case 
in which all probabilities p i are 0 that uses O.n 2 / time and O.n/ space. Subse- 
quently, Knuth [261] reduced the time to O.n lg n/. 
Problem 14-8 is due to Avidan and Shamir [30], who have posted on the web a 

wonderful video illustrating this image-compression technique. 
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Algorithms for optimization problems typically go through a sequence of steps, 
with a set of choices at each step. For many optimization problems, using dy- 
namic programming to determine the best choices is overkill, and simpler, more 
efûcient algorithms will do. A greedy algorithm always makes the choice that 
looks best at the moment. That is, it makes a locally optimal choice in the hope 
that this choice leads to a globally optimal solution. This chapter explores opti- 
mization problems for which greedy algorithms provide optimal solutions. Before 
reading this chapter, you should read about dynamic programming in Chapter 14, 
particularly Section 14.3. 
Greedy algorithms do not always yield optimal solutions, but for many prob- 

lems they do. We ûrst examine, in Section 15.1, a simple but nontrivial problem, 
the activity-selection problem, for which a greedy algorithm efûciently computes 
an optimal solution. We’ll arrive at the greedy algorithm by ûrst considering a 
dynamic-programming approach and then showing that an optimal solution can re- 
sult from always making greedy choices. Section 15.2 reviews the basic elements 
of the greedy approach, giving a direct approach for proving greedy algorithms cor- 
rect. Section 15.3 presents an important application of greedy techniques: design- 
ing data-compression (Huffman) codes. Finally, Section 15.4 shows that in order 
to decide which blocks to replace when a miss occurs in a cache, the <furthest-in- 
future= strategy is optimal if the sequence of block accesses is known in advance. 

The greedy method is quite powerful and works well for a wide range of prob- 
lems. Later chapters will present many algorithms that you can view as applications 
of the greedy method, including minimum-spanning-tree algorithms (Chapter 21), 
Dijkstra’s algorithm for shortest paths from a single source (Section 22.3), and a 
greedy set-covering heuristic (Section 35.3). Minimum-spanning-tree algorithms 
furnish a classic example of the greedy method. Although you can read this chapter 
and Chapter 21 independently of each other, you might ûnd it useful to read them 
together. 
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15.1 An activity-selection problem 

Our ûrst example is the problem of scheduling several competing activities that re- 
quire exclusive use of a common resource, with a goal of selecting a maximum-size 
set of mutually compatible activities. Imagine that you are in charge of scheduling 
a conference room. You are presented with a set S D fa 1 ; a 2 ; : : : ; a n g of n pro- 
posed activities that wish to reserve the conference room, and the room can serve 
only one activity at a time. Each activity a i has a start time s i and a ûnish time f i , 
where 0 හ s i < f i < 1. If selected, activity a i takes place during the half-open 
time interval Œs i ; f i /. Activities a i and a j are compatible if the intervals Œs i ; f i / 
and Œs j ; f j / do not overlap. That is, a i and a j are compatible if s i  f j or s j  f i . 
(Assume that if your staff needs time to change over the room from one activity to 
the next, the changeover time is built into the intervals.) In the activity-selection 
problem, your goal is to select a maximum-size subset of mutually compatible ac- 
tivities. Assume that the activities are sorted in monotonically increasing order of 
ûnish time: 
f 1 හ f 2 හ f 3 හ    හ f n1 හ f n : (15.1) 
(We’ll see later the advantage that this assumption provides.) For example, con- 
sider the set of activities in Figure 15.1. The subset fa 3 ; a 9 ; a 11 g consists of mutu- 
ally compatible activities. It is not a maximum subset, however, since the subset 
fa 1 ; a 4 ; a 8 ; a 11 g is larger. In fact, fa 1 ; a 4 ; a 8 ; a 11 g is a largest subset of mutually 
compatible activities, and another largest subset is fa 2 ; a 4 ; a 9 ; a 11 g. 
We’ll see how to solve this problem, proceeding in several steps. First we’ll 

explore a dynamic-programming solution, in which you consider several choices 
when determining which subproblems to use in an optimal solution. We’ll then 
observe that you need to consider only one choice4the greedy choice4and that 
when you make the greedy choice, only one subproblem remains. Based on these 
observations, we’ll develop a recursive greedy algorithm to solve the activity- 
selection problem. Finally, we’ll complete the process of developing a greedy 
solution by converting the recursive algorithm to an iterative one. Although the 
steps we go through in this section are slightly more involved than is typical when 
developing a greedy algorithm, they illustrate the relationship between greedy al- 
gorithms and dynamic programming. 

i 1 2 3 4 5 6 7 8 9 10 11 
s i 1 3 0 5 3 5 6 7 8 2 12 
f i 4 5 6 7 9 9 10 11 12 14 16 

Figure 15.1 A set fa 1 ; a 2 ; : : : ; a 11 g of activities. Activity a i has start time s i and ûnish time f i . 
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The optimal substructure of the activity-selection problem 

Let’s verify that the activity-selection problem exhibits optimal substructure. De- 
note by S ij the set of activities that start after activity a i ûnishes and that ûnish 
before activity a j starts. Suppose that you want to ûnd a maximum set of mutually 
compatible activities in S ij , and suppose further that such a maximum set is A ij , 
which includes some activity a k . By including a k in an optimal solution, you are 
left with two subproblems: ûnding mutually compatible activities in the set S ik 
(activities that start after activity a i ûnishes and that ûnish before activity a k starts) 
and ûnding mutually compatible activities in the set S kj (activities that start after 
activity a k ûnishes and that ûnish before activity a j starts). Let A ik D A ij \ S ik 
and A kj D A ij \ S kj , so that A ik contains the activities in A ij that ûnish before a k 
starts and A kj contains the activities in A ij that start after a k ûnishes. Thus, we 
have A ij D A ik [ fa k g [ A kj , and so the maximum-size set A ij of mutually com- 
patible activities in S ij consists of jA ij j D jA ik j C jA kj j C 1 activities. 
The usual cut-and-paste argument shows that an optimal solution A ij must also 

include optimal solutions to the two subproblems for S ik and S kj . If you could 
ûnd a set A 0 

kj of mutually compatible activities in S kj where jA 0 
kj j > jA kj j, then 

you could use A 0 
kj , rather than A kj , in a solution to the subproblem for S ij . You 

would have constructed a set of jA ik j C jA 0 
kj j C 1 > jA ik j C jA kj j C 1 D jA ij j 

mutually compatible activities, which contradicts the assumption that A ij is an 
optimal solution. A symmetric argument applies to the activities in S ik . 

This way of characterizing optimal substructure suggests that you can solve the 
activity-selection problem by dynamic programming. Let’s denote the size of an 
optimal solution for the set S ij by cŒi; j �. Then, the dynamic-programming ap- 
proach gives the recurrence 
cŒi; j � D cŒi; k� C cŒk; j � C 1 : 

Of course, if you do not know that an optimal solution for the set S ij includes 
activity a k , you must examine all activities in S ij to ûnd which one to choose, so 
that 

cŒi; j � D 

( 
0 if S ij D ; ; 
max fcŒi; k� C cŒk; j � C 1 W a k 2 S ij g if S ij ¤ ; : 

(15.2) 

You can then develop a recursive algorithm and memoize it, or you can work 
bottom-up and ûll in table entries as you go along. But you would be overlooking 
another important characteristic of the activity-selection problem that you can use 
to great advantage. 
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Making the greedy choice 
What if you could choose an activity to add to an optimal solution without having 
to ûrst solve all the subproblems? That could save you from having to consider all 
the choices inherent in recurrence (15.2). In fact, for the activity-selection problem, 
you need to consider only one choice: the greedy choice. 
What is the greedy choice for the activity-selection problem? Intuition suggests 

that you should choose an activity that leaves the resource available for as many 
other activities as possible. Of the activities you end up choosing, one of them 
must be the ûrst one to ûnish. Intuition says, therefore, choose the activity in S 
with the earliest ûnish time, since that leaves the resource available for as many 
of the activities that follow it as possible. (If more than one activity in S has 
the earliest ûnish time, then choose any such activity.) In other words, since the 
activities are sorted in monotonically increasing order by ûnish time, the greedy 
choice is activity a 1 . Choosing the ûrst activity to ûnish is not the only way to 
think of making a greedy choice for this problem. Exercise 15.1-3 asks you to 
explore other possibilities. 
Once you make the greedy choice, you have only one remaining subproblem to 

solve: ûnding activities that start after a 1 ûnishes. Why don’t you have to consider 
activities that ûnish before a 1 starts? Because s 1 < f 1 , and because f 1 is the 
earliest ûnish time of any activity, no activity can have a ûnish time less than or 
equal to s 1 . Thus, all activities that are compatible with activity a 1 must start 
after a 1 ûnishes. 

Furthermore, we have already established that the activity-selection problem ex- 
hibits optimal substructure. Let S k D fa i 2 S W s i  f k g be the set of activities that 
start after activity a k ûnishes. If you make the greedy choice of activity a 1 , then 
S 1 remains as the only subproblem to solve. 1 Optimal substructure says that if a 1 
belongs to an optimal solution, then an optimal solution to the original problem 
consists of activity a 1 and all the activities in an optimal solution to the subprob- 
lem S 1 . 
One big question remains: Is this intuition correct? Is the greedy choice4in 

which you choose the ûrst activity to ûnish4always part of some optimal solution? 
The following theorem shows that it is. 

1 We sometimes refer to the sets S k as subproblems rather than as just sets of activities. The context 
will make it clear whether we are referring to S k as a set of activities or as a subproblem whose input 
is that set. 
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Theorem 15.1 
Consider any nonempty subproblem S k , and let a m be an activity in S k with the 
earliest ûnish time. Then a m is included in some maximum-size subset of mutually 
compatible activities of S k . 

Proof Let A k be a maximum-size subset of mutually compatible activities in S k , 
and let a j be the activity in A k with the earliest ûnish time. If a j D a m , we are 
done, since we have shown that a m belongs to some maximum-size subset of mutu- 
ally compatible activities of S k . If a j ¤ a m , let the set A 0 

k D .A k  fa j g/ [ fa m g 
be A k but substituting a m for a j . The activities in A 0 

k are compatible, which fol- 
lows because the activities in A k are compatible, a j is the ûrst activity in A k to 
ûnish, and f m හ f j . Since jA 0 

k j D jA k j, we conclude that A 0 
k is a maximum-size 

subset of mutually compatible activities of S k , and it includes a m . 

Although you might be able to solve the activity-selection problem with dynamic 
programming, Theorem 15.1 says that you don’t need to. Instead, you can repeat- 
edly choose the activity that ûnishes ûrst, keep only the activities compatible with 
this activity, and repeat until no activities remain. Moreover, because you always 
choose the activity with the earliest ûnish time, the ûnish times of the activities that 
you choose must strictly increase. You can consider each activity just once overall, 
in monotonically increasing order of ûnish times. 
An algorithm to solve the activity-selection problem does not need to work 

bottom-up, like a table-based dynamic-programming algorithm. Instead, it can 
work top-down, choosing an activity to put into the optimal solution that it con- 
structs and then solving the subproblem of choosing activities from those that are 
compatible with those already chosen. Greedy algorithms typically have this top- 
down design: make a choice and then solve a subproblem, rather than the bottom- 
up technique of solving subproblems before making a choice. 

A recursive greedy algorithm 

Now that you know you can bypass the dynamic-programming approach and in- 
stead use a top-down, greedy algorithm, let’s see a straightforward, recursive 
procedure to solve the activity-selection problem. The procedure RECURSIVE- 
ACTIVITY-SELECTOR on the following page takes the start and ûnish times of the 
activities, represented as arrays s and f , 2 the index k that deûnes the subprob- 
lem S k it is to solve, and the size n of the original problem. It returns a maximum- 

2 Because the pseudocode takes s and f as arrays, it indexes into them with square brackets rather 
than with subscripts. 
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size set of mutually compatible activities in S k . The procedure assumes that the 
n input activities are already ordered by monotonically increasing ûnish time, ac- 
cording to equation (15.1). If not, you can ûrst sort them into this order in O.n lg n/ 
time, breaking ties arbitrarily. In order to start, add the ûctitious activity a 0 with 
f 0 D 0, so that subproblem S 0 is the entire set of activities S . The initial call, 
which solves the entire problem, is RECURSIVE-ACTIVITY-SELECTOR .s; f; 0; n/. 

RECURSIVE-ACTIVITY-SELECTOR .s; f; k; n/ 
1 m D k C 1 
2 while m හ n and sŒm� < f Œk� // ûnd the ûrst activity in S k to ûnish 
3 m D m C 1 
4 if m හ n 
5 return fa m g [ RECURSIVE-ACTIVITY-SELECTOR .s; f;m; n/ 
6 else return ; 

Figure 15.2 shows how the algorithm operates on the activities in Figure 15.1. 
In a given recursive call RECURSIVE-ACTIVITY-SELECTOR .s; f; k; n/, the while 
loop of lines 233 looks for the ûrst activity in S k to ûnish. The loop examines 
a kC1 ; a kC2 ; : : : ; a n , until it ûnds the ûrst activity a m that is compatible with a k , 
which means that s m  f k . If the loop terminates because it ûnds such an activity, 
line 5 returns the union of fa m g and the maximum-size subset of S m returned by the 
recursive call RECURSIVE-ACTIVITY-SELECTOR .s; f;m; n/. Alternatively, the 
loop may terminate because m > n, in which case the procedure has examined 
all activities in S k without ûnding one that is compatible with a k . In this case, 
S k D ;, and so line 6 returns ;. 
Assuming that the activities have already been sorted by ûnish times, the run- 

ning time of the call RECURSIVE-ACTIVITY-SELECTOR .s; f; 0; n/ is ‚.n/. To 
see why, observe that over all recursive calls, each activity is examined exactly 
once in the while loop test of line 2. In particular, activity a i is examined in the 
last call made in which k < i . 

An iterative greedy algorithm 

The recursive procedure can be converted to an iterative one because the procedure 
RECURSIVE-ACTIVITY-SELECTOR is almost <tail recursive= (see Problem 7-5): 
it ends with a recursive call to itself followed by a union operation. It is usually 
a straightforward task to transform a tail-recursive procedure to an iterative form. 
In fact, some compilers for certain programming languages perform this task auto- 
matically. 
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
time 

2 3 5 

3 0 6 

4 5 7 

5 3 9 

6 5 9 

7 6 10 

8 7 11 

9 8 12 

10 2 14 

11 12 16 

1 1 4 

i s i f i 

a 1 

a 2 

a 1 

a 3 

a 1 

a 4 

a 1 a 4 

a 5 

a 1 a 4 

a 6 

a 1 a 4 

a 7 

a 1 a 4 

a 8 

a 1 a 4 a 8 

a 9 

a 1 a 4 a 8 

a 10 

a 1 a 4 a 8 

a 11 

a 1 a 4 a 8 a 11 

0 – 0 

a 1 

a 0 

a 0 

RECURSIVE-ACTIVITY-SELECTOR(s, f, 0, 11) 

RECURSIVE-ACTIVITY-SELECTOR(s, f, 1, 11) 

RECURSIVE-ACTIVITY-SELECTOR(s, f, 4, 11) 

RECURSIVE-ACTIVITY-SELECTOR(s, f, 8, 11) 

m = 1 

m = 4 

m = 8 

m = 11 

RECURSIVE-ACTIVITY-SELECTOR(s, f, 11, 11) 

15 16 

Figure 15.2 The operation of RECURSIVE-ACTIVITY-SELECTOR on the 11 activities from Fig- 
ure 15.1. Activities considered in each recursive call appear between horizontal lines. The ûctitious 
activity a 0 ûnishes at time 0, and the initial call RECURSIVE-ACTIVITY-SELECTOR.s; f; 0; 11/, 
selects activity a 1 . In each recursive call, the activities that have already been selected are blue, 
and the activity shown in tan is being considered. If the starting time of an activity occurs before 
the ûnish time of the most recently added activity (the arrow between them points left), it is re- 
jected. Otherwise (the arrow points directly up or to the right), it is selected. The last recursive call, 
RECURSIVE-ACTIVITY-SELECTOR.s; f; 11; 11/, returns ;. The resulting set of selected activities is 
fa 1 ; a 4 ; a 8 ; a 11 g. 
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The procedure GREEDY-ACTIVITY-S ELECTOR is an iterative version of the pro- 
cedure RECURSIVE-ACTIVITY-SELECTOR. It, too, assumes that the input activi- 
ties are ordered by monotonically increasing ûnish time. It collects selected activ- 
ities into a set A and returns this set when it is done. 

GREEDY-ACTIVITY-SELECTOR .s; f; n/ 
1 A D fa 1 g 
2 k D 1 
3 for m D 2 to n 
4 if sŒm�  f Œk� // is a m in S k ? 
5 A D A [ fa m g // yes, so choose it 
6 k D m // and continue from there 
7 return A 

The procedure works as follows. The variable k indexes the most recent ad- 
dition to A, corresponding to the activity a k in the recursive version. Since the 
procedure considers the activities in order of monotonically increasing ûnish time, 
f k is always the maximum ûnish time of any activity in A. That is, 
f k D max ff i W a i 2 Ag : (15.3) 
Lines 132 select activity a 1 , initialize A to contain just this activity, and initialize k 
to index this activity. The for loop of lines 336 ûnds the earliest activity in S k to 
ûnish. The loop considers each activity a m in turn and adds a m to A if it is compat- 
ible with all previously selected activities. Such an activity is the earliest in S k to 
ûnish. To see whether activity a m is compatible with every activity currently in A, 
it sufûces by equation (15.3) to check (in line 4) that its start time s m is not earlier 
than the ûnish time f k of the activity most recently added to A. If activity a m is 
compatible, then lines 536 add activity a m to A and set k to m. The set A returned 
by the call GREEDY-ACTIVITY-SELECTOR .s; f / is precisely the set returned by 
the initial call RECURSIVE-ACTIVITY-SELECTOR .s; f; 0; n/. 
Like the recursive version, GREEDY-ACTIVITY-SELECTOR schedules a set of n 

activities in ‚.n/ time, assuming that the activities were already sorted initially by 
their ûnish times. 

Exercises 
15.1-1 
Give a dynamic-programming algorithm for the activity-selection problem, based 
on recurrence (15.2). Have your algorithm compute the sizes cŒi; j � as deûned 
above and also produce the maximum-size subset of mutually compatible activities. 
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Assume that the inputs have been sorted as in equation (15.1). Compare the running 
time of your solution to the running time of GREEDY-ACTIVITY-SELECTOR. 
15.1-2 
Suppose that instead of always selecting the ûrst activity to ûnish, you instead 
select the last activity to start that is compatible with all previously selected activi- 
ties. Describe how this approach is a greedy algorithm, and prove that it yields an 
optimal solution. 
15.1-3 
Not just any greedy approach to the activity-selection problem produces a max- 
imum-size set of mutually compatible activities. Give an example to show that 
the approach of selecting the activity of least duration from among those that are 
compatible with previously selected activities does not work. Do the same for 
the approaches of always selecting the compatible activity that overlaps the fewest 
other remaining activities and always selecting the compatible remaining activity 
with the earliest start time. 
15.1-4 
You are given a set of activities to schedule among a large number of lecture halls, 
where any activity can take place in any lecture hall. You wish to schedule all the 
activities using as few lecture halls as possible. Give an efûcient greedy algorithm 
to determine which activity should use which lecture hall. 

(This problem is also known as the interval-graph coloring problem. It is mod- 
eled by an interval graph whose vertices are the given activities and whose edges 
connect incompatible activities. The smallest number of colors required to color 
every vertex so that no two adjacent vertices have the same color corresponds to 
ûnding the fewest lecture halls needed to schedule all of the given activities.) 
15.1-5 
Consider a modiûcation to the activity-selection problem in which each activity a i 
has, in addition to a start and ûnish time, a value v i . The objective is no longer 
to maximize the number of activities scheduled, but instead to maximize the total 
value of the activities scheduled. That is, the goal is to choose a set A of compatible 
activities such that P 

a k 2A v k is maximized. Give a polynomial-time algorithm for 
this problem. 
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15.2 Elements of the greedy strategy 

A greedy algorithm obtains an optimal solution to a problem by making a sequence 
of choices. At each decision point, the algorithm makes the choice that seems best 
at the moment. This heuristic strategy does not always produce an optimal solution, 
but as in the activity-selection problem, sometimes it does. This section discusses 
some of the general properties of greedy methods. 
The process that we followed in Section 15.1 to develop a greedy algorithm was 

a bit more involved than is typical. It consisted of the following steps: 
1. Determine the optimal substructure of the problem. 
2. Develop a recursive solution. (For the activity-selection problem, we formu- 

lated recurrence (15.2), but bypassed developing a recursive algorithm based 
solely on this recurrence.) 

3. Show that if you make the greedy choice, then only one subproblem remains. 
4. Prove that it is always safe to make the greedy choice. (Steps 3 and 4 can occur 

in either order.) 
5. Develop a recursive algorithm that implements the greedy strategy. 
6. Convert the recursive algorithm to an iterative algorithm. 
These steps highlighted in great detail the dynamic-programming underpinnings 
of a greedy algorithm. For example, the ûrst cut at the activity-selection problem 
deûned the subproblems S ij , where both i and j varied. We then found that if 
you always make the greedy choice, you can restrict the subproblems to be of the 
form S k . 

An alternative approach is to fashion optimal substructure with a greedy choice 
in mind, so that the choice leaves just one subproblem to solve. In the activity- 
selection problem, start by dropping the second subscript and deûning subproblems 
of the form S k . Then prove that a greedy choice (the ûrst activity a m to ûnish 
in S k ), combined with an optimal solution to the remaining set S m of compatible 
activities, yields an optimal solution to S k . More generally, you can design greedy 
algorithms according to the following sequence of steps: 
1. Cast the optimization problem as one in which you make a choice and are left 

with one subproblem to solve. 
2. Prove that there is always an optimal solution to the original problem that makes 

the greedy choice, so that the greedy choice is always safe. 
3. Demonstrate optimal substructure by showing that, having made the greedy 

choice, what remains is a subproblem with the property that if you combine an 
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optimal solution to the subproblem with the greedy choice you have made, you 
arrive at an optimal solution to the original problem. 

Later sections of this chapter will use this more direct process. Nevertheless, be- 
neath every greedy algorithm, there is almost always a more cumbersome dynamic- 
programming solution. 

How can you tell whether a greedy algorithm will solve a particular optimization 
problem? No way works all the time, but the greedy-choice property and optimal 
substructure are the two key ingredients. If you can demonstrate that the problem 
has these properties, then you are well on the way to developing a greedy algorithm 
for it. 

Greedy-choice property 
The ûrst key ingredient is the greedy-choice property: you can assemble a globally 
optimal solution by making locally optimal (greedy) choices. In other words, when 
you are considering which choice to make, you make the choice that looks best in 
the current problem, without considering results from subproblems. 

Here is where greedy algorithms differ from dynamic programming. In dynamic 
programming, you make a choice at each step, but the choice usually depends 
on the solutions to subproblems. Consequently, you typically solve dynamic- 
programming problems in a bottom-up manner, progressing from smaller sub- 
problems to larger subproblems. (Alternatively, you can solve them top down, 
but memoizing. Of course, even though the code works top down, you still must 
solve the subproblems before making a choice.) In a greedy algorithm, you make 
whatever choice seems best at the moment and then solve the subproblem that re- 
mains. The choice made by a greedy algorithm may depend on choices so far, but it 
cannot depend on any future choices or on the solutions to subproblems. Thus, un- 
like dynamic programming, which solves the subproblems before making the ûrst 
choice, a greedy algorithm makes its ûrst choice before solving any subproblems. 
A dynamic-programming algorithm proceeds bottom up, whereas a greedy strat- 
egy usually progresses top down, making one greedy choice after another, reducing 
each given problem instance to a smaller one. 
Of course, you need to prove that a greedy choice at each step yields a globally 

optimal solution. Typically, as in the case of Theorem 15.1, the proof examines 
a globally optimal solution to some subproblem. It then shows how to modify 
the solution to substitute the greedy choice for some other choice, resulting in one 
similar, but smaller, subproblem. 
You can usually make the greedy choice more efûciently than when you have 

to consider a wider set of choices. For example, in the activity-selection problem, 
assuming that the activities were already sorted in monotonically increasing order 
by ûnish times, each activity needed to be examined just once. By preprocessing 



428 Chapter 15 Greedy Algorithms 

the input or by using an appropriate data structure (often a priority queue), you 
often can make greedy choices quickly, thus yielding an efûcient algorithm. 

Optimal substructure 
As we saw in Chapter 14, a problem exhibits optimal substructure if an optimal 
solution to the problem contains within it optimal solutions to subproblems. This 
property is a key ingredient of assessing whether dynamic programming applies, 
and it’s also essential for greedy algorithms. As an example of optimal substruc- 
ture, recall how Section 15.1 demonstrated that if an optimal solution to subprob- 
lem S ij includes an activity a k , then it must also contain optimal solutions to the 
subproblems S ik and S kj . Given this optimal substructure, we argued that if you 
know which activity to use as a k , you can construct an optimal solution to S ij by 
selecting a k along with all activities in optimal solutions to the subproblems S ik 
and S kj . This observation of optimal substructure gave rise to the recurrence (15.2) 
that describes the value of an optimal solution. 

You will usually use a more direct approach regarding optimal substructure when 
applying it to greedy algorithms. As mentioned above, you have the luxury of 
assuming that you arrived at a subproblem by having made the greedy choice in 
the original problem. All you really need to do is argue that an optimal solution to 
the subproblem, combined with the greedy choice already made, yields an optimal 
solution to the original problem. This scheme implicitly uses induction on the 
subproblems to prove that making the greedy choice at every step produces an 
optimal solution. 

Greedy versus dynamic programming 
Because both the greedy and dynamic-programming strategies exploit optimal sub- 
structure, you might be tempted to generate a dynamic-programming solution to 
a problem when a greedy solution sufûces or, conversely, you might mistakenly 
think that a greedy solution works when in fact a dynamic-programming solution 
is required. To illustrate the subtle differences between the two techniques, let’s 
investigate two variants of a classical optimization problem. 

The 0-1 knapsack problem is the following. A thief robbing a store wants to 
take the most valuable load that can be carried in a knapsack capable of carrying 
at most W pounds of loot. The thief can choose to take any subset of n items in 
the store. The i th item is worth v i dollars and weighs w i pounds, where v i and w i 
are integers. Which items should the thief take? (We call this the 0-1 knapsack 
problem because for each item, the thief must either take it or leave it behind. The 
thief cannot take a fractional amount of an item or take an item more than once.) 
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In the fractional knapsack problem, the setup is the same, but the thief can take 
fractions of items, rather than having to make a binary (0-1) choice for each item. 
You can think of an item in the 0-1 knapsack problem as being like a gold ingot 
and an item in the fractional knapsack problem as more like gold dust. 
Both knapsack problems exhibit the optimal-substructure property. For the 0-1 

problem, if the most valuable load weighing at most W pounds includes item j , 
then the remaining load must be the most valuable load weighing at most W  w j 
pounds that the thief can take from the n  1 original items excluding item j . For 
the comparable fractional problem, if if the most valuable load weighing at most 
W pounds includes weight w of item j , then the remaining load must be the most 
valuable load weighing at most W  w pounds that the thief can take from the n  1 
original items plus w j  w pounds of item j . 

Although the problems are similar, a greedy strategy works to solve the frac- 
tional knapsack problem, but not the 0-1 problem. To solve the fractional problem, 
ûrst compute the value per pound v i =w i for each item. Obeying a greedy strategy, 
the thief begins by taking as much as possible of the item with the greatest value 
per pound. If the supply of that item is exhausted and the thief can still carry more, 
then the thief takes as much as possible of the item with the next greatest value per 
pound, and so forth, until reaching the weight limit W . Thus, by sorting the items 
by value per pound, the greedy algorithm runs in O.n lg n/ time. You are asked 
to prove that the fractional knapsack problem has the greedy-choice property in 
Exercise 15.2-1. 
To see that this greedy strategy does not work for the 0-1 knapsack problem, 

consider the problem instance illustrated in Figure 15.3(a). This example has three 
items and a knapsack that can hold 50 pounds. Item 1 weighs 10 pounds and is 
worth $60. Item 2 weighs 20 pounds and is worth $100. Item 3 weighs 30 pounds 
and is worth $120. Thus, the value per pound of item 1 is $6 per pound, which is 
greater than the value per pound of either item 2 ($5 per pound) or item 3 ($4 per 
pound). The greedy strategy, therefore, would take item 1 ûrst. As you can see 
from the case analysis in Figure 15.3(b), however, the optimal solution takes items 
2 and 3, leaving item 1 behind. The two possible solutions that take item 1 are both 
suboptimal. 

For the comparable fractional problem, however, the greedy strategy, which 
takes item 1 ûrst, does yield an optimal solution, as shown in Figure 15.3(c). Tak- 
ing item 1 doesn’t work in the 0-1 problem, because the thief is unable to ûll the 
knapsack to capacity, and the empty space lowers the effective value per pound of 
the load. In the 0-1 problem, when you consider whether to include an item in the 
knapsack, you must compare the solution to the subproblem that includes the item 
with the solution to the subproblem that excludes the item before you can make the 
choice. The problem formulated in this way gives rise to many overlapping sub- 
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Figure 15.3 An example showing that the greedy strategy does not work for the 0-1 knapsack 
problem. (a) The thief must select a subset of the three items shown whose weight must not exceed 
50 pounds. (b) The optimal subset includes items 2 and 3. Any solution with item 1 is suboptimal, 
even though item 1 has the greatest value per pound. (c) For the fractional knapsack problem, taking 
the items in order of greatest value per pound yields an optimal solution. 

problems4a hallmark of dynamic programming, and indeed, as Exercise 15.2-2 
asks you to show, you can use dynamic programming to solve the 0-1 problem. 

Exercises 
15.2-1 
Prove that the fractional knapsack problem has the greedy-choice property. 
15.2-2 
Give a dynamic-programming solution to the 0-1 knapsack problem that runs in 
O.nW / time, where n is the number of items and W is the maximum weight of 
items that the thief can put in the knapsack. 
15.2-3 
Suppose that in a 0-1 knapsack problem, the order of the items when sorted by 
increasing weight is the same as their order when sorted by decreasing value. Give 
an efûcient algorithm to ûnd an optimal solution to this variant of the knapsack 
problem, and argue that your algorithm is correct. 
15.2-4 
Professor Gekko has always dreamed of inline skating across North Dakota. The 
professor plans to cross the state on highway U.S. 2, which runs from Grand Forks, 
on the eastern border with Minnesota, to Williston, near the western border with 
Montana. The professor can carry two liters of water and can skate m miles before 
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running out of water. (Because North Dakota is relatively üat, the professor does 
not have to worry about drinking water at a greater rate on uphill sections than on 
üat or downhill sections.) The professor will start in Grand Forks with two full 
liters of water. The professor has an ofûcial North Dakota state map, which shows 
all the places along U.S. 2 to reûll water and the distances between these locations. 
The professor’s goal is to minimize the number of water stops along the route 

across the state. Give an efûcient method by which the professor can determine 
which water stops to make. Prove that your strategy yields an optimal solution, 
and give its running time. 
15.2-5 
Describe an efûcient algorithm that, given a set fx 1 ; x 2 ; : : : ; x n g of points on the 
real line, determines the smallest set of unit-length closed intervals that contains 
all of the given points. Argue that your algorithm is correct. 

? 15.2-6 
Show how to solve the fractional knapsack problem in O.n/ time. 
15.2-7 
You are given two sets A and B , each containing n positive integers. You can 
choose to reorder each set however you like. After reordering, let a i be the i th 
element of set A, and let b i be the i th element of set B . You then receive a payoff 
of Q n 

i D1 a i b i . Give an algorithm that maximizes your payoff. Prove that your 
algorithm maximizes the payoff, and state its running time, omitting the time for 
reordering the sets. 

15.3 Huffman codes 

Huffman codes compress data well: savings of 20% to 90% are typical, depending 
on the characteristics of the data being compressed. The data arrive as a sequence 
of characters. Huffman’s greedy algorithm uses a table giving how often each 
character occurs (its frequency) to build up an optimal way of representing each 
character as a binary string. 
Suppose that you have a 100,000-character data ûle that you wish to store com- 

pactly and you know that the 6 distinct characters in the ûle occur with the frequen- 
cies given by Figure 15.4. The character a occurs 45,000 times, the character b 
occurs 13,000 times, and so on. 
You have many options for how to represent such a ûle of information. Here, 

we consider the problem of designing a binary character code (or code for short) 
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a b c d e f 
Frequency (in thousands) 45 13 12 16 9 5 
Fixed-length codeword 000 001 010 011 100 101 
Variable-length codeword 0 101 100 111 1101 1100 

Figure 15.4 A character-coding problem. A data ûle of 100,000 characters contains only the char- 
acters a–f, with the frequencies indicated. With each character represented by a 3-bit codeword, 
encoding the ûle requires 300,000 bits. With the variable-length code shown, the encoding requires 
only 224,000 bits. 

in which each character is represented by a unique binary string, which we call a 
codeword. If you use a ûxed-length code, you need dlg ne bits to represent n  2 
characters. For 6 characters, therefore, you need 3 bits: a = 000, b = 001, c = 010, 
d = 011, e = 100, and f = 101. This method requires 300,000 bits to encode the 
entire ûle. Can you do better? 

A variable-length code can do considerably better than a ûxed-length code. The 
idea is simple: give frequent characters short codewords and infrequent characters 
long codewords. Figure 15.4 shows such a code. Here, the 1-bit string 0 represents 
a, and the 4-bit string 1100 represents f. This code requires 
.45  1 C 13  3 C 12  3 C 16  3 C 9  4 C 5  4/  1,000 D 224,000 bits 
to represent the ûle, a savings of approximately 25%. In fact, this is an optimal 
character code for this ûle, as we shall see. 

Preûx-free codes 
We consider here only codes in which no codeword is also a preûx of some other 
codeword. Such codes are called preûx-free codes. Although we won’t prove it 
here, a preûx-free code can always achieve the optimal data compression among 
any character code, and so we suffer no loss of generality by restricting our atten- 
tion to preûx-free codes. 

Encoding is always simple for any binary character code: just concatenate the 
codewords representing each character of the ûle. For example, with the variable- 
length preûx-free code of Figure 15.4, the 4-character ûle face has the encoding 
1100  0  100  1101 D 110001001101, where <= denotes concatenation. 
Preûx-free codes are desirable because they simplify decoding. Since no code- 

word is a preûx of any other, the codeword that begins an encoded ûle is unambigu- 
ous. You can simply identify the initial codeword, translate it back to the original 
character, and repeat the decoding process on the remainder of the encoded ûle. 
In our example, the string 100011001101 parses uniquely as 100  0  1100  1101, 
which decodes to cafe. 
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Figure 15.5 Trees corresponding to the coding schemes in Figure 15.4. Each leaf is labeled with a 
character and its frequency of occurrence. Each internal node is labeled with the sum of the frequen- 
cies of the leaves in its subtree. All frequencies are in thousands. (a) The tree corresponding to the 
ûxed-length code a = 000, b = 001, c = 010, d = 011, e = 100, f = 101. (b) The tree corresponding 
to the optimal preûx-free code a = 0, b = 101, c = 100, d = 111, e = 1101, f = 1100. 

The decoding process needs a convenient representation for the preûx-free code 
so that you can easily pick off the initial codeword. A binary tree whose leaves 
are the given characters provides one such representation. Interpret the binary 
codeword for a character as the simple path from the root to that character, where 0 
means <go to the left child= and 1 means <go to the right child.= Figure 15.5 shows 
the trees for the two codes of our example. Note that these are not binary search 
trees, since the leaves need not appear in sorted order and internal nodes do not 
contain character keys. 
An optimal code for a ûle is always represented by a full binary tree, in which 

every nonleaf node has two children (see Exercise 15.3-2). The ûxed-length code 
in our example is not optimal since its tree, shown in Figure 15.5(a), is not a full 
binary tree: it contains codewords beginning with 10, but none beginning with 11. 
Since we can now restrict our attention to full binary trees, we can say that if C is 
the alphabet from which the characters are drawn and all character frequencies are 
positive, then the tree for an optimal preûx-free code has exactly jC j leaves, one for 
each letter of the alphabet, and exactly jC j  1 internal nodes (see Exercise B.5-3 
on page 1175). 
Given a tree T corresponding to a preûx-free code, we can compute the number 

of bits required to encode a ûle. For each character c in the alphabet C , let the 
attribute c: freq denote the frequency of c in the ûle and let d T .c/ denote the depth 
of c ’s leaf in the tree. Note that d T .c/ is also the length of the codeword for 
character c . The number of bits required to encode a ûle is thus 
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B.T / D 
X 

c2C 

c: freq  d T .c/ ; (15.4) 

which we deûne as the cost of the tree T . 

Constructing a Huffman code 
Huffman invented a greedy algorithm that constructs an optimal preûx-free code, 
called a Huffman code in his honor. In line with our observations in Section 15.2, 
its proof of correctness relies on the greedy-choice property and optimal substruc- 
ture. Rather than demonstrating that these properties hold and then developing 
pseudocode, we present the pseudocode ûrst. Doing so will help clarify how the 
algorithm makes greedy choices. 

The procedure HUFFMAN assumes that C is a set of n characters and that each 
character c 2 C is an object with an attribute c: freq giving its frequency. The algo- 
rithm builds the tree T corresponding to an optimal code in a bottom-up manner. It 
begins with a set of jC j leaves and performs a sequence of jC j  1 <merging= op- 
erations to create the ûnal tree. The algorithm uses a min-priority queue Q, keyed 
on the freq attribute, to identify the two least-frequent objects to merge together. 
The result of merging two objects is a new object whose frequency is the sum of 
the frequencies of the two objects that were merged. 

HUFFMAN.C / 
1 n D jC j 
2 Q D C 
3 for i D 1 to n  1 
4 allocate a new node ´ 
5 x D EXTRACT-MIN .Q/ 
6 y D EXTRACT-MIN .Q/ 
7 ´: left D x 
8 ´: right D y 
9 ´: freq D x: freq C y: freq 
10 I NSERT.Q; ´/ 
11 return EXTRACT-MIN.Q/ // the root of the tree is the only node left 

For our example, Huffman’s algorithm proceeds as shown in Figure 15.6. Since 
the alphabet contains 6 letters, the initial queue size is n D 6, and 5 merge steps 
build the tree. The ûnal tree represents the optimal preûx-free code. The codeword 
for a letter is the sequence of edge labels on the simple path from the root to the 
letter. 
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Figure 15.6 The steps of Huffman’s algorithm for the frequencies given in Figure 15.4. Each part 
shows the contents of the queue sorted into increasing order by frequency. Each step merges the 
two trees with the lowest frequencies. Leaves are shown as rectangles containing a character and 
its frequency. Internal nodes are shown as circles containing the sum of the frequencies of their 
children. An edge connecting an internal node with its children is labeled 0 if it is an edge to a left 
child and 1 if it is an edge to a right child. The codeword for a letter is the sequence of labels on the 
edges connecting the root to the leaf for that letter. (a) The initial set of n D 6 nodes, one for each 
letter. (b)–(e) Intermediate stages. (f) The ûnal tree. 

The HUFFMAN procedure works as follows. Line 2 initializes the min-priority 
queue Q with the characters in C . The for loop in lines 3310 repeatedly extracts 
the two nodes x and y of lowest frequency from the queue and replaces them in 
the queue with a new node ´ representing their merger. The frequency of ´ is 
computed as the sum of the frequencies of x and y in line 9. The node ´ has x 
as its left child and y as its right child. (This order is arbitrary. Switching the left 
and right child of any node yields a different code of the same cost.) After n  1 
mergers, line 11 returns the one node left in the queue, which is the root of the code 
tree. 
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The algorithm produces the same result without the variables x and y , assigning 
the values returned by the EXTRACT-MIN calls directly to ´: left and ´: right in 
lines 7 and 8, and changing line 9 to ´: freq D ´: left : freq C ́ : right : freq. We’ll use 
the node names x and y in the proof of correctness, however, so we leave them in. 
The running time of Huffman’s algorithm depends on how the min-priority 

queue Q is implemented. Let’s assume that it’s implemented as a binary min-heap 
(see Chapter 6). For a set C of n characters, the BUILD-MIN-HEAP procedure dis- 
cussed in Section 6.3 can initialize Q in line 2 in O.n/ time. The for loop in lines 
3310 executes exactly n  1 times, and since each heap operation runs in O.lg n/ 
time, the loop contributes O.n lg n/ to the running time. Thus, the total running 
time of HUFFMAN on a set of n characters is O.n lg n/. 

Correctness of Huffman’s algorithm 

To prove that the greedy algorithm HUFFMAN is correct, we’ll show that the prob- 
lem of determining an optimal preûx-free code exhibits the greedy-choice and 
optimal-substructure properties. The next lemma shows that the greedy-choice 
property holds. 

Lemma 15.2 (Optimal preûx-free codes have the greedy-choice property) 
Let C be an alphabet in which each character c 2 C has frequency c: freq. Let x 
and y be two characters in C having the lowest frequencies. Then there exists an 
optimal preûx-free code for C in which the codewords for x and y have the same 
length and differ only in the last bit. 

Proof The idea of the proof is to take the tree T representing an arbitrary optimal 
preûx-free code and modify it to make a tree representing another optimal preûx- 
free code such that the characters x and y appear as sibling leaves of maximum 
depth in the new tree. In such a tree, the codewords for x and y have the same 
length and differ only in the last bit. 

Let a and b be any two characters that are sibling leaves of maximum depth 
in T . Without loss of generality, assume that a: freq හ b: freq and x: freq හ y: freq. 
Since x: freq and y: freq are the two lowest leaf frequencies, in order, and a: freq 
and b: freq are two arbitrary frequencies, in order, we have x: freq හ a: freq and 
y: freq හ b: freq. 

In the remainder of the proof, it is possible that we could have x: freq D a: freq 
or y: freq D b: freq, but x: freq D b: freq implies that a: freq D b: freq D x: freq D 
y: freq (see Exercise 15.3-1), and the lemma would be trivially true. Therefore, 
assume that x: freq ¤ b: freq, which means that x ¤ b. 
As Figure 15.7 shows, imagine exchanging the positions in T of a and x to 

produce a tree T 0 , and then exchanging the positions in T 0 of b and y to produce a 
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Figure 15.7 An illustration of the key step in the proof of Lemma 15.2. In the optimal tree T , 
leaves a and b are two siblings of maximum depth. Leaves x and y are the two characters with the 
lowest frequencies. They appear in arbitrary positions in T . Assuming that x ¤ b, swapping leaves 
a and x produces tree T 0 , and then swapping leaves b and y produces tree T 00 . Since each swap does 
not increase the cost, the resulting tree T 00 is also an optimal tree. 

tree T 00 in which x and y are sibling leaves of maximum depth. (Note that if x D b 
but y ¤ a, then tree T 00 does not have x and y as sibling leaves of maximum depth. 
Because we assume that x ¤ b, this situation cannot occur.) By equation (15.4), 
the difference in cost between T and T 0 is 
B.T /  B.T 0 / 

D 
X 

c2C 

c: freq  d T .c/  
X 

c2C 

c: freq  d T 0 .c/ 

D x: freq  d T .x/ C a: freq  d T .a/  x: freq  d T 0 .x/  a: freq  d T 0 .a/ 
D x: freq  d T .x/ C a: freq  d T .a/  x: freq  d T .a/  a: freq  d T .x/ 
D .a: freq  x: freq/.d T .a/  d T .x// 
 0 ; 

because both a: freq  x: freq and d T .a/  d T .x/ are nonnegative. More speciû- 
cally, a: freq  x: freq is nonnegative because x is a minimum-frequency leaf, and 
d T .a/  d T .x/ is nonnegative because a is a leaf of maximum depth in T . Sim- 
ilarly, exchanging y and b does not increase the cost, and so B.T 0 /  B.T 00 / is 
nonnegative. Therefore, B.T 00 / හ B.T 0 / හ B.T /, and since T is optimal, we 
have B.T / හ B.T 00 /, which implies B.T 00 / D B.T /. Thus, T 00 is an optimal 
tree in which x and y appear as sibling leaves of maximum depth, from which the 
lemma follows. 

Lemma 15.2 implies that the process of building up an optimal tree by mergers 
can, without loss of generality, begin with the greedy choice of merging together 
those two characters of lowest frequency. Why is this a greedy choice? We can 
view the cost of a single merger as being the sum of the frequencies of the two items 
being merged. Exercise 15.3-4 shows that the total cost of the tree constructed 
equals the sum of the costs of its mergers. Of all possible mergers at each step, 
HUFFMAN chooses the one that incurs the least cost. 
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The next lemma shows that the problem of constructing optimal preûx-free 
codes has the optimal-substructure property. 

Lemma 15.3 (Optimal preûx-free codes have the optimal-substructure property) 
Let C be a given alphabet with frequency c: freq deûned for each character c 2 C . 
Let x and y be two characters in C with minimum frequency. Let C 0 be the alpha- 
bet C with the characters x and y removed and a new character ´ added, so that 
C 0 D .C  fx; y g/ [ f´g. Deûne freq for all characters in C 0 with the same values 
as in C , along with ´: freq D x: freq C y: freq. Let T 0 be any tree representing 
an optimal preûx-free code for alphabet C 0 . Then the tree T , obtained from T 0 
by replacing the leaf node for ´ with an internal node having x and y as children, 
represents an optimal preûx-free code for the alphabet C . 

Proof We ûrst show how to express the cost B.T / of tree T in terms of the 
cost B.T 0 / of tree T 0 , by considering the component costs in equation (15.4). 
For each character c 2 C  fx; y g, we have that d T .c/ D d T 0 .c/, and hence 
c: freq  d T .c/ D c: freq  d T 0 .c/. Since d T .x/ D d T .y/ D d T 0 .´/ C 1, we have 
x: freq  d T .x/ C y: freq  d T .y/ D .x: freq C y: freq/.d T 0 .´/ C 1/ 

D ´: freq  d T 0 .´/ C .x: freq C y: freq/ ; 
from which we conclude that 
B.T / D B.T 0 / C x: freq C y: freq 
or, equivalently, 
B.T 0 / D B.T /  x: freq  y: freq : 

We now prove the lemma by contradiction. Suppose that T does not represent 
an optimal preûx-free code for C . Then there exists an optimal tree T 00 such that 
B.T 00 / < B.T /. Without loss of generality (by Lemma 15.2), T 00 has x and y as 
siblings. Let T 000 be the tree T 00 with the common parent of x and y replaced by a 
leaf ´ with frequency ´: freq D x: freq C y: freq. Then 
B.T 000 / D B.T 00 /  x: freq  y: freq 

< B.T /  x: freq  y: freq 
D B.T 0 / ; 

yielding a contradiction to the assumption that T 0 represents an optimal preûx-free 
code for C 0 . Thus, T must represent an optimal preûx-free code for the alpha- 
bet C . 

Theorem 15.4 
Procedure HUFFMAN produces an optimal preûx-free code. 
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Proof Immediate from Lemmas 15.2 and 15.3. 

Exercises 
15.3-1 
Explain why, in the proof of Lemma 15.2, if x: freq D b: freq, then we must have 
a: freq D b: freq D x: freq D y: freq. 
15.3-2 
Prove that a non-full binary tree cannot correspond to an optimal preûx-free code. 
15.3-3 
What is an optimal Huffman code for the following set of frequencies, based on 
the ûrst 8 Fibonacci numbers? 
a:1 b:1 c:2 d:3 e:5 f:8 g:13 h:21 
Can you generalize your answer to ûnd the optimal code when the frequencies are 
the ûrst n Fibonacci numbers? 
15.3-4 
Prove that the total cost B.T / of a full binary tree T for a code equals the sum, over 
all internal nodes, of the combined frequencies of the two children of the node. 
15.3-5 
Given an optimal preûx-free code on a set C of n characters, you wish to transmit 
the code itself using as few bits as possible. Show how to represent any optimal 
preûx-free code on C using only 2n  1 C n dlg ne bits. (Hint: Use 2n  1 bits to 
specify the structure of the tree, as discovered by a walk of the tree.) 
15.3-6 
Generalize Huffman’s algorithm to ternary codewords (i.e., codewords using the 
symbols 0, 1, and 2), and prove that it yields optimal ternary codes. 
15.3-7 
A data ûle contains a sequence of 8-bit characters such that all 256 characters are 
about equally common: the maximum character frequency is less than twice the 
minimum character frequency. Prove that Huffman coding in this case is no more 
efûcient than using an ordinary 8-bit ûxed-length code. 
15.3-8 
Show that no lossless (invertible) compression scheme can guarantee that for every 
input ûle, the corresponding output ûle is shorter. (Hint: Compare the number of 
possible ûles with the number of possible encoded ûles.) 
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15.4 Ofüine caching 

Computer systems can decrease the time to access data by storing a subset of the 
main memory in the cache: a small but faster memory. A cache organizes data into 
cache blocks typically comprising 32, 64, or 128 bytes. You can also think of main 
memory as a cache for disk-resident data in a virtual-memory system. Here, the 
blocks are called pages, and 4096 bytes is a typical size. 

As a computer program executes, it makes a sequence of memory requests. Say 
that there are n memory requests, to data in blocks b 1 ; b 2 ; : : : ; b n , in that order. The 
blocks in the access sequence might not be distinct, and indeed, any given block is 
usually accessed multiple times. For example, a program that accesses four distinct 
blocks p; q; r; s might make a sequence of requests to blocks s; q; s; q; q; s; p; p; r; 
s; s; q; p; r; q. The cache can hold up to some ûxed number k of cache blocks. It 
starts out empty before the ûrst request. Each request causes at most one block to 
enter the cache and at most one block to be evicted from the cache. Upon a request 
for block b i , any one of three scenarios may occur: 
1. Block b i is already in the cache, due to a previous request for the same block. 

The cache remains unchanged. This situation is known as a cache hit. 
2. Block b i is not in the cache at that time, but the cache contains fewer than k 

blocks. In this case, block b i is placed into the cache, so that the cache contains 
one more block than it did before the request. 

3. Block b i is not in the cache at that time and the cache is full: it contains k 
blocks. Block b i is placed into the cache, but before that happens, some other 
block in the cache must be evicted from the cache in order to make room. 

The latter two situations, in which the requested block is not already in the cache, 
are called cache misses. The goal is to minimize the number of cache misses or, 
equivalently, to maximize the number of cache hits, over the entire sequence of n 
requests. A cache miss that occurs while the cache holds fewer than k blocks4 
that is, as the cache is ûrst being ûlled up4is known as a compulsory miss, since 
no prior decision could have kept the requested block in the cache. When a cache 
miss occurs and the cache is full, ideally the choice of which block to evict should 
allow for the smallest possible number of cache misses over the entire sequence of 
future requests. 

Typically, caching is an online problem. That is, the computer has to decide 
which blocks to keep in the cache without knowing the future requests. Here, 
however, let’s consider the ofüine version of this problem, in which the computer 
knows in advance the entire sequence of n requests and the cache size k, with a 
goal of minimizing the total number of cache misses. 
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To solve this ofüine problem, you can use a greedy strategy called furthest-in- 
future, which chooses to evict the block in the cache whose next access in the re- 
quest sequence comes furthest in the future. Intuitively, this strategy makes sense: 
if you’re not going to need something for a while, why keep it around? We’ll show 
that the furthest-in-future strategy is indeed optimal by showing that the ofüine 
caching problem exhibits optimal substructure and that furthest-in-future has the 
greedy-choice property. 

Now, you might be thinking that since the computer usually doesn’t know the 
sequence of requests in advance, there is no point in studying the ofüine problem. 
Actually, there is. In some situations, you do know the sequence of requests in 
advance. For example, if you view the main memory as the cache and the full set 
of data as residing on disk (or a solid-state drive), there are algorithms that plan out 
the entire set of reads and writes in advance. Furthermore, we can use the number 
of cache misses produced by an optimal algorithm as a baseline for comparing how 
well online algorithms perform. We’ll do just that in Section 27.3. 
Ofüine caching can even model real-world problems. For example, consider a 

scenario where you know in advance a ûxed schedule of n events at known loca- 
tions. Events may occur at a location multiple times, not necessarily consecutively. 
You are managing a group of k agents, you need to ensure that you have one agent 
at each location when an event occurs, and you want to minimize the number of 
times that agents have to move. Here, the agents are like the blocks, the events are 
like the requests, and moving an agent is akin to a cache miss. 

Optimal substructure of ofüine caching 

To show that the ofüine problem exhibits optimal substructure, let’s deûne the 
subproblem .C; i/ as processing requests for blocks b i ; b i C1 ; : : : ; b n with cache 
conûguration C at the time that the request for block b i occurs, that is, C is a 
subset of the set of blocks such that jC j හ k. A solution to subproblem .C; i/ is a 
sequence of decisions that speciûes which block to evict (if any) upon each request 
for blocks b i ; b i C1 ; : : : ; b n . An optimal solution to subproblem .C; i/ minimizes 
the number of cache misses. 

Consider an optimal solution S to subproblem .C; i/, and let C 0 be the contents 
of the cache after processing the request for block b i in solution S . Let S 0 be the 
subsolution of S for the resulting subproblem .C 0 ; i C 1/. If the request for b i 
results in a cache hit, then the cache remains unchanged, so that C 0 D C . If the 
request for block b i results in a cache miss, then the contents of the cache change, 
so that C 0 ¤ C . We claim that in either case, S 0 is an optimal solution to subprob- 
lem .C 0 ; i C 1/. Why? If S 0 is not an optimal solution to subproblem .C 0 ; i C 1/, 
then there exists another solution S 00 to subproblem .C 0 ; i C 1/ that makes fewer 
cache misses than S 0 . Combining S 00 with the decision of S at the request for 
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block b i yields another solution that makes fewer cache misses than S , which con- 
tradicts the assumption that S is an optimal solution to subproblem .C; i/. 

To quantify a recursive solution, we need a little more notation. Let R C;i be the 
set of all cache conûgurations that can immediately follow conûguration C after 
processing a request for block b i . If the request results in a cache hit, then the 
cache remains unchanged, so that R C;i D fC g. If the request for b i results in a 
cache miss, then there are two possibilities. If the cache is not full (jC j < k), then 
the cache is ûlling up and the only choice is to insert b i into the cache, so that 
R C;i D fC [ fb i gg. If the cache is full (jC j D k) upon a cache miss, then R C;i 
contains k potential conûgurations: one for each candidate block in C that could be 
evicted and replaced by block b i . In this case, R C;i D f.C  fx g/ [ fb i g W x 2 C g. 
For example, if C D fp; q; r g, k D 3, and block s is requested, then R C;i D 
ffp; q; s g ; fp; r; s g ; fq; r; s gg. 

Let miss.C; i/ denote the minimum number of cache misses in a solution for 
subproblem .C; i/. Here is a recurrence for miss.C; i/: 

miss.C; i/ D 

„ 
0 if i D n and b n 2 C ; 
1 if i D n and b n 62 C ; 
miss.C; i C 1/ if i < n and b i 2 C ; 
1 C min fmiss.C 0 ; i C 1/ W C 0 2 R C;i g if i < n and b i 62 C : 

Greedy-choice property 
To prove that the furthest-in-future strategy yields an optimal solution, we need to 
show that optimal ofüine caching exhibits the greedy-choice property. Combined 
with the optimal-substructure property, the greedy-choice property will prove that 
furthest-in-future produces the minimum possible number of cache misses. 

Theorem 15.5 (Optimal ofüine caching has the greedy-choice property) 
Consider a subproblem .C; i/ when the cache C contains k blocks, so that it is 
full, and a cache miss occurs. When block b i is requested, let ´ D b m be the block 
in C whose next access is furthest in the future. (If some block in the cache will 
never again be referenced, then consider any such block to be block ´, and add a 
dummy request for block ´ D b m D b nC1 .) Then evicting block ´ upon a request 
for block b i is included in some optimal solution for the subproblem .C; i/. 

Proof Let S be an optimal solution to subproblem .C; i/. If S evicts block ´ 
upon the request for block b i , then we are done, since we have shown that some 
optimal solution includes evicting ´. 

So now suppose that optimal solution S evicts some other block x when block b i 
is requested. We’ll construct another solution S 0 to subproblem .C; i/ which, upon 
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the request for b i , evicts block ´ instead of x and induces no more cache misses 
than S does, so that S 0 is also optimal. Because different solutions may yield 
different cache conûgurations, denote by C S;j the conûguration of the cache under 
solution S just before the request for some block b j , and likewise for solution S 0 
and C S 0 ;j . We’ll show how to construct S 0 with the following properties: 
1. For j D i C 1; : : : ;m, let D j D C S;j \ C S 0 ;j . Then, jD j j  k  1, so that the 

cache conûgurations C S;j and C S 0 ;j differ by at most one block. If they differ, 
then C S;j D D j [ f´g and C S 0 ;j D D j [ fy g for some block y ¤ ´. 

2. For each request of blocks b i ; : : : ; b m1 , if solution S has a cache hit, then 
solution S 0 also has a cache hit. 

3. For all j > m, the cache conûgurations C S;j and C S 0 ;j are identical. 
4. Over the sequence of requests for blocks b i ; : : : ; b m , the number of cache misses 

produced by solution S 0 is at most the number of cache misses produced by so- 
lution S . 
We’ll prove inductively that these properties hold for each request. 

1. We proceed by induction on j , for j D i C 1; : : : ;m. For the base case, the ini- 
tial caches C S;i and C S 0 ;i are identical. Upon the request for block b i , solution S 
evicts x and solution S 0 evicts ´. Thus, cache conûgurations C S;i C1 and C S 0 ;i C1 
differ by just one block, C S;i C1 D D i C1 [ f´g, C S 0 ;i C1 D D i C1 [ fx g, and 
x ¤ ´. 
The inductive step deûnes how solution S 0 behaves upon a request for block b j 
for i C 1 හ j හ m  1. The inductive hypothesis is that property 1 holds when 
b j is requested. Because ´ D b m is the block in C S;i whose next reference is 
furthest in the future, we know that b j ¤ ´. We consider several scenarios: 
 If C S;j D C S 0 ;j (so that jD j j D k), then solution S 0 makes the same decision 

upon the request for b j as S makes, so that C S;j C1 D C S 0 ;j C1 . 
 If jD j j D k  1 and b j 2 D j , then both caches already contain block b j , 

and both solutions S and S 0 have cache hits. Therefore, C S;j C1 D C S;j and 
C S 0 ;j C1 D C S 0 ;j . 

 If jD j j D k  1 and b j … D j , then because C S;j D D j [ f´g and b j ¤ ´, 
solution S has a cache miss. It evicts either block ´ or some block w 2 D j . 
B If solution S evicts block ´, then C S;j C1 D D j [ fb j g. There are two 

cases, depending on whether b j D y : 
˘ If b j D y , then solution S 0 has a cache hit, so that C S 0 ;j C1 D 
C S 0 ;j D D j [ fb j g. Thus, C S;j C1 D C S 0 ;j C1 . 

˘ If b j ¤ y , then solution S 0 has a cache miss. It evicts block y , so 
that C S 0 ;j C1 D D j [ fb j g, and again C S;j C1 D C S 0 ;j C1 . 
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B If solution S evicts some block w 2 D j , then C S;j C1 D .D j  fwg/ [ 
fb j ; ´g. Once again, there are two cases, depending on whether b j D y : 

˘ If b j D y , then solution S 0 has a cache hit, so that C S 0 ;j C1 D 
C S 0 ;j D D j [ fb j g. Since w 2 D j and w was not evicted by solu- 
tion S 0 , we have w 2 C S 0 ;j C1 . Therefore, w … D j C1 and b j 2 D j C1 , 
so that D j C1 D .D j  fwg/ [ fb j g. Thus, C S;j C1 D D j C1 [ f´g, 
C S 0 ;j C1 D D j C1 [ fwg, and because w ¤ ´, property 1 holds when 
block b j C1 is requested. (In other words, block w replaces block y 
in property 1.) 

˘ If b j ¤ y , then solution S 0 has a cache miss. It evicts block w, 
so that C S 0 ;j C1 D .D j  fwg/ [ fb j ; y g. Therefore, we have that 
D j C1 D .D j  fwg/ [ fb j g and so C S;j C1 D D j C1 [ f´g and 
C S 0 ;j C1 D D j C1 [ fy g. 

2. In the above discussion about maintaining property 1, solution S may have a 
cache hit in only the ûrst two cases, and solution S 0 has a cache hit in these 
cases if and only if S does. 

3. If C S;m D C S 0 ;m , then solution S 0 makes the same decision upon the request for 
block ´ D b m as S makes, so that C S;mC1 D C S 0 ;mC1 . If C S;m ¤ C S 0 ;m , then by 
property 1, C S;m D D m [f´g and C S 0 ;m D D m [fy g, where y ¤ ´. In this case, 
solution S has a cache hit, so that C S;mC1 D C S;m D D m [ f´g. Solution S 0 
evicts block y and brings in block ´, so that C S 0 ;mC1 D D m [ f´g D C S;mC1 . 
Thus, regardless of whether or not C S;m D C S 0 ;m , we have C S;mC1 D C S 0 ;mC1 , 
and starting with the request for block b mC1 , solution S 0 simply makes the same 
decisions as S . 

4. By property 2, upon the requests for blocks b i ; : : : ; b m1 , whenever solution S 
has a cache hit, so does S 0 . Only the request for block b m D ´ remains to be 
considered. If S has a cache miss upon the request for b m , then regardless of 
whether S 0 has a cache hit or a cache miss, we are done: S 0 has at most the 
same number of cache misses as S . 
So now suppose that S has a cache hit and S 0 has a cache miss upon the re- 
quest for b m . We’ll show that there exists a request for at least one of blocks 
b i C1 ; : : : ; b m1 in which the request results in a cache miss for S and a cache hit 
for S 0 , thereby compensating for what happens upon the request for block b m . 
The proof is by contradiction. Assume that no request for blocks b i C1 ; : : : ; b m1 
results in a cache miss for S and a cache hit for S 0 . 
We start by observing that once the caches C S;j and C S 0 j are equal for some 
j > i , they remain equal thereafter. Observe also that if b m 2 C S;m and 
b m … C S 0 ;m , then C S;m ¤ C S 0 ;m . Therefore, solution S cannot have evicted 
block ´ upon the requests for blocks b i ; : : : ; b m1 , for if it had, then these two 
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cache conûgurations would be equal. The remaining possibility is that upon 
each of these requests, we had C S;j D D j [ f´g, C S 0 ;j D D j [ fy g for some 
block y ¤ ´, and solution S evicted some block w 2 D j . Moreover, since none 
of these requests resulted in a cache miss for S and a cache hit for S 0 , the case of 
b j D y never occurred. That is, for every request of blocks b i C1 ; : : : ; b m1 , the 
requested block b j was never the block y 2 C S 0 ;j  C S;j . In these cases, after 
processing the request, we had C S 0 ;j C1 D D j C1 [ fy g: the difference between 
the two caches did not change. Now, let’s go back to the request for block b i , 
where afterward, we had C S 0 ;i C1 D D i C1 [ fx g. Because every succeeding 
request until requesting block b m did not change the difference between the 
caches, we had C S 0 ;j D D j [ fx g for j D i C 1; : : : ;m. 
By deûnition, block ´ D b m is requested after block x . That means at least 
one of blocks b i C1 ; : : : ; b m1 is block x . But for j D i C 1; : : : ;m, we have 
x 2 C S 0 ;j and x … C S;j , so that at least one of these requests had a cache hit 
for S 0 and a cache miss for S , a contradiction. We conclude that if solution S 
has a cache hit and solution S 0 has a cache miss upon the request for block b m , 
then some earlier request had the opposite result, and so solution S 0 produces 
no more cache misses than solution S . Since S is assumed to be optimal, S 0 is 
optimal as well. 

Along with the optimal-substructure property, Theorem 15.5 tells us that the 
furthest-in-future strategy yields the minimum number of cache misses. 

Exercises 
15.4-1 
Write pseudocode for a cache manager that uses the furthest-in-future strategy. It 
should take as input a set C of blocks in the cache, the number of blocks k that the 
cache can hold, a sequence b 1 ; b 2 ; : : : ; b n of requested blocks, and the index i into 
the sequence for the block b i being requested. For each request, it should print out 
whether a cache hit or cache miss occurs, and for each cache miss, it should also 
print out which block, if any, is evicted. 
15.4-2 
Real cache managers do not know the future requests, and so they often use the 
past to decide which block to evict. The least-recently-used, or LRU, strategy 
evicts the block that, of all blocks currently in the cache, was the least recently 
requested. (You can think of LRU as <furthest-in-past.=) Give an example of a 
request sequence in which the LRU strategy is not optimal, by showing that it 
induces more cache misses than the furthest-in-future strategy does on the same 
request sequence. 
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15.4-3 
Professor Croesus suggests that in the proof of Theorem 15.5, the last clause in 
property 1 can change to C S 0 ;j D D j [ fx g or, equivalently, require the block y 
given in property 1 to always be the block x evicted by solution S upon the request 
for block b i . Show where the proof breaks down with this requirement. 
15.4-4 
This section has assumed that at most one block is placed into the cache whenever a 
block is requested. You can imagine, however, a strategy in which multiple blocks 
may enter the cache upon a single request. Show that for every solution that allows 
multiple blocks to enter the cache upon each request, there is another solution that 
brings in only one block upon each request and is at least as good. 

Problems 

15-1 Coin changing 
Consider the problem of making change for n cents using the smallest number of 
coins. Assume that each coin’s value is an integer. 
a. Describe a greedy algorithm to make change consisting of quarters, dimes, 

nickels, and pennies. Prove that your algorithm yields an optimal solution. 

b. Suppose that the available coins are in denominations that are powers of c : the 
denominations are c 0 ; c 1 ; : : : ; c k for some integers c > 1 and k  1. Show that 
the greedy algorithm always yields an optimal solution. 

c. Give a set of coin denominations for which the greedy algorithm does not yield 
an optimal solution. Your set should include a penny so that there is a solution 
for every value of n. 

d. Give an O.nk/-time algorithm that makes change for any set of k different 
coin denominations using the smallest number of coins, assuming that one of 
the coins is a penny. 

15-2 Scheduling to minimize average completion time 
You are given a set S D fa 1 ; a 2 ; : : : ; a n g of tasks, where task a i requires p i units of 
processing time to complete. Let C i be the completion time of task a i , that is, the 
time at which task a i completes processing. Your goal is to minimize the average 
completion time, that is, to minimize .1=n/ P n 

i D1 C i . For example, suppose that 
there are two tasks a 1 and a 2 with p 1 D 3 and p 2 D 5, and consider the schedule 
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in which a 2 runs ûrst, followed by a 1 . Then we have C 2 D 5, C 1 D 8, and the 
average completion time is .5 C 8/=2 D 6:5. If task a 1 runs ûrst, however, then we 
have C 1 D 3, C 2 D 8, and the average completion time is .3 C 8/=2 D 5:5. 
a. Give an algorithm that schedules the tasks so as to minimize the average com- 

pletion time. Each task must run nonpreemptively, that is, once task a i starts, it 
must run continuously for p i units of time until it is done. Prove that your al- 
gorithm minimizes the average completion time, and analyze the running time 
of your algorithm. 

b. Suppose now that the tasks are not all available at once. That is, each task 
cannot start until its release time b i . Suppose also that tasks may be preempted, 
so that a task can be suspended and restarted at a later time. For example, a 
task a i with processing time p i D 6 and release time b i D 1 might start running 
at time 1 and be preempted at time 4. It might then resume at time 10 but be 
preempted at time 11, and it might ûnally resume at time 13 and complete at 
time 15. Task a i has run for a total of 6 time units, but its running time has 
been divided into three pieces. Give an algorithm that schedules the tasks so as 
to minimize the average completion time in this new scenario. Prove that your 
algorithm minimizes the average completion time, and analyze the running time 
of your algorithm. 

Chapter notes 

Much more material on greedy algorithms can be found in Lawler [276] and Pa- 
padimitriou and Steiglitz [353]. The greedy algorithm ûrst appeared in the combi- 
natorial optimization literature in a 1971 article by Edmonds [131]. 

The proof of correctness of the greedy algorithm for the activity-selection prob- 
lem is based on that of Gavril [179]. 
Huffman codes were invented in 1952 [233]. Lelewer and Hirschberg [294] 

surveys data-compression techniques known as of 1987. 
The furthest-in-future strategy was proposed by Belady [41], who suggested it 

for virtual-memory systems. Alternative proofs that furthest-in-future is optimal 
appear in articles by Lee et al. [284] and Van Roy [443]. 



16 Amortized Analysis 

Imagine that you join Buff’s Gym. Buff charges a membership fee of $60 per 
month, plus $3 for every time you use the gym. Because you are disciplined, 
you visit Buff’s Gym every day during the month of November. On top of the 
$60 monthly charge for November, you pay another 3  $30 D $90 that month. 
Although you can think of your fees as a üat fee of $60 and another $90 in daily 
fees, you can think about it in another way. All together, you pay $150 over 30 
days, or an average of $5 per day. When you look at your fees in this way, you are 
amortizing the monthly fee over the 30 days of the month, spreading it out at $2 
per day. 

You can do the same thing when you analyze running times. In an amortized 
analysis, you average the time required to perform a sequence of data-structure 
operations over all the operations performed. With amortized analysis, you show 
that if you average over a sequence of operations, then the average cost of an oper- 
ation is small, even though a single operation within the sequence might be expen- 
sive. Amortized analysis differs from average-case analysis in that probability is 
not involved. An amortized analysis guarantees the average performance of each 
operation in the worst case. 
The ûrst three sections of this chapter cover the three most common techniques 

used in amortized analysis. Section 16.1 starts with aggregate analysis, in which 
you determine an upper bound T .n/ on the total cost of a sequence of n operations. 
The average cost per operation is then T .n/=n. You take the average cost as the 
amortized cost of each operation, so that all operations have the same amortized 
cost. 
Section 16.2 covers the accounting method, in which you determine an amor- 

tized cost of each operation. When there is more than one type of operation, each 
type of operation may have a different amortized cost. The accounting method 
overcharges some operations early in the sequence, storing the overcharge as <pre- 
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paid credit= on speciûc objects in the data structure. Later in the sequence, the 
credit pays for operations that are charged less than they actually cost. 
Section 16.3 discusses the potential method, which is like the accounting method 

in that you determine the amortized cost of each operation and may overcharge op- 
erations early on to compensate for undercharges later. The potential method main- 
tains the credit as the <potential energy= of the data structure as a whole instead of 
associating the credit with individual objects within the data structure. 
We’ll use use two examples in this chapter to examine each of these three meth- 

ods. One is a stack with the additional operation MULTIPOP, which pops several 
objects at once. The other is a binary counter that counts up from 0 by means of 
the single operation I NCREMENT. 

While reading this chapter, bear in mind that the charges assigned during an 
amortized analysis are for analysis purposes only. They need not4and should not 
4appear in the code. If, for example, you assign a credit to an object x when using 
the accounting method, you have no need to assign an appropriate amount to some 
attribute, such as x: credit , in the code. 

When you perform an amortized analysis, you often gain insight into a particular 
data structure, and this insight can help you optimize the design. For example, 
Section 16.4 will use the potential method to analyze a dynamically expanding and 
contracting table. 

16.1 Aggregate analysis 

In aggregate analysis, you show that for all n, a sequence of n operations takes 
T .n/ worst-case time in total. In the worst case, the average cost, or amortized cost, 
per operation is therefore T .n/=n. This amortized cost applies to each operation, 
even when there are several types of operations in the sequence. The other two 
methods we shall study in this chapter, the accounting method and the potential 
method, may assign different amortized costs to different types of operations. 

Stack operations 
As the ûrst example of aggregate analysis, let’s analyze stacks that have been aug- 
mented with a new operation. Section 10.1.3 presented the two fundamental stack 
operations, each of which takes O.1/ time: 
PUSH.S; x/ pushes object x onto stack S . 
POP.S/ pops the top of stack S and returns the popped object. Calling POP on an 

empty stack generates an error. 
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Figure 16.1 The action of MULTIPOP on a stack S , shown initially in (a). The top 4 objects are 
popped by MULTIPOP.S; 4/, whose result is shown in (b). The next operation is MULTIPOP.S; 7/, 
which empties the stack4shown in (c)4since fewer than 7 objects remained. 

Since each of these operations runs in O.1/ time, let us consider the cost of each 
to be 1. The total cost of a sequence of n PUSH and POP operations is therefore n, 
and the actual running time for n operations is therefore ‚.n/. 
Now let’s add the stack operation MULTIPOP .S; k/, which removes the k top ob- 

jects of stack S , popping the entire stack if the stack contains fewer than k objects. 
Of course, the procedure assumes that k is positive, and otherwise, the MULTIPOP 
operation leaves the stack unchanged. In the pseudocode for MULTIPOP, the op- 
eration STAC K-EMPTY returns TRUE if there are no objects currently on the stack, 
and FALSE otherwise. Figure 16.1 shows an example of MULTIPOP. 

MULTIPOP .S; k/ 
1 while not STAC K-EMPTY .S/ and k > 0 
2 POP.S/ 
3 k D k  1 

What is the running time of MULTIPOP .S; k/ on a stack of s objects? The 
actual running time is linear in the number of POP operations actually executed, 
and thus we can analyze MULTIPOP in terms of the abstract costs of 1 each for 
PUSH and POP. The number of iterations of the while loop is the number min fs; kg 
of objects popped off the stack. Each iteration of the loop makes one call to POP in 
line 2. Thus, the total cost of MULTIPOP is min fs; kg, and the actual running time 
is a linear function of this cost. 
Now let’s analyze a sequence of n PUSH, POP, and MULTIPOP operations on 

an initially empty stack. The worst-case cost of a MULTIPOP operation in the 
sequence is O.n/, since the stack size is at most n. The worst-case time of any stack 
operation is therefore O.n/, and hence a sequence of n operations costs O.n 2 /, 
since the sequence contains at most n MULTIPOP operations costing O.n/ each. 
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Although this analysis is correct, the O.n 2 / result, which came from considering 
the worst-case cost of each operation individually, is not tight. 

Yes, a single MULTIPOP might be expensive, but an aggregate analysis shows 
that any sequence of n PUSH, POP, and MULTIPOP operations on an initially empty 
stack has an upper bound on its cost of O.n/. Why? An object cannot be popped 
from the stack unless it was ûrst pushed. Therefore, the number of times that POP 
can be called on a nonempty stack, including calls within MULTIPOP, is at most the 
number of PUSH operations, which is at most n. For any value of n, any sequence 
of n PUSH, POP, and MULTIPOP operations takes a total of O.n/ time. Averaging 
over the n operations gives an average cost per operation of O.n/=n D O.1/. 
Aggregate analysis assigns the amortized cost of each operation to be the average 
cost. In this example, therefore, all three stack operations have an amortized cost 
of O.1/. 

To recap: although the average cost, and hence the running time, of a stack 
operation is O.1/, the analysis did not rely on probabilistic reasoning. Instead, 
the analysis yielded a worst-case bound of O.n/ on a sequence of n operations. 
Dividing this total cost by n yielded that the average cost per operation4that is, 
the amortized cost4is O.1/. 

Incrementing a binary counter 
As another example of aggregate analysis, consider the problem of implementing 
a k-bit binary counter that counts upward from 0. An array AŒ0 W k  1� of bits rep- 
resents the counter. A binary number x that is stored in the counter has its lowest- 
order bit in AŒ0� and its highest-order bit in AŒk  1�, so that x D 

P k1 
i D0 AŒi�  2 i . 

Initially, x D 0, and thus AŒi� D 0 for i D 0; 1; : : : ; k  1. To add 1 (modulo 2 k ) 
to the value in the counter, call the I NCREMENT procedure. 

I NCREMENT.A; k/ 
1 i D 0 
2 while i < k and AŒi� == 1 
3 AŒi� D 0 
4 i D i C 1 
5 if i < k 
6 AŒi� D 1 

Figure 16.2 shows what happens to a binary counter when I NCREMENT is called 
16 times, starting with the initial value 0 and ending with the value 16. Each 
iteration of the while loop in lines 234 adds a 1 into position i . If AŒi� D 1, then 
adding 1 üips the bit to 0 in position i and yields a carry of 1, to be added into 
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0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 1 
0 0 0 0 0 0 1 0 2 
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0 0 0 0 0 1 1 0 6 
0 0 0 0 0 1 1 1 7 
0 0 0 0 1 0 0 0 8 
0 0 0 0 1 0 0 1 9 
0 0 0 0 1 0 1 0 10 
0 0 0 0 1 0 1 1 11 
0 0 0 0 1 1 0 0 12 
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0 0 0 1 0 0 0 0 16 
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Figure 16.2 An 8-bit binary counter as its value goes from 0 to 16 by a sequence of 16 I NCREMENT 
operations. Bits that üip to achieve the next value are shaded in blue. The running cost for üipping 
bits is shown at the right. The total cost is always less than twice the total number of I NCREMENT 
operations. 

position i C 1 during the next iteration of the loop. Otherwise, the loop ends, and 
then, if i < k, AŒi� must be 0, so that line 6 adds a 1 into position i , üipping the 0 
to a 1. If the loop ends with i D k, then the call of I NCREMENT üipped all k bits 
from 1 to 0. The cost of each I NCREMENT operation is linear in the number of bits 
üipped. 

As with the stack example, a cursory analysis yields a bound that is correct but 
not tight. A single execution of I NCREMENT takes ‚.k/ time in the worst case, in 
which all the bits in array A are 1. Thus, a sequence of n I NCREMENT operations 
on an initially zero counter takes O.nk/ time in the worst case. 

Although a single call of I NCREMENT might üip all k bits, not all bits üip upon 
each call. (Note the similarity to MULTIPOP, where a single call might pop many 
objects, but not every call pops many objects.) As Figure 16.2 shows, AŒ0� does üip 
each time I NCREMENT is called. The next bit up, AŒ1�, üips only every other time: 
a sequence of n I NCREMENT operations on an initially zero counter causes AŒ1� to 
üip bn=2c times. Similarly, bit AŒ2� üips only every fourth time, or bn=4c times in a 
sequence of n I NCREMENT operations. In general, for i D 0; 1; : : : ; k  1, bit AŒi� 
üips bn=2 i c times in a sequence of n I NCREMENT operations on an initially zero 
counter. For i  k, bit AŒi� does not exist, and so it cannot üip. The total number 
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of üips in the sequence is thus 
k1 X 

i D0 

j n 
2 i 
k 
< n 

1 X 

i D0 

1 
2 i 

D 2n ; 

by equation (A.7) on page 1142. Thus, a sequence of n I NCREMENT operations 
on an initially zero counter takes O.n/ time in the worst case. The average cost of 
each operation, and therefore the amortized cost per operation, is O.n/=n D O.1/. 

Exercises 
16.1-1 
If the set of stack operations includes a MULTIPUSH operation, which pushes k 
items onto the stack, does the O.1/ bound on the amortized cost of stack operations 
continue to hold? 
16.1-2 
Show that if a DECREMENT operation is included in the k-bit counter example, n 
operations can cost as much as ‚.nk/ time. 
16.1-3 
Use aggregate analysis to determine the amortized cost per operation for a sequence 
of n operations on a data structure in which the i th operation costs i if i is an exact 
power of 2, and 1 otherwise. 

16.2 The accounting method 

In the accounting method of amortized analysis, you assign differing charges to 
different operations, with some operations charged more or less than they actu- 
ally cost. The amount that you charge an operation is its amortized cost. When 
an operation’s amortized cost exceeds its actual cost, you assign the difference to 
speciûc objects in the data structure as credit. Credit can help pay for later oper- 
ations whose amortized cost is less than their actual cost. Thus, you can view the 
amortized cost of an operation as being split between its actual cost and credit that 
is either deposited or used up. Different operations may have different amortized 
costs. This method differs from aggregate analysis, in which all operations have 
the same amortized cost. 

You must choose the amortized costs of operations carefully. If you want to use 
amortized costs to show that in the worst case the average cost per operation is 
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small, you must ensure that the total amortized cost of a sequence of operations 
provides an upper bound on the total actual cost of the sequence. Moreover, as 
in aggregate analysis, the upper bound must apply to all sequences of operations. 
Let’s denote the actual cost of the i th operation by c i and the amortized cost of the 
i th operation by y c i . Then you need to have 
n X 

i D1 

y c i  
n X 

i D1 

c i (16.1) 

for all sequences of n operations. The total credit stored in the data structure 
is the difference between the total amortized cost and the total actual cost, or P n 

i D1 y c i  
P n 

i D1 c i . By inequality (16.1), the total credit associated with the data 
structure must be nonnegative at all times. If you ever allowed the total credit to 
become negative (the result of undercharging early operations with the promise of 
repaying the account later on), then the total amortized costs incurred at that time 
would be below the total actual costs incurred. In that case, for the sequence of 
operations up to that time, the total amortized cost would not be an upper bound 
on the total actual cost. Thus, you must take care that the total credit in the data 
structure never becomes negative. 

Stack operations 
To illustrate the accounting method of amortized analysis, we return to the stack 
example. Recall that the actual costs of the operations were 
PUSH 1 , 
POP 1 , 
MULTIPOP min fs; kg , 
where k is the argument supplied to MULTIPOP and s is the stack size when it is 
called. Let us assign the following amortized costs: 
PUSH 2 , 
POP 0 , 
MULTIPOP 0 . 
The amortized cost of MULTIPOP is a constant (0), whereas the actual cost is vari- 
able, and thus all three amortized costs are constant. In general, the amortized 
costs of the operations under consideration may differ from each other, and they 
may even differ asymptotically. 
Now let’s see how to pay for any sequence of stack operations by charging the 

amortized costs. Let $1 represent each unit of cost. At ûrst, the stack is empty. 
Recall the analogy of Section 10.1.3 between the stack data structure and a stack 
of plates in a cafeteria. Upon pushing a plate onto the stack, use $1 to pay the 
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actual cost of the push, leaving a credit of $1 (out of the $2 charged). Place that $1 
of credit on top of the plate. At any point in time, every plate on the stack has $1 
of credit on it. 

The $1 stored on the plate serves to prepay the cost of popping the plate from 
the stack. A POP operation incurs no charge: pay the actual cost of popping a plate 
by taking the $1 of credit off the plate. Thus, by charging the PUSH operation a 
little bit more, we can view the POP operation as free. 

Moreover, the MULTIPOP operation also incurs no charge, since it’s just repeated 
POP operations, each of which is free. If a MULTIPOP operation pops k plates, then 
the actual cost is paid by the k dollars stored on the k plates. Because each plate 
on the stack has $1 of credit on it, and the stack always has a nonnegative number 
of plates, the amount of credit is always nonnegative. Thus, for any sequence of n 
PUSH, POP, and MULTIPOP operations, the total amortized cost is an upper bound 
on the total actual cost. Since the total amortized cost is O.n/, so is the total actual 
cost. 

Incrementing a binary counter 
As another illustration of the accounting method, let’s analyze the I NCREMENT 
operation on a binary counter that starts at 0. Recall that the running time of this 
operation is proportional to the number of bits üipped, which serves as the cost for 
this example. Again, we’ll use $1 to represent each unit of cost (the üipping of a 
bit in this example). 

For the amortized analysis, the amortized cost to set a 0-bit to 1 is $2. When a 
bit is set to 1, $1 of the $2 pays to actually set the bit. The second $1 resides on the 
bit as credit to be used later if and when the bit is reset to 0. At any point in time, 
every 1-bit in the counter has $1 of credit on it, and thus resetting a bit to 0 can be 
viewed as costing nothing, and the $1 on the bit prepays for the reset. 

Here is how to determine the amortized cost of I NCREMENT. The cost of reset- 
ting the bits to 0 within the while loop is paid for by the dollars on the bits that are 
reset. The I NCREMENT procedure sets at most one bit to 1, in line 6, and there- 
fore the amortized cost of an I NCREMENT operation is at most $2. The number of 
1-bits in the counter never becomes negative, and thus the amount of credit stays 
nonnegative at all times. Thus, for n I NCREMENT operations, the total amortized 
cost is O.n/, which bounds the total actual cost. 

Exercises 
16.2-1 
You perform a sequence of PUSH and POP operations on a stack whose size never 
exceeds k. After every k operations, a copy of the entire stack is made automat- 
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ically, for backup purposes. Show that the cost of n stack operations, including 
copying the stack, is O.n/ by assigning suitable amortized costs to the various 
stack operations. 
16.2-2 
Redo Exercise 16.1-3 using an accounting method of analysis. 
16.2-3 
You wish not only to increment a counter but also to reset it to 0 (i.e., make all 
bits in it 0). Counting the time to examine or modify a bit as ‚.1/, show how 
to implement a counter as an array of bits so that any sequence of n I NCREMENT 
and RESET operations takes O.n/ time on an initially zero counter. (Hint: Keep a 
pointer to the high-order 1.) 

16.3 The potential method 

Instead of representing prepaid work as credit stored with speciûc objects in the 
data structure, the potential method of amortized analysis represents the prepaid 
work as <potential energy,= or just <potential,= which can be released to pay for 
future operations. The potential applies to the data structure as a whole rather than 
to speciûc objects within the data structure. 

The potential method works as follows. Starting with an initial data structure D 0 , 
a sequence of n operations occurs. For each i D 1; 2; : : : ; n, let c i be the actual 
cost of the i th operation and D i be the data structure that results after applying 
the i th operation to data structure D i 1 . A potential function ˆ maps each data 
structure D i to a real number ˆ.D i /, which is the potential associated with D i . 
The amortized cost y c i of the i th operation with respect to potential function ˆ is 
deûned by 

y c i D c i C ˆ.D i /  ˆ.D i 1 / : (16.2) 
The amortized cost of each operation is therefore its actual cost plus the change in 
potential due to the operation. By equation (16.2), the total amortized cost of the n 
operations is 
n X 

i D1 

y c i D 
n X 

i D1 

.c i C ˆ.D i /  ˆ.D i 1 // 

D 
n X 

i D1 

c i C ˆ.D n /  ˆ.D 0 / : (16.3) 
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The second equation follows from equation (A.12) on page 1143 because the 
ˆ.D i / terms telescope. 
If you can deûne a potential function ˆ so that ˆ.D n /  ˆ.D 0 /, then the total 

amortized cost P n 
i D1 y c i gives an upper bound on the total actual cost P n 

i D1 c i . 
In practice, you don’t always know how many operations might be performed. 
Therefore, if you require that ˆ.D i /  ˆ.D 0 / for all i , then you guarantee, as in 
the accounting method, that you’ve paid in advance. It’s usually simplest to just 
deûne ˆ.D 0 / to be 0 and then show that ˆ.D i /  0 for all i . (See Exercise 16.3-1 
for an easy way to handle cases in which ˆ.D 0 / ¤ 0.) 

Intuitively, if the potential difference ˆ.D i /  ˆ.D i 1 / of the i th operation is 
positive, then the amortized cost y c i represents an overcharge to the i th operation, 
and the potential of the data structure increases. If the potential difference is neg- 
ative, then the amortized cost represents an undercharge to the i th operation, and 
the decrease in the potential pays for the actual cost of the operation. 
The amortized costs deûned by equations (16.2) and (16.3) depend on the choice 

of the potential function ˆ. Different potential functions may yield different amor- 
tized costs, yet still be upper bounds on the actual costs. You will often ûnd trade- 
offs that you can make in choosing a potential function. The best potential function 
to use depends on the desired time bounds. 

Stack operations 
To illustrate the potential method, we return once again to the example of the stack 
operations PUSH, POP, and MULTIPOP. We deûne the potential function ˆ on a 
stack to be the number of objects in the stack. The potential of the empty initial 
stack D 0 is ˆ.D 0 / D 0. Since the number of objects in the stack is never negative, 
the stack D i that results after the i th operation has nonnegative potential, and thus 
ˆ.D i /  0 

D ˆ.D 0 / : 

The total amortized cost of n operations with respect to ˆ therefore represents an 
upper bound on the actual cost. 
Now let’s compute the amortized costs of the various stack operations. If the i th 

operation on a stack containing s objects is a PUSH operation, then the potential 
difference is 
ˆ.D i /  ˆ.D i 1 / D .s C 1/  s 

D 1 : 

By equation (16.2), the amortized cost of this PUSH operation is 
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y c i D c i C ˆ.D i /  ˆ.D i 1 / 
D 1 C 1 
D 2 : 

Suppose that the i th operation on the stack of s objects is MULTIPOP .S; k/, which 
causes k 0 D min fs; kg objects to be popped off the stack. The actual cost of the 
operation is k 0 , and the potential difference is 
ˆ.D i /  ˆ.D i 1 / D k 0 : 

Thus, the amortized cost of the MULTIPOP operation is 
y c i D c i C ˆ.D i /  ˆ.D i 1 / 

D k 0  k 0 

D 0 : 

Similarly, the amortized cost of an ordinary POP operation is 0. 
The amortized cost of each of the three operations is O.1/, and thus the total 

amortized cost of a sequence of n operations is O.n/. Since ˆ.D i /  ˆ.D 0 /, the 
total amortized cost of n operations is an upper bound on the total actual cost. The 
worst-case cost of n operations is therefore O.n/. 

Incrementing a binary counter 
As another example of the potential method, we revisit incrementing a k-bit binary 
counter. This time, the potential of the counter after the i th I NCREMENT operation 
is deûned to be the number of 1-bits in the counter after the i th operation, which 
we’ll denote by b i . 

Here is how to compute the amortized cost of an I NCREMENT operation. Sup- 
pose that the i th I NCREMENT operation resets t i bits to 0. The actual cost c i of the 
operation is therefore at most t i C 1, since in addition to resetting t i bits, it sets at 
most one bit to 1. If b i D 0, then the i th operation had reset all k bits to 0, and so 
b i 1 D t i D k. If b i > 0, then b i D b i 1  t i C 1. In either case, b i හ b i 1  t i C 1, 
and the potential difference is 
ˆ.D i /  ˆ.D i 1 / හ .b i 1  t i C 1/  b i 1 

D 1  t i : 

The amortized cost is therefore 
y c i D c i C ˆ.D i /  ˆ.D i 1 / 

හ .t i C 1/ C .1  t i / 
D 2 : 
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If the counter starts at 0, then ˆ.D 0 / D 0. Since ˆ.D i /  0 for all i , the total 
amortized cost of a sequence of n I NCREMENT operations is an upper bound on the 
total actual cost, and so the worst-case cost of n I NCREMENT operations is O.n/. 

The potential method provides a simple and clever way to analyze the counter 
even when it does not start at 0. The counter starts with b 0 1-bits, and after n 
I NCREMENT operations it has b n 1-bits, where 0 හ b 0 ; b n හ k. Rewrite equa- 
tion (16.3) as 
n X 

i D1 

c i D 
n X 

i D1 

y c i  ˆ.D n / C ˆ.D 0 / : 

Since ˆ.D 0 / D b 0 , ˆ.D n / D b n , and y c i හ 2 for all 1 හ i හ n, the total actual 
cost of n I NCREMENT operations is 
n X 

i D1 

c i හ 
n X 

i D1 

2  b n C b 0 

D 2n  b n C b 0 : 

In particular, b 0 හ k means that as long as k D O.n/, the total actual cost is O.n/. 
In other words, if at least n D �.k/ I NCREMENT operations occur, the total actual 
cost is O.n/, no matter what initial value the counter contains. 

Exercises 
16.3-1 
Suppose you have a potential function ˆ such that ˆ.D i /  ˆ.D 0 / for all i , but 
ˆ.D 0 / ¤ 0. Show that there exists a potential function ˆ 0 such that ˆ 0 .D 0 / D 0, 
ˆ 0 .D i /  0 for all i  1, and the amortized costs using ˆ 0 are the same as the 
amortized costs using ˆ. 
16.3-2 
Redo Exercise 16.1-3 using a potential method of analysis. 
16.3-3 
Consider an ordinary binary min-heap data structure supporting the instructions 
I NSERT and EXTRACT-MIN that, when there are n items in the heap, implements 
each operation in O.lg n/ worst-case time. Give a potential function ˆ such that 
the amortized cost of I NSERT is O.lg n/ and the amortized cost of EXTRACT-MIN 
is O.1/, and show that your potential function yields these amortized time bounds. 
Note that in the analysis, n is the number of items currently in the heap, and you 
do not know a bound on the maximum number of items that can ever be stored in 
the heap. 
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16.3-4 
What is the total cost of executing n of the stack operations PUSH, POP, and 
MULTIPOP , assuming that the stack begins with s 0 objects and ûnishes with s n 
objects? 
16.3-5 
Show how to implement a queue with two ordinary stacks (Exercise 10.1-7) so that 
the amortized cost of each ENQUEUE and each DEQUEUE operation is O.1/. 
16.3-6 
Design a data structure to support the following two operations for a dynamic 
multiset S of integers, which allows duplicate values: 
I NSERT.S; x/ inserts x into S . 
DELETE-LARGER-HALF .S/ deletes the largest djS j =2e elements from S . 
Explain how to implement this data structure so that any sequence of m I NSERT 
and DELETE-LARGER-HALF operations runs in O.m/ time. Your implementation 
should also include a way to output the elements of S in O.jS j/ time. 

16.4 Dynamic tables 

When you design an application that uses a table, you do not always know in 
advance how many items the table will hold. You might allocate space for the 
table, only to ûnd out later that it is not enough. The program must then reallocate 
the table with a larger size and copy all items stored in the original table over into 
the new, larger table. Similarly, if many items have been deleted from the table, 
it might be worthwhile to reallocate the table with a smaller size. This section 
studies this problem of dynamically expanding and contracting a table. Amortized 
analyses will show that the amortized cost of insertion and deletion is only O.1/, 
even though the actual cost of an operation is large when it triggers an expansion 
or a contraction. Moreover, you’ll see how to guarantee that the unused space in a 
dynamic table never exceeds a constant fraction of the total space. 
Let’s assume that the dynamic table supports the operations TABLE-I NSERT and 

TABLE-DELETE. TABLE-I NSERT inserts into the table an item that occupies a sin- 
gle slot, that is, a space for one item. Likewise, TABLE-DELETE removes an item 
from the table, thereby freeing a slot. The details of the data-structuring method 
used to organize the table are unimportant: it could be a stack (Section 10.1.3), a 
heap (Chapter 6), a hash table (Chapter 11), or something else. 



16.4 Dynamic tables 461 

It is convenient to use a concept introduced in Section 11.2, where we analyzed 
hashing. The load factor ˛.T / of a nonempty table T is deûned as the number 
of items stored in the table divided by the size (number of slots) of the table. An 
empty table (one with no slots) has size 0, and its load factor is deûned to be 1. If 
the load factor of a dynamic table is bounded below by a constant, the unused space 
in the table is never more than a constant fraction of the total amount of space. 

We start by analyzing a dynamic table that allows only insertion and then move 
on to the more general case that supports both insertion and deletion. 

16.4.1 Table expansion 

Let’s assume that storage for a table is allocated as an array of slots. A table ûlls up 
when all slots have been used or, equivalently, when its load factor is 1. 1 In some 
software environments, upon an attempt to insert an item into a full table, the only 
alternative is to abort with an error. The scenario in this section assumes, how- 
ever, that the software environment, like many modern ones, provides a memory- 
management system that can allocate and free blocks of storage on request. Thus, 
upon inserting an item into a full table, the system can expand the table by allo- 
cating a new table with more slots than the old table had. Because the table must 
always reside in contiguous memory, the system must allocate a new array for the 
larger table and then copy items from the old table into the new table. 

A common heuristic allocates a new table with twice as many slots as the old 
one. If the only table operations are insertions, then the load factor of the table is 
always at least 1=2, and thus the amount of wasted space never exceeds half the 
total space in the table. 

The TABLE-I NSERT procedure on the following page assumes that T is an object 
representing the table. The attribute T: table contains a pointer to the block of 
storage representing the table, T: num contains the number of items in the table, 
and T: size gives the total number of slots in the table. Initially, the table is empty: 
T: num D T: size D 0. 

There are two types of insertion here: the TABLE-I NSERT procedure itself and 
the elementary insertion into a table in lines 6 and 10. We can analyze the running 
time of TABLE-I NSERT in terms of the number of elementary insertions by assign- 
ing a cost of 1 to each elementary insertion. In most computing environments, the 
overhead for allocating an initial table in line 2 is constant and the overhead for 
allocating and freeing storage in lines 5 and 7 is dominated by the cost of transfer- 

1 In some situations, such as an open-address hash table, it’s better to consider a table to be full if its 
load factor equals some constant strictly less than 1. (See Exercise 16.4-2.) 
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TABLE-I NSERT .T; x/ 
1 if T: size = = 0 
2 allocate T: table with 1 slot 
3 T: size D 1 
4 if T: num == T: size 
5 allocate new-table with 2  T: size slots 
6 insert all items in T: table into new-table 
7 free T: table 
8 T: table D new-table 
9 T: size D 2  T: size 
10 insert x into T: table 
11 T: num D T: num C 1 

ring items in line 6. Thus, the actual running time of TABLE-I NSERT is linear in the 
number of elementary insertions. An expansion occurs when lines 539 execute. 
Now, we’ll use all three amortized analysis techniques to analyze a sequence of 

n TABLE-I NSERT operations on an initially empty table. First, we need to deter- 
mine the actual cost c i of the i th operation. If the current table has room for the 
new item (or if this is the ûrst operation), then c i D 1, since the only elementary 
insertion performed is the one in line 10. If the current table is full, however, and an 
expansion occurs, then c i D i : the cost is 1 for the elementary insertion in line 10 
plus i  1 for the items copied from the old table to the new table in line 6. For 
n operations, the worst-case cost of an operation is O.n/, which leads to an upper 
bound of O.n 2 / on the total running time for n operations. 

This bound is not tight, because the table rarely expands in the course of n 
TABLE-I NSERT operations. Speciûcally, the i th operation causes an expansion 
only when i  1 is an exact power of 2. The amortized cost of an operation is in 
fact O.1/, as an aggregate analysis shows. The cost of the i th operation is 

c i D 

( 
i if i  1 is an exact power of 2 ; 
1 otherwise : 

The total cost of n TABLE-I NSERT operations is therefore 
n X 

i D1 

c i හ n C 
blg nc X 

j D0 

2 j 

< n C 2n (by equation (A.6) on page 1142) 
D 3n ; 
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(a) 

(b) $1 $1 

(c) $1 $1 $1 $1 

(d) $1 $1 $1 $1 $1 $1 

(e) $1 $1 $1 $1 $1 $1 $1 $1 

(f) 

Figure 16.3 Analysis of table expansion by the accounting method. Each call of TABLE-I NSERT 
charges $3 as follows: $1 to pay for the elementary insertion, $1 on the item inserted as prepayment 
for it to be reinserted later, and $1 on an item that was already in the table, also as prepayment for 
reinsertion. (a) The table immediately after an expansion, with 8 slots, 4 items (tan slots), and no 
stored credit. (b)–(e) After each of 4 calls to TABLE-I NSERT, the table has one more item, with $1 
stored on the new item and $1 stored on one of the 4 items that were present immediately after the 
expansion. Slots with these new items are blue. (f) Upon the next call to TABLE-I NSERT, the table 
is full, and so it expands again. Each item had $1 to pay for it to be reinserted. Now the table looks 
as it did in part (a), with no stored credit but 16 slots and 8 items. 

because at most n operations cost 1 each and the costs of the remaining operations 
form a geometric series. Since the total cost of n TABLE-I NSERT operations is 
bounded by 3n, the amortized cost of a single operation is at most 3. 

The accounting method can provide some intuition for why the amortized cost 
of a TABLE-I NSERT operation should be 3. You can think of each item paying for 
three elementary insertions: inserting itself into the current table, moving itself the 
next time that the table expands, and moving some other item that was already in 
the table the next time that the table expands. For example, suppose that the size of 
the table is m immediately after an expansion, as shown in Figure 16.3 for m D 8. 
Then the table holds m=2 items, and it contains no credit. Each call of TABLE- 
I NSERT charges $3. The elementary insertion that occurs immediately costs $1. 
Another $1 resides on the item inserted as credit. The third $1 resides as credit 
on one of the m=2 items already in the table. The table will not ûll again until 
another m=2  1 items have been inserted, and thus, by the time the table contains 
m items and is full, each item has $1 on it to pay for it to be reinserted it during the 
expansion. 
Now, let’s see how to use the potential method. We’ll use it again in Sec- 

tion 16.4.2 to design a TABLE-DELETE operation that has an O.1/ amortized cost 
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as well. Just as the accounting method had no stored credit immediately after an 
expansion4that is, when T: num D T: size=24let’s deûne the potential to be 0 
when T: num D T: size=2. As elementary insertions occur, the potential needs to 
increase enough to pay for all the reinsertions that will happen when the table 
next expands. The table ûlls after another T: size=2 calls of TABLE-I NSERT, when 
T: num D T: size. The next call of TABLE-I NSERT after these T: size=2 calls trig- 
gers an expansion with a cost of T: size to reinsert all the items. Therefore, over 
the course of T: size=2 calls of TABLE-I NSERT, the potential must increase from 0 
to T: size. To achieve this increase, let’s design the potential so that each call of 
TABLE-I NSERT increases it by 
T: size 
T: size=2 D 2 ; 

until the table expands. You can see that the potential function 
ˆ.T / D 2.T: num  T: size=2/ (16.4) 
equals 0 immediately after the table expands, when T: num D T: size=2, and it 
increases by 2 upon each insertion until the table ûlls. Once the table ûlls, that is, 
when T: num D T: size, the potential ˆ.T / equals T: size. The initial value of the 
potential is 0, and since the table is always at least half full, T: num  T: size=2, 
which implies that ˆ.T / is always nonnegative. Thus, the sum of the amortized 
costs of n TABLE-I NSERT operations gives an upper bound on the sum of the actual 
costs. 

To analyze the amortized costs of table operations, it is convenient to think in 
terms of the change in potential due to each operation. Letting ˆ i denote the 
potential after the i th operation, we can rewrite equation (16.2) as 
y c i D c i C ˆ i  ˆ i 1 

D c i C �ˆ i ; 

where �ˆ i is the change in potential due to the i th operation. First, consider the 
case when the i th insertion does not cause the table to expand. In this case, �ˆ i 
is 2. Since the actual cost c i is 1, the amortized cost is 
y c i D c i C �ˆ i 

D 1 C 2 
D 3 : 

Now, consider the change in potential when the table does expand during the i th 
insertion because it was full immediately before the insertion. Let num i denote 
the number of items stored in the table after the i th operation and size i denote the 
total size of the table after the i th operation, so that size i 1 D num i 1 D i  1 
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Figure 16.4 The effect of a sequence of n TABLE-I NSERT operations on the number num i of items 
in the table (the brown line), the number size i of slots in the table (the blue line), and the potential 
ˆ i D 2.num i  size i =2/ (the red line), each being measured after the i th operation. Immediately 
before an expansion, the potential has built up to the number of items in the table, and therefore it can 
pay for moving all the items to the new table. Afterward, the potential drops to 0, but it immediately 
increases by 2 upon insertion of the item that caused the expansion. 

and therefore ˆ i 1 D 2.size i 1  size i 1 =2/ D size i 1 D i  1. Immediately 
after the expansion, the potential goes down to 0, and then the new item is inserted, 
causing the potential to increase to ˆ i D 2. Thus, when the i th insertion triggers 
an expansion, �ˆ i D 2  .i  1/ D 3  i . When the table expands in the i th 
TABLE-I NSERT operation, the actual cost c i equals i (to reinsert i  1 items and 
insert the i th item), giving an amortized cost of 
y c i D c i C �ˆ i 

D i C .3  i/ 
D 3 : 

Figure 16.4 plots the values of num i , size i , and ˆ i against i . Notice how the 
potential builds to pay for expanding the table. 

16.4.2 Table expansion and contraction 

To implement a TABLE-DELETE operation, it is simple enough to remove the spec- 
iûed item from the table. In order to limit the amount of wasted space, however, 
you might want to contract the table when the load factor becomes too small. Ta- 
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ble contraction is analogous to table expansion: when the number of items in the 
table drops too low, allocate a new, smaller table and then copy the items from the 
old table into the new one. You can then free the storage for the old table by return- 
ing it to the memory-management system. In order to not waste space, yet keep 
the amortized costs low, the insertion and deletion procedures should preserve two 
properties: 
 the load factor of the dynamic table is bounded below by a positive constant, as 

well as above by 1, and 
 the amortized cost of a table operation is bounded above by a constant. 
The actual cost of each operation equals the number of elementary insertions or 
deletions. 

You might think that if you double the table size upon inserting an item into a 
full table, then you should halve the size when deleting an item that would cause 
the table to become less than half full. This strategy does indeed guarantee that the 
load factor of the table never drops below 1=2. Unfortunately, it can also cause the 
amortized cost of an operation to be quite large. Consider the following scenario. 
Perform n operations on a table T of size n=2, where n is an exact power of 2. 
The ûrst n=2 operations are insertions, which by our previous analysis cost a total 
of ‚.n/. At the end of this sequence of insertions, T: num D T: size D n=2. For 
the second n=2 operations, perform the following sequence: 

insert, delete, delete, insert, insert, delete, delete, insert, insert, . . . . 
The ûrst insertion causes the table to expand to size n. The two deletions that follow 
cause the table to contract back to size n=2. Two further insertions cause another 
expansion, and so forth. The cost of each expansion and contraction is ‚.n/, and 
there are ‚.n/ of them. Thus, the total cost of the n operations is ‚.n 2 /, making 
the amortized cost of an operation ‚.n/. 

The problem with this strategy is that after the table expands, not enough dele- 
tions occur to pay for a contraction. Likewise, after the table contracts, not enough 
insertions take place to pay for an expansion. 
How can we solve this problem? Allow the load factor of the table to drop 

below 1=2. Speciûcally, continue to double the table size upon inserting an item 
into a full table, but halve the table size when deleting an item causes the table to 
become less than 1=4 full, rather than 1=2 full as before. The load factor of the 
table is therefore bounded below by the constant 1=4, and the load factor is 1=2 
immediately after a contraction. 
An expansion or contraction should exhaust all the built-up potential, so that 

immediately after expansion or contraction, when the load factor is 1=2, the table’s 
potential is 0. Figure 16.5 shows the idea. As the load factor deviates from 1=2, the 
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Figure 16.5 How to think about the potential function ˆ for table insertion and deletion. When the 
load factor ˛ is 1=2, the potential is 0. In order to accumulate sufûcient potential to pay for reinserting 
all T: size items when the table ûlls, the potential needs to increase by 2 upon each insertion when 
˛  1=2. Correspondingly, the potential decreases by 2 upon each deletion that leaves ˛  1=2. 
In order to accrue enough potential to cover the cost of reinserting all T: size=4 items when the table 
contracts, the potential needs to increase by 1 upon each deletion when ˛ < 1=2, and correspondingly 
the potential decreases by 1 upon each insertion that leaves ˛ < 1=2 . The red area represents load 
factors less than 1=4, which are not allowed. 

potential increases so that by the time an expansion or contraction occurs, the table 
has garnered sufûcient potential to pay for copying all the items into the newly 
allocated table. Thus, the potential function should grow to T: num by the time that 
the load factor has either increased to 1 or decreased to 1=4. Immediately after 
either expanding or contracting the table, the load factor goes back to 1=2 and the 
table’s potential reduces back to 0. 

We omit the code for TABLE-DELETE, since it is analogous to TABLE-I NSERT. 
We assume that if a contraction occurs during TABLE-DELETE, it occurs after the 
item is deleted from the table. The analysis assumes that whenever the number of 
items in the table drops to 0, the table occupies no storage. That is, if T: num D 0, 
then T: size D 0. 

How do we design a potential function that gives constant amortized time for 
both insertion and deletion? When the load factor is at least 1=2, the same potential 
function, ˆ.T / D 2.T: num  T: size=2/, that we used for insertion still works. 
When the table is at least half full, each insertion increases the potential by 2 if the 
table does not expand, and each deletion reduces the potential by 2 if it does not 
cause the load factor to drop below 1=2. 

What about when the load factor is less than 1=2, that is, when 1=4 හ ˛.T / < 
1=2? As before, when ˛.T / D 1=2, so that T: num D T: size=2, the potential ˆ.T / 
should be 0. To get the load factor from 1=2 down to 1=4, T: size=4 deletions need 
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to occur, at which time T: num D T: size=4. To pay for all the reinsertions, the 
potential must increase from 0 to T: size=4 over these T: size=4 deletions. There- 
fore, for each call of TABLE-DELETE until the table contracts, the potential should 
increase by 
T: size=4 
T: size=4 D 1 : 

Likewise, when ˛ < 1=2, each call of TABLE-I NSERT should decrease the poten- 
tial by 1. When 1=4 හ ˛.T / < 1=2, the potential function 
ˆ.T / D T: size=2  T: num 

produces this desired behavior. 
Putting the two cases together, we get the potential function 

ˆ.T / D 

( 
2.T: num  T: size=2/ if ˛.T /  1=2 ; 
T: size=2  T: num if ˛.T / < 1=2 : (16.5) 

The potential of an empty table is 0 and the potential is never negative. Thus, 
the total amortized cost of a sequence of operations with respect to ˆ provides an 
upper bound on the actual cost of the sequence. Figure 16.6 illustrates how the 
potential function behaves over a sequence of insertions and deletions. 
Now, let’s determine the amortized costs of each operation. As before, let num i 

denote the number of items stored in the table after the i th operation, size i denote 
the total size of the table after the i th operation, ˛ i D num i =size i denote the load 
factor after the i th operation, ˆ i denote the potential after the i th operation, and 
�ˆ i denote the change in potential due to the i th operation. Initially, num 0 D 0, 
size 0 D 0, and ˆ 0 D 0. 

The cases in which the table does not expand or contract and the load factor does 
not cross ˛ D 1=2 are straightforward. As we have seen, if ˛ i 1  1=2 and the 
i th operation is an insertion that does not cause the table to expand, then �ˆ i D 2. 
Likewise, if the i th operation is a deletion and ˛ i  1=2, then �ˆ i D 2. Fur- 
thermore, if ˛ i 1 < 1=2 and the i th operation is a deletion that does not trigger a 
contraction, then �ˆ i D 1, and if the i th operation is an insertion and ˛ i < 1=2 , 
then �ˆ i D 1. In other words, if no expansion or contraction occurs and the 
load factor does not cross ˛ D 1=2, then 
 if the load factor stays at or above 1=2, then the potential increases by 2 for an 

insertion and decreases by 2 for a deletion, and 
 if the load factor stays below 1=2, then the potential increases by 1 for a deletion 

and decreases by 1 for an insertion. 
In each of these cases, the actual cost c i of the i th operation is just 1, and so 
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Figure 16.6 The effect of a sequence of n TABLE-I NSERT and TABLE-DELETE operations on the 
number num i of items in the table (the brown line), the number size i of slots in the table (the blue 
line), and the potential (the red line) 

ˆ i D 

 
2.num i  size i =2/ if ˛ i  1=2 ; 
size i =2  num i if ˛ i < 1=2 ; 

where ˛ i D num i =size i , each measured after the i th operation. Immediately before an expansion or 
contraction, the potential has built up to the number of items in the table, and therefore it can pay for 
moving all the items to the new table. 

 if the i th operation is an insertion, its amortized cost y c i is c i C �ˆ i , which 
is 1 C 2 D 3 if the load factor stays at or above 1=2, and 1 C .1/ D 0 if the 
load factor stays below 1=2, and 

 if the i th operation is a deletion, its amortized cost y c i is c i C �ˆ i , which 
is 1 C .2/ D 1 if the load factor stays at or above 1=2, and 1 C 1 D 2 
if the load factor stays below 1=2. 

Four cases remain: an insertion that takes the load factor from below 1=2 to 1=2, 
a deletion that takes the load factor from 1=2 to below 1=2, a deletion that causes 
the table to contract, and an insertion that causes the table to expand. We analyzed 
that last case at the end of Section 16.4.1 to show that its amortized cost is 3. 

When the i th operation is a deletion that causes the table to contract, we have 
num i 1 D size i 1 =4 before the contraction, then the item is deleted, and ûnally 
num i D size i =2  1 after the contraction. Thus, by equation (16.5) we have 
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ˆ i 1 D size i 1 =2  num i 1 

D size i 1 =2  size i 1 =4 
D size i 1 =4 ; 

which also equals the actual cost c i of deleting one item and copying size i 1 =4  1 
items into the new, smaller table. Since num i D size i =2  1 after the operation has 
completed, ˛ i < 1=2, and so 
ˆ i D size i =2  num i 

D 1 ; 

giving �ˆ i D 1  size i 1 =4. Therefore, when the i th operation is a deletion that 
triggers a contraction, its amortized cost is 
y c i D c i C �ˆ i 

D size i 1 =4 C .1  size i 1 =4/ 
D 1 : 

Finally, we handle the cases where the load factor ûts one case of equation (16.5) 
before the operation and the other case afterward. We start with deletion, where we 
have num i 1 D size i 1 =2, so that ˛ i 1 D 1=2, beforehand, and num i D size i =21, 
so that ˛ i < 1=2 afterward. Because ˛ i 1 D 1=2, we have ˆ i 1 D 0, and because 
˛ i < 1=2, we have ˆ i D size i =2  num i D 1. Thus we get that �ˆ i D 1  0 D 1. 
Since the i th operation is a deletion that does not cause a contraction, the actual 
cost c i equals 1, and the amortized cost y c i is c i C �ˆ i D 1 C 1 D 2. 

Conversely, if the i th operation is an insertion that takes the load factor from 
below 1=2 to equaling 1=2, the change in potential �ˆ i equals 1. Again, the 
actual cost c i is 1, and now the amortized cost y c i is c i C �ˆ i D 1 C .1/ D 0. 

In summary, since the amortized cost of each operation is bounded above by 
a constant, the actual time for any sequence of n operations on a dynamic table 
is O.n/. 

Exercises 
16.4-1 
Using the potential method, analyze the amortized cost of the ûrst table insertion. 
16.4-2 
You wish to implement a dynamic, open-address hash table. Why might you con- 
sider the table to be full when its load factor reaches some value ˛ that is strictly 
less than 1? Describe brieüy how to make insertion into a dynamic, open-address 
hash table run in such a way that the expected value of the amortized cost per 
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insertion is O.1/. Why is the expected value of the actual cost per insertion not 
necessarily O.1/ for all insertions? 
16.4-3 
Discuss how to use the accounting method to analyze both the insertion and dele- 
tion operations, assuming that the table doubles in size when its load factor ex- 
ceeds 1 and the table halves in size when its load factor goes below 1=4. 
16.4-4 
Suppose that instead of contracting a table by halving its size when its load factor 
drops below 1=4, you contract the table by multiplying its size by 2=3 when its 
load factor drops below 1=3. Using the potential function 
ˆ.T / D j2.T: num  T: size=2/j ; 
show that the amortized cost of a TABLE-DELETE that uses this strategy is bounded 
above by a constant. 

Problems 

16-1 Binary reüected Gray code 
A binary Gray code represents a sequence of nonnegative integers in binary such 
that to go from one integer to the next, exactly one bit üips every time. The binary 
reüected Gray code represents a sequence of the integers 0 to 2 k  1 for some 
positive integer k according to the following recursive method: 
 For k D 1, the binary reüected Gray code is h0; 1i. 
 For k  2, ûrst form the binary reüected Gray code for k  1, giving the 2 k1 

integers 0 to 2 k1  1. Then form the reüection of this sequence, which is just 
the sequence in reverse. (That is, the j th integer in the sequence becomes the 
.2 k1  j  1/st integer in the reüection). Next, add 2 k1 to each of the 2 k1 

integers in the reüected sequence. Finally, concatenate the two sequences. 
For example, for k D 2, ûrst form the binary reüected Gray code h0; 1i for 

k D 1. Its reüection is the sequence h1; 0i. Adding 2 k1 D 2 to each integer in the 
reüection gives the sequence h3; 2i. Concatenating the two sequences gives h0; 1; 
3; 2i or, in binary, h00; 01; 11; 10i, so that each integer differs from its predecessor 
by exactly one bit. For k D 3, the reüection of the binary reüected Gray code for 
k D 2 is h2; 3; 1; 0i and adding 2 k1 D 4 gives h6; 7; 5; 4i. Concatenating produces 
the sequence h0; 1; 3; 2; 6; 7; 5; 4i, which in binary is h000; 001; 011; 010; 110; 111; 
101;100i. In the binary reüected Gray code, only one bit üips even when wrapping 
around from the last integer to the ûrst. 
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a. Index the integers in a binary reüected Gray code from 0 to 2 k  1, and consider 
the i th integer in the binary reüected Gray code. To go from the .i  1/st integer 
to the i th integer in the binary reüected Gray code, exactly one bit üips. Show 
how to determine which bit üips, given the index i . 

b. Assuming that given a bit number j , you can üip bit j of an integer in constant 
time, show how to compute the entire binary reüected Gray code sequence of 
2 k numbers in ‚.2 k / time. 

16-2 Making binary search dynamic 
Binary search of a sorted array takes logarithmic search time, but the time to insert 
a new element is linear in the size of the array. You can improve the time for 
insertion by keeping several sorted arrays. 
Speciûcally, suppose that you wish to support SEARCH and I NSERT on a set 

of n elements. Let k D dlg.n C 1/e, and let the binary representation of n be 
hn k1 ; n k2 ; : : : ; n 0 i. Maintain k sorted arrays A 0 ; A 1 ; : : : ; A k1 , where for i D 
0; 1; : : : ; k  1, the length of array A i is 2 i . Each array is either full or empty, de- 
pending on whether n i D 1 or n i D 0, respectively. The total number of elements 
held in all k arrays is therefore P k1 

i D0 n i 2 i D n. Although each individual array is 
sorted, elements in different arrays bear no particular relationship to each other. 
a. Describe how to perform the SEARCH operation for this data structure. Analyze 

its worst-case running time. 

b. Describe how to perform the I NSERT operation. Analyze its worst-case and 
amortized running times, assuming that the only operations are I NSERT and 
SEARCH. 

c. Describe how to implement DELETE. Analyze its worst-case and amortized 
running times, assuming that there can be DELETE, I NSERT, and SEARCH op- 
erations. 

16-3 Amortized weight-balanced trees 
Consider an ordinary binary search tree augmented by adding to each node x the 
attribute x: size, which gives the number of keys stored in the subtree rooted at x . 
Let ˛ be a constant in the range 1=2 හ ˛ < 1. We say that a given node x is 
˛-balanced if x: left: size හ ˛  x: size and x: right : size හ ˛  x: size. The tree 
as a whole is ˛-balanced if every node in the tree is ˛-balanced. The follow- 
ing amortized approach to maintaining weight-balanced trees was suggested by 
G. Varghese. 
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a. A 1=2-balanced tree is, in a sense, as balanced as it can be. Given a node x 
in an arbitrary binary search tree, show how to rebuild the subtree rooted at x 
so that it becomes 1=2-balanced. Your algorithm should run in ‚.x: size/ time, 
and it can use O.x: size/ auxiliary storage. 

b. Show that performing a search in an n-node ˛-balanced binary search tree takes 
O.lg n/ worst-case time. 

For the remainder of this problem, assume that the constant ˛ is strictly greater 
than 1=2. Suppose that you implement I NSERT and DELETE as usual for an n-node 
binary search tree, except that after every such operation, if any node in the tree 
is no longer ˛-balanced, then you <rebuild= the subtree rooted at the highest such 
node in the tree so that it becomes 1=2-balanced. 
We’ll analyze this rebuilding scheme using the potential method. For a node x 

in a binary search tree T , deûne 
�.x/ D jx: left: size  x: right : sizej : 
Deûne the potential of T as 
ˆ.T / D c 

X 

x2T Wĩ.x/2 

�.x/ ; 

where c is a sufûciently large constant that depends on ˛. 
c. Argue that any binary search tree has nonnegative potential and also that a 
1=2-balanced tree has potential 0. 

d. Suppose that m units of potential can pay for rebuilding an m-node subtree. 
How large must c be in terms of ˛ in order for it to take O.1/ amortized time 
to rebuild a subtree that is not ˛-balanced? 

e. Show that inserting a node into or deleting a node from an n-node ˛-balanced 
tree costs O.lg n/ amortized time. 

16-4 The cost of restructuring red-black trees 
There are four basic operations on red-black trees that perform structural modi- 
ûcations: node insertions, node deletions, rotations, and color changes. We have 
seen that RB-I NSERT and RB-DELETE use only O.1/ rotations, node insertions, 
and node deletions to maintain the red-black properties, but they may make many 
more color changes. 
a. Describe a legal red-black tree with n nodes such that calling RB-I NSERT to 

add the .n C 1/st node causes �.lg n/ color changes. Then describe a legal 
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red-black tree with n nodes for which calling RB-DELETE on a particular node 
causes �.lg n/ color changes. 

Although the worst-case number of color changes per operation can be logarithmic, 
you will prove that any sequence of m RB-I NSERT and RB-DELETE operations on 
an initially empty red-black tree causes O.m/ structural modiûcations in the worst 
case. 
b. Some of the cases handled by the main loop of the code of both RB-I NSERT- 

FIXUP and RB-DELETE-FIXUP are terminating: once encountered, they cause 
the loop to terminate after a constant number of additional operations. For each 
of the cases of RB-I NSERT-FIXUP and RB-DELETE-F IXUP, specify which are 
terminating and which are not. (Hint: Look at Figures 13.5, 13.6, and 13.7 in 
Sections 13.3 and 13.4.) 

You will ûrst analyze the structural modiûcations when only insertions are per- 
formed. Let T be a red-black tree, and deûne ˆ.T / to be the number of red nodes 
in T . Assume that one unit of potential can pay for the structural modiûcations 
performed by any of the three cases of RB-I NSERT-FIXUP. 
c. Let T 0 be the result of applying Case 1 of RB-I NSERT-FIXUP to T . Argue that 
ˆ.T 0 / D ˆ.T /  1. 

d. We can break the operation of the RB-I NSERT procedure into three parts. List 
the structural modiûcations and potential changes resulting from lines 1316 
of RB-I NSERT, from nonterminating cases of RB-I NSERT-FIXUP, and from 
terminating cases of RB-I NSERT-FIXUP. 

e. Using part (d), argue that the amortized number of structural modiûcations per- 
formed by any call of RB-I NSERT is O.1/. 

Next you will prove that there are O.m/ structural modiûcations when both inser- 
tions and deletions occur. Deûne, for each node x , 

w.x/ D 

„ 
0 if x is red ; 
1 if x is black and has no red children ; 
0 if x is black and has one red child ; 
2 if x is black and has two red children : 

Now redeûne the potential of a red-black tree T as 
ˆ.T / D 

X 

x2T 

w.x/ ; 
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and let T 0 be the tree that results from applying any nonterminating case of RB- 
I NSERT-FIXUP or RB-DELETE-FIXUP to T . 
f. Show that ˆ.T 0 / හ ˆ.T /  1 for all nonterminating cases of RB-I NSERT- 

FIXUP. Argue that the amortized number of structural modiûcations performed 
by any call of RB-I NSERT-FIXUP is O.1/. 

g. Show that ˆ.T 0 / හ ˆ.T /  1 for all nonterminating cases of RB-DELETE- 
FIXUP. Argue that the amortized number of structural modiûcations performed 
by any call of RB-DELETE-FIXUP is O.1/. 

h. Complete the proof that in the worst case, any sequence of m RB-I NSERT and 
RB-DELETE operations performs O.m/ structural modiûcations. 

Chapter notes 

Aho, Hopcroft, and Ullman [5] used aggregate analysis to determine the running 
time of operations on a disjoint-set forest. We’ll analyze this data structure using 
the potential method in Chapter 19. Tarjan [430] surveys the accounting and poten- 
tial methods of amortized analysis and presents several applications. He attributes 
the accounting method to several authors, including M. R. Brown, R. E. Tarjan, S. 
Huddleston, and K. Mehlhorn. He attributes the potential method to D. D. Sleator. 
The term <amortized= is due to D. D. Sleator and R. E. Tarjan. 

Potential functions are also useful for proving lower bounds for certain types 
of problems. For each conûguration of the problem, deûne a potential function 
that maps the conûguration to a real number. Then determine the potential ˆ init 
of the initial conûguration, the potential ˆ ûnal of the ûnal conûguration, and the 
maximum change in potential �ˆ max due to any step. The number of steps must 
therefore be at least jˆ ûnal  ˆ init j = j�ˆ max j. Examples of potential functions to 
prove lower bounds in I/O complexity appear in works by Cormen, Sundquist, and 
Wisniewski [105], Floyd [146], and Aggarwal and Vitter [3]. Krumme, Cybenko, 
and Venkataraman [271] applied potential functions to prove lower bounds on gos- 
siping: communicating a unique item from each vertex in a graph to every other 
vertex. 
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Introduction 

This part returns to studying data structures that support operations on dynamic 
sets, but at a more advanced level than Part III. One of the chapters, for example, 
makes extensive use of the amortized analysis techniques from Chapter 16. 
Chapter 17 shows how to augment red-black trees4adding additional informa- 

tion in each node4to support dynamic-set operations in addition to those covered 
in Chapters 12 and 13. The ûrst example augments red-black trees to dynamically 
maintain order statistics for a set of keys. Another example augments them in a 
different way to maintain intervals of real numbers. Chapter 17 includes a theo- 
rem giving sufûcient conditions for when a red-black tree can be augmented while 
maintaining the O.lg n/ running times for insertion and deletion. 
Chapter 18 presents B-trees, which are balanced search trees speciûcally de- 

signed to be stored on disks. Since disks operate much more slowly than random- 
access memory, B-tree performance depends not only on how much computing 
time the dynamic-set operations consume but also on how many disk accesses they 
perform. For each B-tree operation, the number of disk accesses increases with the 
height of the B-tree, but B-tree operations keep the height low. 
Chapter 19 examines data structures for disjoint sets. Starting with a universe 

of n elements, each initially in its own singleton set, the operation UNION unites 
two sets. At all times, the n elements are partitioned into disjoint sets, even as 
calls to the UNION operation change the members of a set dynamically. The query 
FIND-SET identiûes the unique set that contains a given element at the moment. 
Representing each set as a simple rooted tree yields surprisingly fast operations: 
a sequence of m operations runs in O.m ˛.n// time, where ˛.n/ is an incredibly 
slowly growing function4˛.n/ is at most 4 in any conceivable application. The 
amortized analysis that proves this time bound is as complex as the data structure 
is simple. 
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The topics covered in this part are by no means the only examples of <advanced= 
data structures. Other advanced data structures include the following: 
 Fibonacci heaps [156] implement mergeable heaps (see Problem 10-2 on 

page 268) with the operations I NSERT, MINIMUM, and UNION taking only 
O.1/ actual and amortized time, and the operations EXTRACT-MIN and 
DELETE taking O.lg n/ amortized time. The most signiûcant advantage of 
these data structures, however, is that DECREASE-KEY takes only O.1/ amor- 
tized time. Strict Fibonacci heaps [73], developed later, made all of these time 
bounds actual. Because the DECREASE-KEY operation takes constant amor- 
tized time, (strict) Fibonacci heaps constitute key components of some of the 
asymptotically fastest algorithms to date for graph problems. 

 Dynamic trees [415, 429] maintain a forest of disjoint rooted trees. Each edge 
in each tree has a real-valued cost. Dynamic trees support queries to ûnd par- 
ents, roots, edge costs, and the minimum edge cost on a simple path from a node 
up to a root. Trees may be manipulated by cutting edges, updating all edge costs 
on a simple path from a node up to a root, linking a root into another tree, and 
making a node the root of the tree it appears in. One implementation of dynamic 
trees gives an O.lg n/ amortized time bound for each operation, while a more 
complicated implementation yields O.lg n/ worst-case time bounds. Dynamic 
trees are used in some of the asymptotically fastest network-üow algorithms. 

 Splay trees [418, 429] are a form of binary search tree on which the standard 
search-tree operations run in O.lg n/ amortized time. One application of splay 
trees simpliûes dynamic trees. 

 Persistent data structures allow queries, and sometimes updates as well, on past 
versions of a data structure. For example, linked data structures can be made 
persistent with only a small time and space cost [126]. Problem 13-1 gives a 
simple example of a persistent dynamic set. 

 Several data structures allow a faster implementation of dictionary operations 
(I NSERT, DELETE, and SEARCH) for a restricted universe of keys. By tak- 
ing advantage of these restrictions, they are able to achieve better worst-case 
asymptotic running times than comparison-based data structures. If the keys 
are unique integers drawn from the set f0; 1; 2; : : : ; u  1g, where u is an ex- 
act power of 2, then a recursive data structure known as a van Emde Boas 
tree [440, 441] supports each of the operations SEARCH, I NSERT, DELETE, 
MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR in O.lg lg u/ time. 
Fusion trees [157] were the ûrst data structure to allow faster dictionary opera- 
tions when the universe is restricted to integers, implementing these operations 
in O.lg n= lg lg n/ time. Several subsequent data structures, including expo- 
nential search trees [17], have also given improved bounds on some or all of 
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the dictionary operations and are mentioned in the chapter notes throughout this 
book. 

 Dynamic graph data structures support various queries while allowing the 
structure of a graph to change through operations that insert or delete vertices 
or edges. Examples of the queries that they support include vertex connectivity 
[214], edge connectivity, minimum spanning trees [213], biconnectivity, and 
transitive closure [212]. 

Chapter notes throughout this book mention additional data structures. 


