-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chap-fcd-top.tex
269 lines (216 loc) · 9.78 KB
/
chap-fcd-top.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
\chapter{Mappings between endofuncoids and topological spaces}
Oreder topologies reversely to set-theoretic inclusion. That is
for topologies~$t$ and~$s$ we set
$t\sqsubseteq s\Leftrightarrow t\supseteq s$. (Intuitively:
The less is the topology, the lesser are its open sets.)
Let's study mappings between topological spaces and endofuncoids.
\begin{defn}
Let $t$ be a topology.
\begin{enumerate}
\item $F^{\fullstar} t = \bigsqcup_{x \in \Ob t} \left( \{ x \} \times
\bigsqcap^{\mathscr{F}} \setcond{ E \in t }{ x \in
E } \right)$;
\item $(F_{\fullstar} t) E = \bigcap \setcond{ D \in t }{ E \subseteq D }$.
\end{enumerate}
\end{defn}
\begin{prop}
Let $t$ be a topology.
\begin{enumerate}
\item $F^{\fullstar} t$ is complete, reflexive, transitive funcoid.
\item $F_{\fullstar} t$ is co-complete, reflexive, transitive funcoid.
\item $F^{\fullstar}$ and $F_{\fullstar}$ are injections.
\item $F_{\fullstar} t = (F^{\fullstar} t)^{- 1}$.
\end{enumerate}
\end{prop}
\begin{proof}
By theorem~\bookref{top-two}.
\end{proof}
\begin{defn}
Let $f$ be an endofuncoid.
\[ T f = \setcond{ E \in \subsets \Ob f }{
\forall x \in E : \supfun{f} \{ x \} \sqsubseteq E } . \]
\end{defn}
\begin{prop}
$T f$ is a topology.
\end{prop}
\begin{proof}
\begin{description}
\item[Union of open sets is open] $S \subseteq T f \Rightarrow \forall E
\in S \forall x \in E : \supfun{f} x \sqsubseteq E \Rightarrow
\forall x \in \bigcup S : \supfun{f} x \sqsubseteq \bigcup S$
\item[Intersection of two open sets is open] Let $X, Y \in T f$. Then
$\forall x \in X : \supfun{f} x \sqsubseteq X$ and $\forall x \in Y
: \supfun{f} x \sqsubseteq Y$. So if $x \in X \cap Y$ then $\langle
f \rangle x \sqsubseteq X$ and $\supfun{f} x \sqsubseteq Y$, so
$\supfun{f} x \sqsubseteq X \cap Y$. So $X \cap Y \in T f$.
\item[$\Ob f$ is an open set] Obvious.
\end{description}
\end{proof}
\begin{obvious}
$T f = \setcond{ E \in \subsets \Ob f }{ \langle
\Compl f \rangle E \sqsubseteq E }$.
\end{obvious}
In some reason when starting this research I assumed that the
following funcoid (for every endofuncoid~$f$) is a Kuratowski closure:
\[
1 \sqcup \CoCompl f \sqcup (\CoCompl f)^2 \sqcup \ldots.
\]
It is not true:
\begin{example}
There exists such a co-complete endofuncoid~$f$ that
$1 \sqcup f \sqcup f^2 \sqcup \ldots$ is not transitive that
is
\[(1 \sqcup f \sqcup f^2 \sqcup \ldots)\circ
(1 \sqcup f \sqcup f^2 \sqcup \ldots) \ne
1 \sqcup f \sqcup f^2 \sqcup \ldots
\]
\end{example}
\begin{proof}
Take $f=\cl\circ g$ where $g$ is the principal funcoid which maps
every real number~$a$ into the closed interval
$\left[ \frac{- 1 - | a |}{2} ; \frac{1 + | a |}{2} \right]$.
Take $X = \left[ - \frac{1}{2} ; \frac{1}{2} \right]$. $\langle f^n
\rangle^{\ast} X = \left[ - 1 + \frac{1}{2^{n + 1}} ; 1 - \frac{1}{2^{n + 1}}
\right]$.
We have $\langle 1 \sqcup f \sqcup f^2 \sqcup \ldots \rangle^{\ast} X =] - 1 ;
1 [$;
$\langle 1 \sqcup f \sqcup f^2 \sqcup \ldots \rangle^{\ast} \langle 1 \sqcup f
\sqcup f^2 \sqcup \ldots \rangle^{\ast} X = [- 1 ; 1]$.
Thus follows our inequality.
\end{proof}
That $F^{\star}$ and $F_{\star}$ are functors (if we map morphisms to
themselves except of changing the objects) follows from
conjecture~\bookref{top-cont}.
\begin{thm}
$T$ (if we map morphisms to
themselves except of changing the objects) is a functor.
\end{thm}
\begin{proof}
Based on \url{https://math.stackexchange.com/a/2792239/4876}
Let $f : \mu \rightarrow \nu$ that is $f \circ \mu \sqsubseteq \nu \circ f$.
We need to prove $f : T \mu \rightarrow T \nu$ that is $E \in T \nu
\Rightarrow \langle f^{- 1} \rangle^{\ast} E \in T \mu$.
Suppose $E \in T \nu$ that is $\langle \nu \rangle^{\ast} E \sqsubseteq E$.
We will prove $\langle \mu \rangle^{\ast} \langle f^{- 1} \rangle^{\ast} E
\sqsubseteq \langle f^{- 1} \rangle^{\ast} E$.
\fxnote{Can we use arbitrary filters rather than atoms?}
Really, let atom $y \sqsubseteq \langle \mu \rangle^{\ast} \langle f^{- 1}
\rangle^{\ast} E$. Then there exists atom $x \sqsubseteq \langle f^{- 1}
\rangle^{\ast} E$ such that $x \mathrel{[\mu]^{\ast}} y$.
$x \mathrel{[f \circ \mu]^{\ast}} \langle f \rangle y$ and thus $x
\mathrel{[\nu \circ f]^{\ast}} \langle f \rangle y$, so $\langle f \rangle x
\mathrel{[\nu]^{\ast}} \langle f \rangle y$. But $\langle f \rangle x
\sqsubseteq E$, so $\langle f \rangle y \sqsubseteq \langle \nu
\rangle^{\ast} E \sqsubseteq E$, that is $\langle \mu \rangle^{\ast} \langle
f^{- 1} \rangle^{\ast} E \sqsubseteq E$.
\end{proof}
\begin{prop}
$f \in \mathrm{C} (\mu, \nu) \Rightarrow f \in \mathrm{C} (\mu^n, \nu^n)$
for every endofuncoids $\mu$ and $\nu$ and positive natural
number~$n$.
\fxnote{Move this proposition to the book.}
\end{prop}
\begin{proof}
$f \circ \mu \sqsubseteq \nu \circ f$; $f \circ \mu \circ \mu \sqsubseteq
\nu \circ f \circ \mu$; $f \circ \mu^2 \sqsubseteq \nu^2 \circ f$; $f \circ
\mu^3 \sqsubseteq \nu^3 \circ f$...
\end{proof}
\begin{prop}
For every endofuncoid $\mu$:
\begin{enumerate}
\item $F_{\fullstar} T \mu \sqsupseteq \Compl \mu$;
\item $F^{\fullstar} T \mu \sqsupseteq \Compl \mu$;
\item $F_{\fullstar} T \mu \sqsupseteq \CoCompl \mu$;
\item $F^{\fullstar} T \mu \sqsupseteq \CoCompl \mu$;
\end{enumerate}
\end{prop}
\begin{proof}
We will prove only the first two as the rest are dual.
$\langle F_{\fullstar} T \mu \rangle^{\ast} E =
\bigcap \setcond{ D \in T \mu
}{ D \supseteq E } = \bigcap \setcond{ D \in
\subsets \Ob \mu }{ \langle \Compl
\mu \rangle^{\ast} D \sqsubseteq D \wedge D \supseteq E } \sqsupseteq
\bigsqcap \setcond{ \langle \Compl \mu \rangle^{\ast} D }{
D \in \subsets \Ob \mu, \langle \Compl \mu
\rangle^{\ast} D \sqsubseteq D \wedge D \supseteq E } \sqsupseteq
\langle \Compl \mu \rangle^{\ast} E$.
$\langle F^{\fullstar} T \mu \rangle^{\ast} \{ x \} = \bigsqcap^{\mathscr{F}}
\setcond{ E \in T \mu }{ x \in E } =
\bigsqcap^{\mathscr{F}} \setcond{ E \in \Ob \mu }{
x \in E, \left\langle \Compl \mu \right\rangle^{\ast} E
\sqsubseteq E } \sqsupseteq \bigsqcap^{\mathscr{F}} \setcond{ \langle
\Compl \mu \rangle^{\ast} E }{ E \in \Ob
\mu, x \in E, \langle \Compl \mu \rangle^{\ast} E \sqsubseteq E }
\sqsupseteq \langle \Compl \mu \rangle^{\ast} \{ x \}$.
\end{proof}
\begin{lem}
For every endofuncoid $\mu$:
\begin{enumerate}
\item $F_{\fullstar} T \mu \sqsubseteq 1 \sqcup \Compl \mu \sqcup
(\Compl \mu)^2 \sqcup \ldots$;
\item $F^{\fullstar} T \mu \sqsubseteq 1 \sqcup \CoCompl \mu \sqcup
(\CoCompl \mu)^2 \sqcup \ldots$
\end{enumerate}
\end{lem}
\begin{proof}
We will prove only the first as the second is dual.
$\langle 1 \sqcup \Compl \mu \sqcup (\Compl \mu)^2 \sqcup \ldots
\rangle^{\ast} E = E \sqcup \langle \Compl \mu \rangle^{\ast} E \sqcup
\langle (\Compl \mu)^2 \rangle^{\ast} E \sqcup \ldots$
Take $D = E \sqcup \langle \Compl \mu \rangle^{\ast} E \sqcup \langle
(\Compl \mu)^2 \rangle^{\ast} E \sqcup \ldots$ We have $\langle
\Compl \mu \rangle^{\ast} D \sqsubseteq \langle \Compl \mu
\rangle^{\ast} E \sqcup \langle (\Compl \mu)^2 \rangle^{\ast} E \sqcup
\ldots \sqsubseteq D$. So
$\bigcap \setcond{ D \in \subsets \Ob \mu }{
\langle \Compl \mu \rangle^{\ast} D \sqsubseteq D \wedge D \supseteq E
} \subseteq D \sqsubseteq \langle 1 \sqcup \Compl \mu \sqcup
(\Compl \mu)^2 \sqcup \ldots \rangle^{\ast} E$.
\end{proof}
\begin{thm}
If we restrict the functor $T$ only to complete endofuncoids (=~complete
endoreloids), then $T$ is a left adjoint of both $F_{\fullstar}$ and
$F^{\fullstar}$.
\end{thm}
\begin{proof}
We will prove only for $F_{\fullstar}$ as the other is dual.
We will disprove $f \in \mathrm{C} (T \mu, s) \Leftrightarrow f \in
\mathrm{C} (\mu, F_{\fullstar} s)$ what is equivalent (because $F_{\fullstar}$ is
full and faithful) to
\[ f \in \mathrm{C} (F_{\fullstar} T \mu, F_{\fullstar} s) \Leftrightarrow f \in
\mathrm{C} (\mu, F_{\fullstar} s) ; \]
$F_{\fullstar} T \mu \sqsubseteq f^{- 1} \circ F_{\fullstar} s \circ f
\Leftrightarrow \mu \sqsubseteq f^{- 1} \circ F_{\fullstar} s \circ f$.
$F_{\fullstar} T \mu \sqsubseteq f^{- 1} \circ F_{\fullstar} s \circ f \Rightarrow
\mu \sqsubseteq f^{- 1} \circ F_{\fullstar} s \circ f$ because $F_{\fullstar} T \mu
\sqsupseteq \mu$.
If $\mu \sqsubseteq f^{- 1} \circ F_{\fullstar} s \circ f$ then $\mu^n
\sqsubseteq f^{- 1} \circ (F_{\fullstar} s)^n \circ f = f^{- 1} \circ F_{\fullstar}
s \circ f$. Also obviously $1 \sqsubseteq f^{- 1} \circ F_{\fullstar} s \circ
f$. Thus
\[ 1 \sqcup \mu \sqcup \mu^2 \sqcup \ldots \sqsubseteq f^{- 1} \circ
F_{\fullstar} s \circ f \]
and so $1 \sqcup \Compl \mu \sqcup (\Compl \mu)^2 \sqcup \ldots
\sqsubseteq f^{- 1} \circ F_{\fullstar} s \circ f$. So $F_{\fullstar} T \mu
\sqsubseteq f^{- 1} \circ F_{\fullstar} s \circ F$.
\end{proof}
\fxnote{$F$ and $T$ are also a Galois connection, isn't it?}
\begin{example}
$T$ is a not left adjoint of both $F_{\star}$ and $F^{\star}$, with bijection
which preserves the ``function'' part of the morphism.
\end{example}
\begin{proof}
We will disprove only from $F_{\fullstar}$ as the other is dual.
We will disprove $f \in \mathrm{C} (T \mu, s) \Leftrightarrow f \in \mathrm{C}
(\mu, F_{\fullstar} s)$ what is equivalent
(because $F_{\star}$ is full and faithful) to
\[ f \in \mathrm{C} (F_{\fullstar} T \mu, F_{\fullstar} s) \Leftrightarrow f \in
\mathrm{C} (\mu, F_{\fullstar} s) ; \]
$F_{\fullstar} T \mu \sqsubseteq f^{- 1} \circ F_{\fullstar} s \circ f
\Leftrightarrow \mu \sqsubseteq f^{- 1} \circ F_{\fullstar} s \circ f$.
This equivalence does not hold: Take $s$ the discrete space
on~$\mathbb{R}$, $f=\id_{\mathbb{R}}$, and
$\rsupfun{\mu}X=X$ for finite sets~$X$ and $\rsupfun{\mu}X=\top$
for infinite~$X$.
\end{proof}