-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chap-product.tex
1023 lines (771 loc) · 43.8 KB
/
chap-product.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\chapter{Products in dagger categories with complete ordered Hom-sets}
\fxwarning{This is a rough draft. It is not yet checked for errors.}
\begin{note}
What I previously denoted $\prod F$ is now denoted $\bigodot^{\text{proj}}_{\sqcap} F$ (and
likewise for $\mathord{\coprod}$). The other draft chapters referring to
this chapter may be not yet updated.
\end{note}
\begin{prop}
~
\fxwarning{Should we move this to volume 1?}
\begin{enumerate}
\item Every entirely defined monovalued morphism is metamonovalued and metacomplete.
\item Every surjective injective morphism is metainjective and co-metacomplete.
\end{enumerate}
\end{prop}
\begin{proof}
Let's prove the first (the second follows from duality):
Let $f$ be an entirely defined monovalued morphism.
$\left( \bigsqcap G \right) \circ f \sqsubseteq \bigsqcap_{g \in G} (g \circ
f)$ by monotonicity of composition.
Using the fact that $f$ is monovalued and entirely defined:
$\left( \bigsqcap_{g \in G} (g \circ f) \right) \circ f^{\dagger} \sqsubseteq
\bigsqcap_{g \in G} (g \circ f \circ f^{\dagger}) \sqsubseteq \bigsqcap G$;
$\bigsqcap_{g \in G} (g \circ f) \sqsubseteq \left( \bigsqcap_{g \in G} (g
\circ f) \right) \circ f^{\dagger} \circ f \sqsubseteq \left( \bigsqcap G
\right) \circ f$.
So $\left( \bigsqcap G \right) \circ f = \bigsqcap_{g \in G} (g \circ f)$.
Let $f$ be a entirely defined monovalued morphism.
$f \circ \left( \bigsqcup G \right) \sqsupseteq \bigsqcup_{g \in G} (f \circ
g)$ by monotonicity of composition.
Using the fact that $f$ is entirely defined and monovalued:
$f^{\dagger} \circ \left( \bigsqcup_{g \in G} (f \circ g) \right) \sqsupseteq
\bigsqcup_{g \in G} (f^{\dagger} \circ f \circ g) \sqsupseteq \bigsqcap G$;
$\bigsqcup_{g \in G} (f \circ g) \sqsupseteq f \circ f^{\dagger} \circ
\bigsqcup_{g \in G} (f \circ g) \sqsupseteq f \circ \left( \bigsqcup G
\right)$.
So $f \circ \left( \bigsqcup G \right) = \bigsqcup_{g \in G} (f \circ g)$.
\end{proof}
\section{General product in partially ordered dagger category}
To understand the below better, you can restrict your imagination to the case
when $\mathcal{C}$ is the category $\mathbf{Rel}$.
\subsection{Products}
Let $\mathcal{C}$ be a dagger category, each Hom-set of which is a complete
lattice (having order agreed with the dagger).
We will designate some morphisms as \emph{principal} and require that
principal morphisms are both metacomplete and co-metacomplete. (For a
particular example of the category $\mathbf{Rel}$, all morphisms are
considered principal.)
Let $\prod^{(Q)} X$ be an object for each indexed family $X$ of objects.
Let $\pi$ be a partial function mapping elements $X \in \dom \pi$ (which
consists of small indexed families of objects of $\mathcal{C}$) to indexed
families $\prod^{(Q)} X \rightarrow X_i$ of principal morphisms (called
\emph{projections}) for every $i \in \dom X$.
We will denote particular projections as $\pi^X_i$.
\begin{defn}
If $\pi$ is defined at $\lambda
j \in n : \Src F_j$ and $\lambda j \in n : \Dst F_j$, then
\[ \bigodot^{\text{proj}}_{\sqcap} F = \bigsqcap_{i \in \dom F} ((\pi^{\Dst \circ
F_{}}_i)^{\dagger} \circ F_i \circ \pi^{\Src \circ F}_i) . \]
\end{defn}
If $F_i:Y\to X_i$ for all~$i$ for some object~$Y$:
\[
\prod^{\text{proj}}_{\sqcap} F = \bigsqcap_{i \in \dom F} ((\pi^{\Dst\circ F}_i)^{\dagger} \circ F_i) .
\]
If $F_i:X_i\to Y$ for all~$i$ for some object~$Y$:
\[
\coprod^{\text{proj}}_{\sqcup} F = \bigsqcup_{i \in \dom F} (F_i \circ \pi^{\Src\circ F}_i) .
\]
\begin{rem}
\begin{align*}
(\pi^{\Dst \circ
F_{}}_i)^{\dagger} \circ F_i \circ \pi^{\Src \circ F}_i \in \Hom \left(
\prod^{(Q)}_{j \in n} \Src F_j , \prod^{(Q)}_{j \in n} \Dst F_j
\right);\\
(\pi^{\Dst \circ
F_{}}_i)^{\dagger} \circ F_i \in \Hom \left(
Y , \prod^{(Q)}_{j \in n} \Dst F_j
\right);\\
F_i \circ \pi^{\Src \circ F}_i \in \Hom \left(
\prod^{(Q)}_{j \in n} \Src F_j , Y \right).
\end{align*}
are properly defined and have the same sources and destination
(whenever $i \in \dom F$ is), thus the meet in the formulas is
properly defined.
\end{rem}
\begin{rem}
Thus, for example,
\begin{multline*}
F_0 \odot^{\text{proj}}_{\sqcap} F_1 = ((\pi^{(\Dst F_0 , \Dst
F_1)}_0)^{\dagger} \circ F_0 \circ \pi^{(\Src F_0 , \Src
F_1)}_0) \sqcap\\ ((\pi^{(\Dst F_0 , \Dst F_1)}_1)^{\dagger}
\circ F_1 \circ \pi^{(\Src F_0 , \Src F_1)}_1)
\end{multline*}
that is product is defined by a pure algebraic formula.
\end{rem}
\begin{lem}
$F\mapsto\bigsqcup_{i\in\dom F}\phi(F_i)$ for ordinal variadic~$F$ is infinitely
associative for any function~$\phi$ defined on all values~$F_i$.
\end{lem}
\begin{proof}
I will denote $t(F)=\bigsqcup_{i\in\dom F}\phi(F_i)$. We need
to prove:
\begin{widedisorder}
\item[$t(t\circ S)=t(\concat S)$]
$t(\concat S)=
\bigsqcup_{i\in\dom(\concat S)}\phi((\concat S)_i)=
\bigsqcup_{i\in\dom(\uncurry(S))}\phi((\uncurry(S))_i)$.
$t(t\circ S)=
\bigsqcup_{i\in\dom S}\phi(tS_i)=
\bigsqcup_{i\in\dom S}\bigsqcup_{j\in\dom F}\phi((S_i)_j)$.
So, obviously $t(t\circ S)=t(\concat S)$.
\item[$t(\llbracket x\rrbracket)=x$] Obvious.
\end{widedisorder}
\end{proof}
\begin{cor}
All three above defined products are infinitely associative
for ordinal variadic families~$F$.
\end{cor}
\begin{proof}
An obvious consequence taking into account duality.
\end{proof}
\begin{prop}
$\bigodot^{\text{proj}}_{\sqcap} F = \max \setcond{ \Phi \in \Hom \left( \prod^{(Q)}_{j \in
n} \Src F_j , \prod^{(Q)}_{j \in n} \Dst F_j \right)
}{ \forall i \in n : \Phi \sqsubseteq (\pi^{\Dst\circ F}_i)^{\dagger} \circ F_i \circ \pi^{\Src\circ F}_i }$.
\end{prop}
\begin{proof}
By definition of meet on a complete lattice.
\end{proof}
\begin{thm}
Let $\pi^X_i$ be metamonovalued morphisms. Let~$I$ be an index set. If $S \in \subsets \prod_{i\in I}\Hom(A_i, B_i)$ for some objects $A_i$, $B_i$ where $i\in I$ then
\begin{gather*}
\bigsqcap_{f\in S} \bigodot^{\operatorname{proj}}_{\sqcap}f =
\bigodot_{i\in I}\bigsqcap_{f\in S}f_i=
\bigodot_{i\in I}\bigsqcap\Pr_i S;\\
\bigsqcap_{f\in S} \prod^{\operatorname{proj}}_{\sqcap} f =
\prod_{i\in I}\bigsqcap_{f\in S}f_i=
\prod_{i\in I}\bigsqcap\Pr_i S;\\
\bigsqcap_{f\in S} \coprod^{\operatorname{proj}}_{\sqcap} f =
\coprod_{i\in I}\bigsqcap_{f\in S}f_i=
\coprod_{i\in I}\bigsqcap\Pr_i S.
\end{gather*}
\end{thm}
\begin{proof}
Let us consider for example the first formula (two others
are similar):
\begin{align*}
\bigsqcap_{f\in S} \bigodot^{\operatorname{proj}}_{\sqcap} & = \\
\bigsqcap_{f\in S} \bigsqcap_{i\in I}((\pi^{\Dst\circ f_i}_i)^{\dagger} \circ f_i \circ \pi^{\Src\circ f_i}_i) & = \\
\bigsqcap_{i\in I}\bigsqcap_{f\in S}((\pi^{\Dst\circ f_i}_i)^{\dagger} \circ f_i \circ \pi^{\Src\circ f_i}_i) & = \\
\bigsqcap_{i\in I}((\pi^{\Dst\circ f_i}_i)^{\dagger} \circ \bigsqcap_{f\in S}f_i \circ \pi^{\Src\circ f_i}_i) & = \\
\bigodot_{i\in I}\bigsqcap_{f\in S}f_i & = \\
\bigodot_{i\in I}\bigsqcap\Pr_i S.
\end{align*}
\end{proof}
\begin{cor}
~
\begin{enumerate}
\item
$(a_0 \odot^{\operatorname{proj}}_{\sqcap} b_0) \sqcap (a_1 \odot^{\operatorname{proj}}_{\sqcap} b_1) = (a_0 \sqcap a_1)
\odot^{\operatorname{proj}}_{\sqcap} (b_0 \sqcap b_1)$;
\item
$(a_0 \times^{\operatorname{proj}}_{\sqcap} b_0) \sqcap (a_1 \times^{\operatorname{proj}}_{\sqcap} b_1) = (a_0 \sqcap a_1)
\times^{\operatorname{proj}}_{\sqcap} (b_0 \sqcap b_1)$;
\item
$(a_0 \amalg^{\operatorname{proj}}_{\sqcap} b_0) \sqcap (a_1 \amalg^{\operatorname{proj}}_{\sqcap} b_1) = (a_0 \sqcap a_1)
\amalg^{\operatorname{proj}}_{\sqcap} (b_0 \sqcap b_1)$;
\end{enumerate}
\end{cor}
\subsection{Product for endomorphisms}
Let $F$ is an indexed family of endomorphisms of $\mathcal{C}$.
I will denote $\Ob f$ the object (source and destination) of an
endomorphism $f$.
Let also $\pi^X_i$ be a monovalued entirely defined morphism (for each $i \in
\dom F$).
Then
\begin{gather*}
\bigodot^{\text{proj}}_{\sqcap} F = \bigsqcap_{i \in \dom F} ((\pi^{\lambda j \in n :
\Ob F_j}_i)^{\dagger} \circ F_i \circ \pi^{\lambda j \in n : \Ob
F_j}_i);\\
\bigodot^{\text{proj}}_{\sqcup} F = \bigsqcup_{i \in \dom F} ((\pi^{\lambda j \in n :
\Ob F_j}_i)^{\dagger} \circ F_i \circ \pi^{\lambda j \in n : \Ob
F_j}_i)
\end{gather*}
(if $\pi$ is defined at $\lambda j \in n : \Ob F_j$).
Abbreviate $\pi_i = \pi^{\lambda j \in n : \Ob F_j}_i$.
So
\begin{gather*}
\bigodot^{\text{proj}}_{\sqcap} F = \bigsqcap_{i \in \dom F} ((\pi_i)^{\dagger} \circ
F_i \circ \pi_i);\\
\bigodot^{\text{proj}}_{\sqcup} F = \bigsqcup_{i \in \dom F} ((\pi_i)^{\dagger} \circ
F_i \circ \pi_i).
\end{gather*}
$\bigodot^{\text{proj}}_{\sqcap} F = \max \setcond{ \Phi \in \End \left( \prod^{(Q)}_{j \in n}
\Ob F_j \right) }{ \forall i \in n : \Phi
\sqsubseteq (\pi_i)^{\dagger} \circ F_i \circ \pi_i }$.
$\bigodot^{\text{proj}}_{\sqcup} F = \min \setcond{ \Phi \in \End \left( \prod^{(Q)}_{j \in n}
\Ob F_j \right) }{ \forall i \in n : \Phi
\sqsupseteq (\pi_i)^{\dagger} \circ F_i \circ \pi_i }$.
Taking into account that $\pi_i$ is a monovalued entirely defined morphism, we
get:
\begin{obvious}
$\bigodot^{\text{proj}}_{\sqcap} F = \max \setcond{ \Phi \in \End \left( \prod^{(Q)}_{j \in
n} \Ob F_j \right) }{ \forall i \in n : \pi_i
\in \mathrm{C} (\Phi , F_i) }$.
\end{obvious}
\begin{obvious}
$\bigodot^{\text{proj}}_{\sqcup} F = \min \setcond{ \Phi \in \End \left( \prod^{(Q)}_{j \in
n} \Ob F_j \right) }{ \forall i \in n : \pi_i
\in \mathrm{C}_{\ast} (\Phi , F_i) }$.
\end{obvious}
\begin{rem}
The above formulas may allow to define the product for non-dagger categories
(but only for endomorphisms). In this writing I don't introduce a notation
for this, however.
\end{rem}
\begin{cor}
$\pi_i \in \mathrm{C} \left( \bigodot^{\text{proj}}_{\sqcap} F , F_i \right)$ and
$\pi_i \in \mathrm{C}_{\ast} \left( \bigodot^{\text{proj}}_{\sqcup} F , F_i \right)$
for every $i \in \dom F$.
\end{cor}
\subsection{Category of continuous morphisms}
\begin{defn}
The category $\cont (\mathcal{C})$ is defined as follows:
\begin{itemize}
\item Objects are endomorphisms of the category $\mathcal{C}$.
\item Morphisms are triples $(f , a , b)$ where $a$ and $b$ are objects
and $f : \Ob a \rightarrow \Ob b$ is an entirely defined
monovalue principal morphism of the category $\mathcal{C}$ such that $f
\in \mathrm{C} (a , b)$ (in other words, $f \circ a \sqsubseteq b \circ
f$).
\item Composition of morphisms is defined by the formula $(g , b , c)
\circ (f , a , b) = (g \circ f , a , c)$.
\item Identity morphisms are $(a , a , 1^{\mathcal{C}}_a)$.
\end{itemize}
\end{defn}
It is really a category:
\begin{proof}
We need to prove that: composition of morphisms is a morphism, composition
is associative, and identity morphisms can be canceled on the left and on
the right.
That composition of morphisms is a morphism by properties of generalized
continuity.
That composition is associative is obvious.
That identity morphisms can be canceled on the left and on the right is
obvious.
\end{proof}
\begin{rem}
The ``physical'' meaning of this category is:
\begin{itemize}
\item Objects (endomorphisms of $\mathcal{C}$) are spaces.
\item Morphisms are continuous functions between spaces.
\item $f \circ a \sqsubseteq b \circ f$ intuitively means that $f$
combined with an infinitely small is less than infinitely small combined
with $f$ (that is $f$ is continuous).
\end{itemize}
\end{rem}
\begin{defn}
$\pi^{\cont (\mathcal{C})}_i = \left( \bigodot^{\text{proj}}_{\sqcap} F , F_i ,
\pi_i \right)$.
\end{defn}
\begin{prop}
$\pi_i$ are continuous, that is $\pi^{\cont}
(\mathcal{C})_i$ are morphisms.
\end{prop}
\begin{proof}
We need to prove $\pi_i \in \mathrm{C} \left( \bigodot^{\text{proj}}_{\sqcap} F , F_i \right)$
but that was proved above.
\end{proof}
Let further $\mathcal{C}$ have sets as objects and $\prod^{(Q)}X=\prod X$ for an indexed family~$X$ of sets and $\pi_i = \Pr_i$ (for $i \in \dom F$).
\begin{lem}
$f \in \Hom_{\cont (\mathcal{C})} \left( Y ,
\bigodot^{\text{proj}}_{\sqcap} F \right)$ is continuous iff all $\pi_i \circ f$ are continuous.
\end{lem}
\begin{proof}
~
\begin{description}
\item[$\Rightarrow$] Let $f \in \Hom_{\cont
(\mathcal{C})} \left( Y , \bigodot^{\text{proj}}_{\sqcap} F \right)$. Then $f \circ Y
\sqsubseteq \left( \bigodot^{\text{proj}}_{\sqcap} F \right) \circ f$; $\pi_i \circ f \circ Y
\sqsubseteq \pi_i \circ \left( \bigodot^{\text{proj}}_{\sqcap} F \right) \circ f$; $\pi_i
\circ f \circ Y \sqsubseteq \left( \bigodot^{\text{proj}}_{\sqcap} F \right) \circ \pi_i \circ
f$. Thus $\pi_i \circ f$ is continuous.
\item[$\Leftarrow$] Let all $\pi_i \circ f$ be continuous. Then
$\pi^{\cont (\mathcal{C})}_i \circ f \in
\Hom_{\cont (\mathcal{C})} (Y , F_i)$;
$\pi^{\cont (\mathcal{C})}_i \circ f \circ Y \sqsubseteq
F_i \circ \pi^{\cont (\mathcal{C})}_i \circ f$. We need
to prove $Y \sqsubseteq f^{\dagger} \circ \left( \bigodot^{\text{proj}}_{\sqcap} F \right)
\circ f$ that is
\[ Y \sqsubseteq f^{\dagger} \circ \bigsqcap_{i \in n} ((\pi_i)^{\dagger}
\circ F_i \circ \pi_i) \circ f \]
for what is enough (because $f$ is metamonovalued)
\[ Y \sqsubseteq \bigsqcap_{i \in n} (f^{\dagger} \circ (\pi_i)^{\dagger}
\circ F_i \circ \pi_i \circ f) \]
what follows from $Y \sqsubseteq \bigsqcap_{i \in n} (f^{\dagger} \circ
(\pi_i)^{\dagger} \circ \pi_i \circ f \circ Y)$ what is obvious.
\end{description}
\end{proof}
\begin{thm}\label{cont-pr-pr}
$\prod^{\text{proj}}_{\sqcap}$ together with $\pi$ is a categorical product in the category $\cont (\mathcal{C})$.
\end{thm}
\begin{proof}
Check
\url{http://math.stackexchange.com/questions/102632/how-to-check-whether-it-is-a-direct-product/102677\#102677}
I will denote $(\prod f)x=\prod_{i\in\dom f}f_i x$ for an
indexed family~$f$ of functions.
We need to prove:
\begin{enumerate}
\item $\pi_k\circ\prod f=f_k$;
\item $\prod_{i\in\dom f}(\pi_i\circ f)=f$.
\end{enumerate}
But it follows from the fact that $\pi_i=\Pr_i$.
\end{proof}
\section{On duality}
We will consider duality where both the category $\mathcal{C}$ and orders on
Hom-sets are replaced with their dual. I will denote $A
\xleftrightarrow{\dual} B$ when two formulas $A$ and $B$ are dual with
this duality.
\begin{prop}
$f \in \mathrm{C} (\mu, \nu) \xleftrightarrow{\dual} f^{\dagger}
\in \mathrm{C} (\nu^{\dagger} , \mu^{\dagger})$.
\end{prop}
\begin{proof}
$f \in \mathrm{C} (\mu, \nu) \Leftrightarrow f \circ \mu
\sqsubseteq \nu \circ f \xleftrightarrow{\dual} \mu^{\dagger}
\circ f^{\dagger} \sqsupseteq f^{\dagger} \circ^{\dagger} \nu^{- 1}
\Leftrightarrow f^{\dagger} \in \mathrm{C} (\nu^{\dagger} ,
\mu^{\dagger})$.
\end{proof}
$f \text{ is entirely defined} \Leftrightarrow f^{\dagger} \circ f \sqsupseteq
1_{\Src f} \xleftrightarrow{\dual} f^{\dagger} \circ f \sqsubseteq
1_{\Src f} \Leftrightarrow f \text{ is injective} \Leftrightarrow
f^{\dagger} \text{ is monovalued}$.
$f \text{ is monovalued} \Leftrightarrow f \circ f^{\dagger} \sqsubseteq
1_{\Dst f} \xleftrightarrow{\dual} f \circ f^{\dagger} \sqsupseteq
1_{\Dst f} \Leftrightarrow f \text{ is surjective} \Leftrightarrow
f^{\dagger} \text{ is entirely defined}$.
\section{Dual products}
The below is the dual of the above, proofs are omitted as they are dual.
Let $\coprod^{(Q)}X$ be an object for each indexed family~$X$ of objects.
I will denote \emph{coprincipal} morphisms~$f^{\dagger}$ where $f$~is principal. (Usually there is no distinction between
principal and coprincipal.)
Let $\iota$ be a partial function mapping elements $X\in\dom\iota$ (which consist of small indexed families of objects of~$\mathcal{C}$) to indexed families $X_i\to\coprod^{(Q)}X$ of coprincipal morphisms (called \emph{injections}) for every $i\in\dom X$.
We will denote particular morphisms as $\iota_i^X$.
If (but we won't assume this below) $\iota_i =
(\pi_i)^{\dagger}$. We have the above equivalent to $\pi_i$ being principal.
We will define $\bigodot^{\operatorname{inj}}$, $\prod^{\operatorname{inj}}$, $\coprod^{\operatorname{inj}}$
by analogy with $\operatorname{proj}$ counterparts replacing~$\pi$ by~$\iota^{\dagger}$.
We will also define $\bigodot^{\operatorname{proj}}_{\sqcup}$, $\bigodot^{\operatorname{inj}}_{\sqcup}$, etc.\ by replacing~$\bigsqcap$ by~$\bigsqcup$.
\subsection{Dual products for endomorphisms}
\begin{prop}
$\bigodot^{\operatorname{inj}}_{\sqcup} F = \min \setcond{ \Phi \in \End \left( \coprod^{(Q)}_{j
\in n} \Ob F_j \right) }{ \forall i \in n :
\Phi \sqsupseteq \iota^{\lambda j \in n : \Src F_j}_i \circ
F_i^{\dagger} \circ (\iota^{\lambda j \in n : \Dst F_j}_i)^{\dagger} }$.
\end{prop}
\begin{proof}
By duality.
\end{proof}
Let $F$ be an indexed family of endomorphisms of $\mathcal{C}$.
\begin{defn}
$\bigodot^{\operatorname{inj}}_{\sqcup} F = \bigsqcup_{i \in \dom F} (\iota^{\lambda j \in n :
\Ob F_j}_i \circ F_i^{\dagger} \circ (\iota^{\lambda j \in n :
\Ob F_j}_i)^{\dagger})$.
\end{defn}
Abbreviate $\iota_i = \iota^{\lambda j \in n : \Ob F_j}_i$.
So $\bigodot^{\operatorname{inj}}_{\sqcup} F = \bigsqcup_{i \in \dom F} (\iota_i \circ F_i^{\dagger}
\circ (\iota_i)^{\dagger})$.
$\bigodot^{\operatorname{inj}}_{\sqcup} F = \min \setcond{ \Phi \in \End \left( \coprod^{(Q)}_{j \in n}
\Ob F_j \right) }{ \forall i \in n : \Phi
\sqsupseteq \iota_i \circ F_i^{\dagger} \circ (\iota_i)^{\dagger} }$.
Taking into account that $\iota_i$ is a monovalued entirely defined morphism,
we get:
\begin{obvious}
$\coprod^{(L)} = \min \setcond{ \Phi \in \End \left( \coprod^{(Q)}_{j \in
n} \Ob F_j \right) }{ \forall i \in n : \iota_i
\in \mathrm{C} (F_i^{\dagger} , \Phi) }$.{\hspace*{\fill}}{\medskip}
\end{obvious}
\begin{cor}
$\iota_i \in \mathrm{C} \left( F_i , \coprod^{(L)} F \right)$ for every $i
\in \dom F$.
\end{cor}
\begin{rem}
The last two theorems don't require that our category is dagger. I omit the proof.
\end{rem}
\subsection{Category of continuous morphisms}
Let $\iota_i$ be canonical injections.
\begin{defn}
$\iota^{\cont(\mathcal{C})}_i = \left(F_i,\bigodot^{\operatorname{inj}}_{\sqcup}F,\iota_i\right)$.
\end{defn}
\begin{obvious}
$\iota_i$ are continuous that is $\iota^{\cont(\mathcal{C})}_i$ are morphisms.
\end{obvious}
\begin{thm}
$\coprod^{\operatorname{inj}}_{\sqcup}$ together with $\iota$ is a categorical coproduct in the category~$\cont(\mathcal{C})$.
\end{thm}
\begin{proof}
Dual to theorem~\ref{cont-pr-pr}.
\end{proof}
\section{Applying this to the theory of funcoids and reloids}
\subsection{Funcoids}
\begin{defn}
$\mathbf{Fcd} \eqdef \cont \mathsf{FCD}$.
\end{defn}
Let $F$ be a family of endofuncoids.
\subsection{Reloids}
\begin{defn}
$\mathbf{Rld} \eqdef \cont \mathsf{RLD}$.
\end{defn}
Let $F$ be a family of endoreloids.
It is trivial?? that for uniform spaces infimum product of reloids coincides
with product uniformilty.
\section{Initial and terminal objects}
\subsection{Of category~$\mathbf{Fcd}$}
Initial object of $\mathbf{Fcd}$ is the endofuncoid
$\bot^{\mathsf{FCD} (\emptyset , \emptyset)}$. It is
initial because it has precisely one morphism $o$ (the empty set considered as
a function) to any object $Y$. $o$ is a morphism because $o \circ
\bot^{\mathsf{FCD} (\emptyset , \emptyset)} \sqsubseteq Y
\circ o$.
\begin{prop}
Terminal objects of $\mathbf{Fcd}$ are exactly
$\uparrow^{\mathscr{F}} \{ \ast \} \times^{\mathsf{FCD}}
\uparrow^{\mathscr{F}} \{ \ast \} = \uparrow^{\mathsf{FCD}} \{ (\ast
, \ast) \}$ where $\ast$ is an arbitrary point.
\end{prop}
\begin{proof}
In order for a function $f : X \rightarrow \uparrow^{\mathsf{FCD}} \{
(\ast , \ast) \}$ be a morphism, it is required exactly $f \circ X
\sqsubseteq \uparrow^{\mathsf{FCD}} \{ (\ast , \ast) \} \circ f$
$f \circ X \sqsubseteq (f^{- 1} \circ \uparrow^{\mathsf{FCD}} \{
(\ast , \ast) \})^{- 1}$; $f \circ X \sqsubseteq (\{ \ast \}
\times^{\mathsf{FCD}} \langle f^{- 1} \rangle \{ \ast \})^{- 1}$; $f
\circ X \sqsubseteq \langle f^{- 1} \rangle \{ \ast \}
\times^{\mathsf{FCD}} \{ \ast \}$ what true exactly when $f$ is a
constant function with the value $\ast$.
\end{proof}
If $n = \emptyset$ then; $\bigodot^{\text{proj}}_{\sqcap} \emptyset = \prod^{\text{proj}}_{\sqcap} \emptyset = \coprod^{\text{proj}}_{\sqcap} \emptyset = \max
\mathsf{FCD} (\{\emptyset\}, \{\emptyset\}) = \uparrow^{\mathscr{F}} \{ \emptyset \}
\times^{\mathsf{FCD}} \uparrow^{\mathscr{F}} \{ \emptyset \} =
\uparrow^{\mathsf{FCD}} \{ (\emptyset , \emptyset) \}$.
\subsection{Of category~$\mathbf{Rld}$}
Initial object of $\mathbf{Rld}$ is the endofuncoid
$\bot^{\mathsf{RLD} (\emptyset , \emptyset)}$. It is
initial because it has precisely one morphism $o$ (the empty set considered as
a function) to any object $Y$. $o$ is a morphism because $o \circ
\bot^{\mathsf{RLD} (\emptyset , \emptyset)} \emptyset \sqsubseteq Y
\circ o$.
\begin{prop}
Terminal objects of $\mathbf{Rld}$ are exactly
$\uparrow^{\mathscr{F}} \{ \ast \} \times^{\mathsf{RLD}}
\uparrow^{\mathscr{F}} \{ \ast \} = \uparrow^{\mathsf{RLD}} \{ (\ast
, \ast) \}$ where $\ast$ is an arbitrary point.
\end{prop}
\begin{proof}
In order for a function $f : X \rightarrow \uparrow^{\mathsf{RLD}} \{
(\ast , \ast) \}$ be a morphism, it is required exactly $f \circ X
\sqsubseteq \uparrow^{\mathsf{RLD}} \{ (\ast , \ast) \} \circ f$
$f \circ X \sqsubseteq (f^{- 1} \circ \uparrow^{\mathsf{RLD}} \{
(\ast , \ast) \})^{- 1}$; $f \circ X \sqsubseteq (\{ \ast \}
\times^{\mathsf{RLD}} \langle f^{- 1} \rangle \{ \ast \})^{- 1}$; $f
\circ X \sqsubseteq \langle f^{- 1} \rangle \{ \ast \}
\times^{\mathsf{RLD}} \{ \ast \}$ what true exactly when $f$ is a
constant function with the value $\ast$.
\end{proof}
If $n = \emptyset$ then; $\bigodot^{\text{proj}}_{\sqcap} \emptyset = \prod^{\text{proj}}_{\sqcap} \emptyset = \coprod^{\text{proj}}_{\sqcap} \emptyset = \max
\mathsf{RLD} (\{\emptyset\}, \{\emptyset\}) = \uparrow^{\mathscr{F}} \{ \emptyset \}
\times^{\mathsf{RLD}} \uparrow^{\mathscr{F}} \{ \emptyset \} =
\uparrow^{\mathsf{RLD}} \{ (\emptyset , \emptyset) \}$.
\section{Canonical product and subatomic product}
\fxwarning{Confusion between filters on products and multireloids.}
\begin{prop}
$\Pr^{\mathsf{RLD}}_i |_{\mathfrak{F} (Z)} = \langle \pi_i \rangle$
for every index $i$ of a cartesian product $Z$.
\end{prop}
\begin{proof}
If $\mathcal{X} \in \mathfrak{F} (Z)$ then $(\Pr^{\mathsf{RLD}}_i
|_{\mathfrak{F} (Z)}) \mathcal{X} = \Pr^{\mathsf{RLD}}_i \mathcal{X}
= \bigsqcap^{\mathscr{F}} \rsupfun{\Pr_i} \mathcal{X} =
\bigsqcap \langle \pi_i \rangle \up \mathcal{X} = \langle \pi_i
\rangle \mathcal{X}$.
\end{proof}
\begin{prop}
$\prod^{(A)} F = \bigsqcap_{i \in n} \left( \left( \pi^{\mathsf{FCD}
\left( \prod_{i \in n} \Dst F \right)}_i \right)^{- 1} \circ F_i \circ
\pi^{\mathsf{FCD} \left( \prod_{i \in n} \Src F \right)}_i
\right)$.
\end{prop}
\begin{proof}
$a \mathrel{\left[ \prod^{(A)} F \right]} b \Leftrightarrow \forall i \in
\dom F : \Pr^{\mathsf{RLD}}_i a \mathrel{[F_i]}
\Pr^{\mathsf{RLD}}_i b \Leftrightarrow \forall i \in \dom F :
\left\langle \pi^{\mathsf{FCD} \left( \prod_{i \in n}
\Dst F \right)}_i \right\rangle a \mathrel{[F_i]}
\left\langle \pi^{\mathsf{FCD} \left( \prod_{i \in n} \Src F
\right)}_i \right\rangle b \Leftrightarrow \forall i \in \dom F : a
\mathrel{\left[ \left( \pi^{\mathsf{FCD} \left( \prod_{i \in n}
\Dst F \right)}_i \right)^{- 1} \circ F_i \circ
\pi^{\mathsf{FCD} \left( \prod_{i \in n} \Src F \right)}_i
\right]} b \Leftrightarrow a \mathrel{\left[ \bigsqcap_{i \in n} \left(
\left( \pi^{\mathsf{FCD} \left( \prod_{i \in n} \Dst F
\right)}_i \right)^{- 1} \circ F_i \circ \pi^{\mathsf{FCD} \left(
\prod_{i \in n} \Src F \right)}_i \right) \right]} b$ for ultrafilters
$a$ and $b$.
\end{proof}
\begin{cor}
$\bigodot^{\text{proj}}_{\sqcap} F = \prod^{(A)} F$ is $F$ is a small indexed family of
funcoids.
\end{cor}
\section{Further plans}
Coordinate-wise continuity.
\section{Cartesian closedness}
We are not only to prove (or maybe disprove) that our categories are cartesian closed, but also to find (if any) explicit formulas for exponential transpose and evaluation.
''Definition'' A category is //cartesian closed// iff:
\begin{enumerate}
\item It has finite products.
\item For each objects $A$, $B$ is given an object $\operatorname{HOM} ( A , B)$ (//exponentiation//) and a morphism $\varepsilon_{A, B} : \operatorname{HOM} ( A , B) \times A \rightarrow B$.
\item For each morphism $f : Z \times A \rightarrow B$ there is given a morphism (//exponential transpose//) $\sim f : Z \rightarrow \operatorname{HOM} ( A , B)$.
\item $\varepsilon_{B,C} \circ ( \sim f \times 1_A) = f$ for $f : A \rightarrow B \times C$.
\item $\sim ( \varepsilon_{B,C} \circ ( g \times 1_A)) = g$ for $g : A \rightarrow \operatorname{HOM} ( B , C)$.
\end{enumerate}
We will also denote $f\mapsto (-f)$ the reverse of the bijection $f\mapsto (\sim f)$.
Our purpose is to prove (or disprove) that categories $\mathbf{Dig}$, $\mathbf{Fcd}$, and $\mathbf{Rld}$ are cartesian closed. Note that they have finite (and even infinite) products is already proved.
Alternative way to prove:
you can prove that the functor $-\times B$ is left adjoint to the exponentiation $-^B$ where the counit is given by the evaluation map.
\subsection{Definitions}
Categories $\mathbf{Dig}$, $\mathbf{Fcd}$, and $\mathbf{Rld}$ are respectively categories of:
\begin{enumerate}
\item discretely continuous maps between digraphs;
\item (proximally) continuous maps between endofuncoids;
\item (uniformly) continuous maps between endoreloids.
\end{enumerate}
''Definition'' //Digraph// is an endomorphism of the category $\mathbf{Rel}$.
For a digraph $A$ we denote $\operatorname{Ob} A$ the set of vertexes or $A$ and $\operatorname{GR} A$ the set of edges or $A$.
''Definition'' Category $\mathbf{Dig}$ of digraphs is the category whose objects are digraphs and morphisms are discretely continuous maps between digraphs. That is morphisms from a digraph $\mu$ to a digraph $\nu$ are functions (or more precisely morphisms of $\mathbf{Set}$) $f$ such that $f \circ \mu \sqsubseteq \nu \circ f$ (or equivalently $\mu \sqsubseteq f^{- 1} \circ \nu \circ f$ or equivalently $f \circ \mu \circ f^{- 1} \sqsubseteq \nu$).
''Remark'' Category of digraphs is sometimes defined in an other (non equivalent) way, allowing multiple edges between two given vertices.
\subsection{Conjectures}
\begin{conjecture}
The categories $\mathbf{Fcd}$ and $\mathbf{Rld}$ are
cartesian closed (actually two conjectures).
\end{conjecture}
\url{http://mathoverflow.net/questions/141615/how-to-prove-that-there-are-no-exponential-object-in-a-category}
suggests to investigate colimits to prove that there are no exponential
object.
Our purpose is to prove (or disprove) that categories $\mathbf{Dig}$, $\mathbf{Fcd}$, and $\mathbf{Rld}$ are cartesian closed. Note that they have finite (and even infinite) products is already proved.
Alternative way to prove:
you can prove that the functor $-\times B$ is left adjoint to the exponentiation $-^B$ where the counit is given by the evaluation map.
See \url{http://www.springer.com/us/book/9780387977102} for another way to prove Cartesian closedness.
\subsection{Category Dig is cartesian closed}
Category of digraphs is the simplest of our three categories and it is easy to demonstrate that it is cartesian closed. I demonstrate cartesian closedness of $\mathbf{Dig}$ mainly with the purpose to show a pattern similarly to which we may probably demonstrate our two other categories are cartesian closed.
Let $G$ and $H$ be digraphs:
\begin{itemize}
\item $\operatorname{Ob} \operatorname{HOM} ( G , H) = ( \operatorname{Ob} H)^{\operatorname{Ob} G}$;
\item $( f , g) \in \operatorname{GR} \operatorname{HOM} ( G , H) \Leftrightarrow \forall ( v , w) \in \operatorname{GR} G : ( f ( v) , g ( w)) \in \operatorname{GR} H$ for every $f, g \in \operatorname{Ob} \operatorname{HOM} ( G , H) = ( \operatorname{Ob} H)^{\operatorname{Ob} G}$;
\end{itemize}
$\operatorname{GR} 1_{\operatorname{HOM} ( B , C)} = \operatorname{id}_{\operatorname{Ob} \operatorname{HOM} ( B , C)} = \operatorname{id}_{( \operatorname{Ob} H)^{\operatorname{Ob} G}}$
Equivalently
$( f , g) \in \operatorname{GR} \operatorname{HOM} ( G , H) \Leftrightarrow \forall ( v , w) \in \operatorname{GR} G : g \circ \{ ( v , w) \} \circ f^{- 1} \subseteq \operatorname{GR} H$
$( f , g) \in \operatorname{GR} \operatorname{HOM} ( G , H) \Leftrightarrow g \circ ( \operatorname{GR} G) \circ f^{- 1} \subseteq \operatorname{GR} H$
$( f , g) \in \operatorname{GR} \operatorname{HOM} ( G , H) \Leftrightarrow \langle f \times^{( C)} g \rangle \operatorname{GR} G \subseteq \operatorname{GR} H$
The transposition (the isomorphism) is uncurrying.
$\sim f = \lambda a \in Z \lambda y \in A : f ( a , y)$ that is $( \sim f) ( a) ( y) = f ( a , y)$.
$( - f) ( a , y) = f ( a) ( y)$
If $f : A \times B \rightarrow C$ then $\sim f : A \rightarrow \operatorname{HOM} ( B , C)$
''Proposition'' Transposition and its inverse are morphisms of $\mathbf{Dig}$.
''Proof'' It follows from the equivalence $\sim f : A \rightarrow \operatorname{HOM} ( B , C) \Leftrightarrow \forall x, y : ( x A y \Rightarrow ( \sim f) x ( \operatorname{HOM} ( B , C)) ( \sim f) y) \Leftrightarrow \\ \forall x, y : ( x A y \Rightarrow \forall ( v , w) \in B : ( ( \sim f) x v , ( \sim f) y w) \in C) \Leftrightarrow \\ \forall x, y, v, w : ( x A y \wedge v B w \Rightarrow ( ( \sim f) x v , ( \sim f) y w) \in C) \Leftrightarrow \\ \forall x, y, v, w : ( ( x , v) ( A \times B) ( y , w) \Rightarrow ( f ( x , v) , f ( y , w)) \in C) \Leftrightarrow f : A \times B \rightarrow C$.
Evaluation $\varepsilon : \operatorname{HOM} ( G , H) \times G \rightarrow H$ is defined by the formula:
Then evaluation is $\varepsilon_{B, C} = \mathop{\sim} 1_{\operatorname{HOM}(B,C)}$.
So $\varepsilon_{B, C} ( p , q) = ( \mathop{\sim} 1_{\operatorname{HOM}(B,C)}) ( p , q) = 1_{\operatorname{HOM}(B,C)} ( p) ( q) = p ( q)$.
''Proposition'' Evaluation is a morphism of $\mathbf{Dig}$.
''Proof'' Because $\varepsilon_{B, C} ( p , q) = \mathop{\sim} 1_{\operatorname{HOM}(B,C)}$.
It remains to prove:
\begin{itemize}
\item $\varepsilon_{B, C} \circ ( \sim f \times 1_{A}) = f$ for $f : A \rightarrow B \times C$;
\item $\sim ( \varepsilon_{B, C} \circ ( g \times 1_{A})) = g$ for $g : A \rightarrow \operatorname{HOM} ( B , C)$.
\end{itemize}
''Proof'' $\varepsilon_{B, C} ( \sim f \times 1_{A}) ( a , p) = \varepsilon_{B, C} ( ( \sim f) a , p) = ( \sim f) a p = f ( a , p)$. So $\varepsilon_{B, C} \circ ( \sim f \times 1_{A}) = f$.
$(\sim ( \varepsilon_{B, C} \circ ( g \times 1_{A}))) ( p) ( q) = ( \varepsilon_{B, C} \circ ( g \times 1_{A})) ( p , q) = \varepsilon_{B, C} ( g \times 1_{A}) ( p , q) = \varepsilon_{B, C} ( g p , q) = g ( p) ( q)$. So $\sim ( \varepsilon_{B, C} \circ ( g \times 1_{A})) = g$.
\subsection{New attempt}
We will take $\times^{(C)}$ as the product?? in the category $\mathbf{Fcd}$
\begin{prop}
$\rsupfun{\bigcup\rsupfun{\curry f}X}Y=
\rsupfun{f}(X\times Y)$
[Is the left part always defined?]
\end{prop}
\begin{proof}
$\rsupfun{\bigcup\rsupfun{\curry f}X}Y=\setcond{\rsupfun{\bigcup\rsupfun{\curry f}X}\{y\}}{y\in Y}=
\setcond{\rsupfun{\bigcup\left(\bigcup_{x\in X}(\curry f)x\right)}\{y\}}{y\in Y}=
\setcond{\bigcup\rsupfun{\bigcup_{x\in X}(\curry f)x}\{y\}}{y\in Y}=
\setcond{\bigcup\bigcup_{x\in X}\rsupfun{(\curry f)x)}\{y\}}{y\in Y}=
\setcond{\bigcup_{x\in X}(\curry f)x)y}{y\in Y}=
\setcond{((\curry f)x)y}{x\in X,y\in Y}$.
$\rsupfun{f}(X\times Y)=\setcond{f(x,y)}{x\in X,y\in Y}$.
So the thesis.
\end{proof}
\begin{prop}
$\supfun{\bigsqcup\supfun{\curry f}x}y =
\supfun{f}(x\times^{\mathsf{RLD}}y)$.
\end{prop}
\begin{proof}
$\supfun{\bigsqcup\supfun{\curry f}x}y =
\bigsqcap_{Y\in\up y}\bigsqcup\supfun{\bigsqcup\supfun{\curry f}x}Y=
\bigsqcap_{Y\in\up y}\bigsqcup\supfun{\bigsqcap_{X\in\up x}\bigsqcup\supfun{\curry f}X}Y=
\bigsqcap_{Y\in\up y}\bigsqcap_{X\in\up x}\bigsqcup\supfun{\bigsqcup\supfun{\curry f}X}Y=
\bigsqcap_{Y\in\up y}\bigsqcap_{X\in\up x}\bigcup\rsupfun{\bigcup\rsupfun{\curry f}X}Y=
\bigsqcap_{Y\in\up y}\bigsqcap_{X\in\up x}\supfun{f}(X\times Y)$.
By properties of generalized filter bases
$\bigsqcap_{Y\in\up y}\bigsqcap_{X\in\up x}\supfun{f}(X\times Y)=\supfun{f}(x\times^{\mathsf{RLD}} y)$
\end{proof}
Let $G$ and $H$ be endofuncoids. By definition:
\begin{itemize}
\item $\operatorname{Ob} \operatorname{HOM} ( G , H) = ( \operatorname{Ob} H)^{\operatorname{Ob} G}$;
\item $( f , g) \in \operatorname{GR} \operatorname{HOM} ( G , H) \Leftrightarrow \forall v,w\in\atoms^{\mathscr{F}}\Ob G : \supfun{f}v \times^{\mathsf{FCD}} \supfun{g}w \sqsubseteq H$ for every $f, g \in \operatorname{Ob} \operatorname{HOM} ( G , H) = ( \operatorname{Ob} H)^{\operatorname{Ob} G}$;
\end{itemize}
$\operatorname{GR} 1_{\operatorname{HOM} ( B , C)} = \operatorname{id}_{\operatorname{Ob} \operatorname{HOM} ( B , C)} = \operatorname{id}_{( \operatorname{Ob} H)^{\operatorname{Ob} G}}$
Equivalently
$( f , g) \in \operatorname{GR} \operatorname{HOM} ( A , B) \Leftrightarrow \forall v,w\in\atoms^{\mathscr{F}}\Ob A : g \circ (v \times^{\mathsf{FCD}} w) \circ f^{- 1} \sqsubseteq \operatorname{GR} B$
$( f , g) \in \operatorname{GR} \operatorname{HOM} ( A , B) \Leftrightarrow g \circ A \circ f^{- 1} \sqsubseteq B$
$( f , g) \in \operatorname{GR} \operatorname{HOM} ( A , B) \Leftrightarrow \langle f \times^{( C)} g \rangle A \sqsubseteq B$
\begin{lem}
$F\suprel{\operatorname{HOM}(A,B)}G \Leftrightarrow G\circ A\circ F^{-1}\sqsubseteq B$ for sets $F$,~$G$ of functions.
\end{lem}
\begin{proof}
$F\suprel{\operatorname{HOM}(A,B)}G \Leftrightarrow
\exists f\in F,g\in G:(f,g)\in\operatorname{HOM}(A,B)\Leftrightarrow
\exists f\in F,g\in G:g\circ A\circ f^{-1}\sqsubseteq B\Leftrightarrow
G\circ A\circ F^{-1}\sqsubseteq B$.
\end{proof}
\begin{prop}
$\mathcal{F}\suprel{\operatorname{HOM}(A,B)}\mathcal{G} \Leftrightarrow \mathcal{G}\circ A\circ \mathcal{F}^{-1}\sqsubseteq B$.
\end{prop}
\begin{proof}
$\mathcal{F}\suprel{\operatorname{HOM}(A,B)}\mathcal{G} \Leftrightarrow
\forall F\in\up\mathcal{F},G\in\up\mathcal{G}:F\suprel{\operatorname{HOM}(A,B)}G
\Leftrightarrow
\forall F\in\up\mathcal{F},G\in\up\mathcal{G}:G\circ A\circ F^{-1}\sqsubseteq B$ what by properties of generalized filter
bases is equivalent to $\mathcal{G}\circ A\circ \mathcal{F}^{-1}\sqsubseteq B$.
\end{proof}
Let $\sim f=\bigsqcup\circ\supfun{\curry f}$. Here we consider $\bigsqcup\circ\supfun{\curry f}$ as a principal funcoid that is binary relation:
\begin{prop}
$\bigsqcup\circ\supfun{\curry f}$ is a complete and co-complete pointfree funcoid.
\end{prop}
\begin{proof}
It is obviously a pointfree funcoid.
Let~$X$ be a principal filter.
$\bigsqcup\supfun{\curry f}X$ is obviously principal.
So, it's co-complete.
And it is obviously complete.
\end{proof}
\begin{obvious}
$\supfun{\supfun{\sim f}x}y = \supfun{f}(x\times^{\mathsf{RLD}}y)$.
\end{obvious}
Let $f\in\Hom(A\times B,C)$ that is $f\in Z^{A\times B}$. Then
$\curry f\in (C^B)^A$, $\supfun{\curry f}X\in\subsets(C^B)$,
$\bigsqcup\supfun{\curry f}X\in C^B$.
Thus $\sim f\in (\mathsf{FCD}(B,C))^{\mathscr{F}(A)}$.
If $f : A \times B \rightarrow C$ then $\sim f : \mathscr{F}(A) \rightarrow \operatorname{HOM} ( B , C)$
\fxwarning{Rewrite below:}
\begin{prop}
Transposition and its inverse are morphisms of $\mathbf{Fcd}$.
\end{prop}
\begin{proof}
It follows from the equivalence $\sim f : A \rightarrow \operatorname{HOM} ( B , C) \Leftrightarrow \forall x,y\in\atoms^{\mathscr{F}}\Ob A : ( x\suprel{A}y \Rightarrow \supfun{\sim f} x \suprel{\operatorname{HOM}(B,C)} \supfun{\sim f} y) \Leftrightarrow \\
\forall x,y\in\atoms^{\mathscr{F}}\Ob A : (x\suprel{A}y \Rightarrow (\supfun{\sim f}y)\circ B\circ(\supfun{\sim f}x)^{-1} \sqsubseteq C) \Leftrightarrow \\
\forall x,y\in\atoms^{\mathscr{F}}\Ob A : (x\suprel{A}y \Rightarrow \forall p,q\in\atoms^{\mathscr{F}}\Ob B : (
p\times^{\mathsf{FCD}}q\sqsubseteq B \Rightarrow
(\supfun{\sim f}y)\circ(p\times^{\mathsf{FCD}}q)\circ(\supfun{\sim f}x)^{-1} \sqsubseteq C) \Leftrightarrow \\
\forall x,y\in\atoms^{\mathscr{F}}\Ob A, p,q\in\atoms^{\mathscr{F}}\Ob B:
(x\suprel{A}y\land p\suprel{B}q \Rightarrow (\supfun{\sim f}y)\circ(p\times^{\mathsf{FCD}}q)\circ(\supfun{\sim f}x)^{-1} \sqsubseteq C) \Leftrightarrow \\
\forall x,y\in\atoms^{\mathscr{F}}\Ob A, p,q\in\atoms^{\mathscr{F}}\Ob B:
(x\suprel{A}y\land p\suprel{B}q \Rightarrow \supfun{\supfun{\sim f}x}p\times^{\mathsf{FCD}}\supfun{\supfun{\sim f}y}q \sqsubseteq C) \Leftrightarrow \\
\forall x,y\in\atoms^{\mathscr{F}}\Ob A, p,q\in\atoms^{\mathscr{F}}\Ob B:
(x\times^{\mathsf{RLD}}p\suprel{A\times^{(C)}B}y\times^{\mathsf{RLD}}q \Rightarrow \supfun{f}(x\times^{\mathsf{RLD}}p)\times^{\mathsf{FCD}}\supfun{f}(y\times^{\mathsf{RLD}}q) \sqsubseteq C) %\Leftrightarrow \\
\forall x,y\in\atoms^{\mathscr{F}}\Ob A, p,q\in\atoms^{\mathscr{F}}\Ob B:
((x\times^{\mathsf{RLD}}p)\times^{\mathsf{FCD}}(y\times^{\mathsf{RLD}}q)\sqsubseteq A\times^{(C)}B \Rightarrow f\circ((x\times^{\mathsf{RLD}}p)\times^{\mathsf{FCD}}(y\times^{\mathsf{RLD}}q))\circ f^{-1} \sqsubseteq C)
\Leftarrow \\
\forall t,s\in\atoms(\Ob A\times^{\mathsf{RLD}}\Ob B):
(t\times^{\mathsf{FCD}}s\sqsubseteq A\times^{(C)}B \Rightarrow f\circ(t\times^{\mathsf{FCD}}s)\circ f^{-1} \sqsubseteq C)
\Leftrightarrow \\
f\circ(A\times^{(C)}B)\circ f^{-1} \sqsubseteq C) \Leftrightarrow
f : A\times^{(C)}B \rightarrow C
$
But:
$f : A\times^{(C)}B \rightarrow C \Leftrightarrow f\circ(A\times^{(C)}B)\circ f^{-1} \sqsubseteq C \Leftrightarrow??
\supfun{f}A\times^{\mathsf{FCD}}\supfun{f}B\sqsubseteq C
\Rightarrow
\forall x,y\in\atoms^{\mathscr{F}}\Ob A, p,q\in\atoms^{\mathscr{F}}\Ob B:(x\times^{\mathsf{RLD}}p\sqsubseteq A\land y\times^{\mathsf{RLD}}q\sqsubseteq B \Rightarrow
\supfun{f}(x\times^{\mathsf{RLD}}p)\times^{\mathsf{FCD}}
\supfun{f}(y\times^{\mathsf{RLD}}q) \sqsubseteq C) \Leftrightarrow
\forall x,y\in\atoms^{\mathscr{F}}\Ob A, p,q\in\atoms^{\mathscr{F}}\Ob B:((x\times^{\mathsf{RLD}}p)\times^{\mathsf{FCD}}(y\times^{\mathsf{RLD}}q)\sqsubseteq A\times^{(C)}B \Rightarrow
\supfun{f}(x\times^{\mathsf{RLD}}p)\times^{\mathsf{FCD}}
\supfun{f}(y\times^{\mathsf{RLD}}q) \sqsubseteq C)$.
Thus the thesis follows.
\end{proof}
Evaluation $\varepsilon : \operatorname{HOM} ( G , H) \times G \rightarrow H$ is defined by the formula:
Then evaluation is $\varepsilon_{B, C} = \mathop{\sim} 1_{\operatorname{HOM}(B,C)}$.
So $\varepsilon_{B, C} ( p , q) = ( \mathop{\sim} 1_{\operatorname{HOM}(B,C)}) ( p , q) = 1_{\operatorname{HOM}(B,C)} ( p) ( q) = p ( q)$.
''Proposition'' Evaluation is a morphism of $\mathbf{Dig}$.
''Proof'' Because $\varepsilon_{B, C} ( p , q) = \mathop{\sim} 1_{\operatorname{HOM}(B,C)}$.
It remains to prove:
\begin{itemize}
\item $\varepsilon_{B, C} \circ ( \sim f \times 1_{A}) = f$ for $f : A \rightarrow B \times C$;
\item $\sim ( \varepsilon_{B, C} \circ ( g \times 1_{A})) = g$ for $g : A \rightarrow \operatorname{HOM} ( B , C)$.
\end{itemize}
''Proof'' $\varepsilon_{B, C} ( \sim f \times 1_{A}) ( a , p) = \varepsilon_{B, C} ( ( \sim f) a , p) = ( \sim f) a p = f ( a , p)$. So $\varepsilon_{B, C} \circ ( \sim f \times 1_{A}) = f$.
$(\sim ( \varepsilon_{B, C} \circ ( g \times 1_{A}))) ( p) ( q) = ( \varepsilon_{B, C} \circ ( g \times 1_{A})) ( p , q) = \varepsilon_{B, C} ( g \times 1_{A}) ( p , q) = \varepsilon_{B, C} ( g p , q) = g ( p) ( q)$. So $\sim ( \varepsilon_{B, C} \circ ( g \times 1_{A})) = g$.
\subsection{By analogy with the proof that Dig is cartesian closed}
The most obvious way for proof attempt that $\mathbf{Fcd}$ is cartesian closed is an analogy with the proof that
$\mathbf{Dig}$ is cartesian closed.
Consider the long formula above. The proof would arise if we replace $x$ and $y$ in this formula with filters and operations and relations on set element with operations and relations on filters.
This proof could be simplified in either of two ways:
\begin{itemize}
\item replace $x$ and $y$ with ultrafilters, see [[Proof for Fcd using ultrafilters]];
\item replace $x$ and $y$ with sets (principal filter), see [[Proof for Fcd using sets]].
\end{itemize}
This is not quite easy however, because we need to calculate uncurrying for a entirely defined monovalued principal funcoid (what is essentially the same as a function of a $\mathbf{Set}$-morphisms) taking either ultrafilters or principal filters as arguments. Such (generalized) uncurrying is not quite easy.
To sum what we need to prove:
\begin{itemize}
\item Transposition is a morphism.
\item Evaluation is a morphism.
\item $\varepsilon_{B,C} \circ ( \sim f \times 1_A) = f$ for $f : A \rightarrow B \times C$.
\item $\sim ( \varepsilon_{B,C} \circ ( g \times 1_A)) = g$ for $g : A \rightarrow \operatorname{HOM} ( B , C)$.
\end{itemize}
\subsection{Attempt to describe exponentials in Fcd}
\begin{itemize}
\item Exponential object $\operatorname{HOM}(A,B)$ is the following endofuncoid:
\item\begin{itemize}
\item Object $\operatorname{Ob}\operatorname{HOM}(A,B) = (\operatorname{Ob} B)^{\operatorname{Ob} A}$;
\item Graph is $\operatorname{GR} \operatorname{HOM} ( A , B) = \uparrow^{\mathsf{FCD}} \setcond{ ( f , g) }{ f, g \in (\operatorname{Ob}B)^{\operatorname{Ob} A} \wedge \uparrow^{\mathsf{FCD}}g \circ A \circ \uparrow^{\mathsf{FCD}}f^{- 1} \sqsubseteq B }$.
\end{itemize}
\item Transposition is uncurrying.
\item Evaluation is $\varepsilon_{A, B} x = \langle \dom x \rangle \im x$.
\end{itemize}
We need to prove that the above defined are really an exponential and an evaluation.
Possible ways to prove that $\mathbf{Fcd}$ is cartesian closed follow:
NEW IDEA: Instead take $\GR\operatorname{HOM}(A,B) =
\uparrow^{\mathsf{FCD}}\setcond{(\dom p,\im p)}{
p\in\End(B)^{\End(A)}\land\supfun{p}A\sqsubseteq B}$ (what's about other
kinds of projections?)
\subsection{Proof for Fcd using sets}
Currying for sets is $\langle f \rangle ( X \times Y) = \bigcup \langle \langle \sim f \rangle X
\rangle Y$ (as it's easy to prove). This simple formula gives hope, but...
It does not work with sets because an analogy for sets of the last equality of the above mentioned long formula would be:
$\forall X, Y, V, W \in \mathscr{P} \operatorname{Ob} A : \left( X \times V \mathrel{[
A \times B]^{\ast}} Y \times W \Rightarrow \langle f \rangle ( X \times V)
\mathrel{[ C]^{\ast}} \langle f \rangle ( Y \times W) \right) \Rightarrow \\ f : A
\times B \rightarrow C$
but this implication seems false.
The most obvious way for proof attempt that $\mathbf{Fcd}$ is cartesian closed is an analogy with the proof that Dig is cartesian closed.
Use the exponential object, transposition, and evaluation as defined in [[this page|Is category Fcd cartesian closed?]]
\subsection{Reducing to the fact that Dig is cartesian closed}
It is probably a simpler way to prove that $\mathbf{Fcd}$ is cartesian closed by embedding it into $\mathbf{Dig}$ (which is [[already known to be cartesian closed|Category Dig is cartesian closed]]).
$\mathbf{Fcd}$ can be embedded into $\mathbf{Dig}$ by the formulas:
\begin{itemize}
\item $A \mapsto \langle A \rangle$;
\item $f \mapsto \langle f \rangle$.