-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
chap-tensor.tex
127 lines (100 loc) · 5.04 KB
/
chap-tensor.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
\chapter{Matters related to tensor product}
These consideration on (possibly infinite) indexed families of
join-semilattices is based on \cite{nforum-todd-tensor} (for the finite case).
Let $\mathfrak{A}$ be an indexed family of join-semilattices with least
elements. Let $T$ also be a join-semilattice.
Let $F (X)$ mean free join-semilattice for a set $X$.
\begin{defn}
$\mathbf{SepJoin}(\prod\mathfrak{A},T)$ is the set of maps from $\prod\mathfrak{A}$
to~$T$, preserving joins in every argument $i\in\dom\mathfrak{A}$.
\end{defn}
\begin{obvious}
The set of free join-semilattices $F (X)$ is order-isomorphic to the set of
subsets $X$ of a ``universal'' set $\mho$.{\hspace*{\fill}}{\medskip}
\end{obvious}
Let $i : \prod \mathfrak{A} \rightarrow F \left( \prod \mathfrak{A} \right)$
be the universal embedding.
Let $\sim$ be defined as the smallest equivalence relation on $F \left( \prod
\mathfrak{A} \right)$ that for every $k \in \dom \mathfrak{A}$, $L \in
\prod_{i \in (\dom \mathfrak{A}) \setminus \{ k \}} \mathfrak{A}_i$:
\begin{enumerate}
\item $i (L \cup \{ (k , g \sqcup h) \}) \sim i (L \cup \{ (k , g) \})
\sqcup i (L \cup \{ (k , h) \})$;
\item $\bot \sim i (L \cup \{ (k , \bot) \})$;
\item $x \sim y \wedge x' \sim y' \Rightarrow x \sqcup x' \sim y \sqcup y'$
for all $x, y, x', y' \in F \left( \prod \mathfrak{A} \right)$.
\end{enumerate}
\begin{obvious}
Some function $h : X \rightarrow Y$ induces a well defined map $\psi : X / E
\rightarrow Y$ on equivalence classes, if $E \subseteq F$ where $x \mathrel{F}
y \Leftrightarrow h x = h y$.{\hspace*{\fill}}{\medskip}
\end{obvious}
\begin{lem}
The set of join-homomorphisms $\psi : F \left( \prod \mathfrak{A} \right) / \sim
\rightarrow T$ is isomorphic to the set of maps $\phi :
\prod \mathfrak{A} \rightarrow T$ preserving finite joins in separate arguments.
\end{lem}
\begin{proof}
The quotient map $q : F \left( \prod \mathfrak{A} \right) \rightarrow F
\left( \prod \mathfrak{A} \right) / \sim$ which takes an element $x$ to its
equivalence class $[x]$ map is well defined because
\[ x \sim y \wedge x' \sim y' \Rightarrow x \sqcup x' \sim y \sqcup y' . \]
The map $q$ \ preserves join. $F \left( \prod \mathfrak{A} \right) / \sim$
is associative, commutative, and idempotent since it is so on $F \left(
\prod \mathfrak{A} \right)$ and thus is a join-semilattice.
Let join-preserving map $\psi : F \left( \prod \mathfrak{A} \right) / \sim
\rightarrow T$. It is easy to show that $\psi \circ q \circ i$ preserves
joins in separate arguments.
Let now $\phi : \prod \mathfrak{A} \rightarrow T$ preserves joins in
separate arguments. There is a unique join-preserving map $\tilde{\phi} : F
\left( \prod \mathfrak{A} \right) \rightarrow T$ such that $\tilde{\phi}
\circ i = \phi$. We must show that this induces a well-defined
join-preserving map $\psi : F \left( \prod \mathfrak{A} \right) / \sim
\rightarrow T$ such that $\psi (q (x)) = \tilde{\phi} (x)$ for all $x \in F
\left( \prod \mathfrak{A} \right)$ (clearly at most one function $\psi$ can
satisfy this equation since $q$ is surjective). This will show that $\psi$
bijectively correspond to $\tilde{\phi}$ and thus bijectively correspond to
$\phi$. (This will finish the proof as that this bijection is monotone is
obvious.)
Using the ``obvious'' above, it's enough (taking into account that $\sim$ is
the minimal equivalence relation subject to the above formulas) to prove
that:
\begin{enumerate}
\item $\tilde{\phi} (i (L \cup \{ (k , g \sqcup h) \})) = \tilde{\phi} (i
(L \cup \{ (k , g) \}) \sqcup i (L \cup \{ (k , h) \}))$;
\item $\tilde{\phi} (\bot) = \tilde{\phi} (i (L \cup \{ (k , \bot) \}))$;
\item $\tilde{\phi} (x) = \tilde{\phi} (y) \wedge \tilde{\phi} (x') =
\tilde{\phi} (y') \Rightarrow \tilde{\phi} (x \sqcup x') = \tilde{\phi} (y
\sqcup y')$
\end{enumerate}
The first easily follows from $\tilde{\phi} \circ i = \phi$ and the fact
that $\tilde{\phi}$ preserves binary joins.
The second easily follows from $\tilde{\phi} \circ i = \phi$ and that $\phi$
preserves $\bot$.
The third follows from the fact that $\tilde{\phi}$ preserves joins.
\end{proof}
\begin{cor}
The poset of prestaroids
$\mathsf{preStrd} (\mathfrak{A})$ is isomorphic to an ideal
(on a join-semilattice), provided that $\mathfrak{A}$ is an indexed family
of join-semilattices.
\end{cor}
\begin{proof}
$\mathsf{preStrd} (\mathfrak{A}) \cong \mathbf{SepJoin} (\mathfrak{A}, 2)
\cong F \left( \prod \mathfrak{A} \right) / \sim \rightarrow 2 \cong
\mathfrak{I} \left( F \left( \prod \mathfrak{A} \right) / \sim \right)$.
\end{proof}
\fxwarning{Check below (especially posets vs dual posets) for errors.}
\begin{cor}
$\mathsf{preStrd}$ is a complete lattice.
\end{cor}
\begin{proof}
Corollary~\bookref{filt-is-complete}.
\end{proof}
\begin{cor}
$\mathsf{preStrd}$ is a filtered filtrator.
\end{cor}
\begin{proof}
Theorem~\bookref{semifilt-joinclosed}.
\end{proof}
\fxnote{Try to prove that $\mathsf{preStrd}$ is atomic and moreover atomistic (under certain conditions). Other properties?}