diff --git a/xinference/model/llm/llm_family.json b/xinference/model/llm/llm_family.json
index 77dda1a84d..70b17daa61 100644
--- a/xinference/model/llm/llm_family.json
+++ b/xinference/model/llm/llm_family.json
@@ -7244,5 +7244,365 @@
"model_revision": "00e59e64f47d3c78e4cfbdd345888479797e8109"
}
]
+ },
+ {
+ "version": 1,
+ "context_length": 131072,
+ "model_name": "qwen2.5-instruct",
+ "model_lang": [
+ "en",
+ "zh"
+ ],
+ "model_ability": [
+ "chat",
+ "tools"
+ ],
+ "model_description": "Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters.",
+ "model_specs": [
+ {
+ "model_format": "pytorch",
+ "model_size_in_billions": "0_5",
+ "quantizations": [
+ "4-bit",
+ "8-bit",
+ "none"
+ ],
+ "model_id": "Qwen/Qwen2.5-0.5B-Instruct"
+ },
+ {
+ "model_format": "pytorch",
+ "model_size_in_billions": "1_5",
+ "quantizations": [
+ "4-bit",
+ "8-bit",
+ "none"
+ ],
+ "model_id": "Qwen/Qwen2.5-1.5B-Instruct"
+ },
+ {
+ "model_format": "pytorch",
+ "model_size_in_billions": 3,
+ "quantizations": [
+ "4-bit",
+ "8-bit",
+ "none"
+ ],
+ "model_id": "Qwen/Qwen2.5-3B-Instruct"
+ },
+ {
+ "model_format": "pytorch",
+ "model_size_in_billions": 7,
+ "quantizations": [
+ "4-bit",
+ "8-bit",
+ "none"
+ ],
+ "model_id": "Qwen/Qwen2.5-7B-Instruct"
+ },
+ {
+ "model_format": "pytorch",
+ "model_size_in_billions": 14,
+ "quantizations": [
+ "4-bit",
+ "8-bit",
+ "none"
+ ],
+ "model_id": "Qwen/Qwen2.5-14B-Instruct"
+ },
+ {
+ "model_format": "pytorch",
+ "model_size_in_billions": 32,
+ "quantizations": [
+ "4-bit",
+ "8-bit",
+ "none"
+ ],
+ "model_id": "Qwen/Qwen2.5-32B-Instruct"
+ },
+ {
+ "model_format": "pytorch",
+ "model_size_in_billions": 72,
+ "quantizations": [
+ "4-bit",
+ "8-bit",
+ "none"
+ ],
+ "model_id": "Qwen/Qwen2.5-72B-Instruct"
+ },
+ {
+ "model_format": "gptq",
+ "model_size_in_billions": "0_5",
+ "quantizations": [
+ "Int4",
+ "Int8"
+ ],
+ "model_id": "Qwen/Qwen2.5-0.5B-Instruct-GPTQ-{quantization}"
+ },
+ {
+ "model_format": "gptq",
+ "model_size_in_billions": "1_5",
+ "quantizations": [
+ "Int4",
+ "Int8"
+ ],
+ "model_id": "Qwen/Qwen2.5-1.5B-Instruct-GPTQ-{quantization}"
+ },
+ {
+ "model_format": "gptq",
+ "model_size_in_billions": 3,
+ "quantizations": [
+ "Int4",
+ "Int8"
+ ],
+ "model_id": "Qwen/Qwen2.5-3B-Instruct-GPTQ-{quantization}"
+ },
+ {
+ "model_format": "gptq",
+ "model_size_in_billions": 7,
+ "quantizations": [
+ "Int4",
+ "Int8"
+ ],
+ "model_id": "Qwen/Qwen2.5-7B-Instruct-GPTQ-{quantization}"
+ },
+ {
+ "model_format": "gptq",
+ "model_size_in_billions": 14,
+ "quantizations": [
+ "Int4",
+ "Int8"
+ ],
+ "model_id": "Qwen/Qwen2.5-14B-Instruct-GPTQ-{quantization}"
+ },
+ {
+ "model_format": "gptq",
+ "model_size_in_billions": 32,
+ "quantizations": [
+ "Int4",
+ "Int8"
+ ],
+ "model_id": "Qwen/Qwen2.5-32B-Instruct-GPTQ-{quantization}"
+ },
+ {
+ "model_format": "gptq",
+ "model_size_in_billions": 72,
+ "quantizations": [
+ "Int4",
+ "Int8"
+ ],
+ "model_id": "Qwen/Qwen2.5-72B-Instruct-GPTQ-{quantization}"
+ },
+ {
+ "model_format": "awq",
+ "model_size_in_billions": "0_5",
+ "quantizations": [
+ "Int4"
+ ],
+ "model_id": "Qwen/Qwen2.5-0.5B-Instruct-AWQ"
+ },
+ {
+ "model_format": "awq",
+ "model_size_in_billions": "1_5",
+ "quantizations": [
+ "Int4"
+ ],
+ "model_id": "Qwen/Qwen2.5-1.5B-Instruct-AWQ"
+ },
+ {
+ "model_format": "awq",
+ "model_size_in_billions": 3,
+ "quantizations": [
+ "Int4"
+ ],
+ "model_id": "Qwen/Qwen2.5-3B-Instruct-AWQ"
+ },
+ {
+ "model_format": "awq",
+ "model_size_in_billions": 7,
+ "quantizations": [
+ "Int4"
+ ],
+ "model_id": "Qwen/Qwen2.5-7B-Instruct-AWQ"
+ },
+ {
+ "model_format": "awq",
+ "model_size_in_billions": 14,
+ "quantizations": [
+ "Int4"
+ ],
+ "model_id": "Qwen/Qwen2.5-14B-Instruct-AWQ"
+ },
+ {
+ "model_format": "awq",
+ "model_size_in_billions": 32,
+ "quantizations": [
+ "Int4"
+ ],
+ "model_id": "Qwen/Qwen2.5-32B-Instruct-AWQ"
+ },
+ {
+ "model_format": "awq",
+ "model_size_in_billions": 72,
+ "quantizations": [
+ "Int4"
+ ],
+ "model_id": "Qwen/Qwen2.5-72B-Instruct-AWQ"
+ },
+ {
+ "model_format": "ggufv2",
+ "model_size_in_billions": "0_5",
+ "quantizations": [
+ "q2_k",
+ "q3_k_m",
+ "q4_0",
+ "q4_k_m",
+ "q5_0",
+ "q5_k_m",
+ "q6_k",
+ "q8_0",
+ "fp16"
+ ],
+ "model_id": "Qwen/Qwen2.5-0.5B-Instruct-GGUF",
+ "model_file_name_template": "qwen2_5-0_5b-instruct-{quantization}.gguf"
+ },
+ {
+ "model_format": "ggufv2",
+ "model_size_in_billions": "1_5",
+ "quantizations": [
+ "q2_k",
+ "q3_k_m",
+ "q4_0",
+ "q4_k_m",
+ "q5_0",
+ "q5_k_m",
+ "q6_k",
+ "q8_0",
+ "fp16"
+ ],
+ "model_id": "Qwen/Qwen2.5-1.5B-Instruct-GGUF",
+ "model_file_name_template": "qwen2_5-1_5b-instruct-{quantization}.gguf"
+ },
+ {
+ "model_format": "ggufv2",
+ "model_size_in_billions": 3,
+ "quantizations": [
+ "q2_k",
+ "q3_k_m",
+ "q4_0",
+ "q4_k_m",
+ "q5_0",
+ "q5_k_m",
+ "q6_k",
+ "q8_0",
+ "fp16"
+ ],
+ "model_id": "Qwen/Qwen2.5-3B-Instruct-GGUF",
+ "model_file_name_template": "qwen2_5-3b-instruct-{quantization}.gguf"
+ },
+ {
+ "model_format": "ggufv2",
+ "model_size_in_billions": 7,
+ "quantizations": [
+ "q2_k",
+ "q3_k_m",
+ "q4_0",
+ "q4_k_m",
+ "q5_0",
+ "q5_k_m",
+ "q6_k",
+ "q8_0",
+ "fp16"
+ ],
+ "model_id": "Qwen/Qwen2.5-7B-Instruct-GGUF",
+ "model_file_name_template": "qwen2_5-7b-instruct-{quantization}.gguf"
+ },
+ {
+ "model_format": "ggufv2",
+ "model_size_in_billions": 14,
+ "quantizations": [
+ "q2_k",
+ "q3_k_m",
+ "q4_0",
+ "q4_k_m",
+ "q5_0",
+ "q5_k_m",
+ "q6_k",
+ "q8_0",
+ "fp16"
+ ],
+ "model_id": "Qwen/Qwen2.5-14B-Instruct-GGUF",
+ "model_file_name_template": "qwen2_5-14b-instruct-{quantization}.gguf"
+ },
+ {
+ "model_format": "ggufv2",
+ "model_size_in_billions": 32,
+ "quantizations": [
+ "q2_k",
+ "q3_k_m",
+ "q4_0",
+ "q4_k_m",
+ "q5_0",
+ "q5_k_m",
+ "q6_k",
+ "q8_0",
+ "fp16"
+ ],
+ "model_id": "Qwen/Qwen2.5-32B-Instruct-GGUF",
+ "model_file_name_template": "qwen2_5-32b-instruct-{quantization}.gguf"
+ },
+ {
+ "model_format": "ggufv2",
+ "model_size_in_billions": 72,
+ "quantizations": [
+ "q2_k",
+ "q3_k_m",
+ "q4_0",
+ "q4_k_m",
+ "q5_0",
+ "q5_k_m",
+ "q6_k",
+ "q8_0",
+ "fp16"
+ ],
+ "model_id": "Qwen/Qwen2.5-72B-Instruct-GGUF",
+ "model_file_name_template": "qwen2_5-72b-instruct-{quantization}.gguf",
+ "model_file_name_split_template": "qwen2_5-72b-instruct-{quantization}-{part}.gguf",
+ "quantization_parts": {
+ "q5_0": [
+ "00001-of-00002",
+ "00002-of-00002"
+ ],
+ "q5_k_m": [
+ "00001-of-00002",
+ "00002-of-00002"
+ ],
+ "q6_k": [
+ "00001-of-00002",
+ "00002-of-00002"
+ ],
+ "q8_0": [
+ "00001-of-00002",
+ "00002-of-00002"
+ ],
+ "fp16": [
+ "00001-of-00004",
+ "00002-of-00004",
+ "00003-of-00004",
+ "00004-of-00004"
+ ]
+ }
+ }
+ ],
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within XML tags:\\n\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n\\n\\nFor each function call, return a json object with function name and arguments within XML tags:\\n\\n{{\\\"name\\\": , \\\"arguments\\\": }}\\n<|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n\\n' }}\n {{- message.content }}\n {{- '\\n' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
+ "stop_token_ids": [
+ 151643,
+ 151644,
+ 151645
+ ],
+ "stop": [
+ "<|endoftext|>",
+ "<|im_start|>",
+ "<|im_end|>"
+ ]
}
]
diff --git a/xinference/model/llm/llm_family_modelscope.json b/xinference/model/llm/llm_family_modelscope.json
index fdaab458aa..7309ee9651 100644
--- a/xinference/model/llm/llm_family_modelscope.json
+++ b/xinference/model/llm/llm_family_modelscope.json
@@ -4957,5 +4957,393 @@
"model_revision": "master"
}
]
+ },
+ {
+ "version": 1,
+ "context_length": 131072,
+ "model_name": "qwen2.5-instruct",
+ "model_lang": [
+ "en",
+ "zh"
+ ],
+ "model_ability": [
+ "chat",
+ "tools"
+ ],
+ "model_description": "Qwen2.5 is the latest series of Qwen large language models. For Qwen2.5, we release a number of base language models and instruction-tuned language models ranging from 0.5 to 72 billion parameters.",
+ "model_specs": [
+ {
+ "model_format": "pytorch",
+ "model_size_in_billions": "0_5",
+ "quantizations": [
+ "4-bit",
+ "8-bit",
+ "none"
+ ],
+ "model_id": "qwen/Qwen2.5-0.5B-Instruct",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "pytorch",
+ "model_size_in_billions": "1_5",
+ "quantizations": [
+ "4-bit",
+ "8-bit",
+ "none"
+ ],
+ "model_id": "qwen/Qwen2.5-1.5B-Instruct",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "pytorch",
+ "model_size_in_billions": 3,
+ "quantizations": [
+ "4-bit",
+ "8-bit",
+ "none"
+ ],
+ "model_id": "qwen/Qwen2.5-3B-Instruct",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "pytorch",
+ "model_size_in_billions": 7,
+ "quantizations": [
+ "4-bit",
+ "8-bit",
+ "none"
+ ],
+ "model_id": "qwen/Qwen2.5-7B-Instruct",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "pytorch",
+ "model_size_in_billions": 14,
+ "quantizations": [
+ "4-bit",
+ "8-bit",
+ "none"
+ ],
+ "model_id": "qwen/Qwen2.5-14B-Instruct",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "pytorch",
+ "model_size_in_billions": 32,
+ "quantizations": [
+ "4-bit",
+ "8-bit",
+ "none"
+ ],
+ "model_id": "qwen/Qwen2.5-32B-Instruct",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "pytorch",
+ "model_size_in_billions": 72,
+ "quantizations": [
+ "4-bit",
+ "8-bit",
+ "none"
+ ],
+ "model_id": "qwen/Qwen2.5-72B-Instruct",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "gptq",
+ "model_size_in_billions": "0_5",
+ "quantizations": [
+ "Int4",
+ "Int8"
+ ],
+ "model_id": "qwen/Qwen2.5-0.5B-Instruct-GPTQ-{quantization}",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "gptq",
+ "model_size_in_billions": "1_5",
+ "quantizations": [
+ "Int4",
+ "Int8"
+ ],
+ "model_id": "qwen/Qwen2.5-1.5B-Instruct-GPTQ-{quantization}",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "gptq",
+ "model_size_in_billions": 3,
+ "quantizations": [
+ "Int4",
+ "Int8"
+ ],
+ "model_id": "qwen/Qwen2.5-3B-Instruct-GPTQ-{quantization}",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "gptq",
+ "model_size_in_billions": 7,
+ "quantizations": [
+ "Int4",
+ "Int8"
+ ],
+ "model_id": "qwen/Qwen2.5-7B-Instruct-GPTQ-{quantization}",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "gptq",
+ "model_size_in_billions": 14,
+ "quantizations": [
+ "Int4",
+ "Int8"
+ ],
+ "model_id": "qwen/Qwen2.5-14B-Instruct-GPTQ-{quantization}",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "gptq",
+ "model_size_in_billions": 32,
+ "quantizations": [
+ "Int4",
+ "Int8"
+ ],
+ "model_id": "qwen/Qwen2.5-32B-Instruct-GPTQ-{quantization}",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "gptq",
+ "model_size_in_billions": 72,
+ "quantizations": [
+ "Int4",
+ "Int8"
+ ],
+ "model_id": "qwen/Qwen2.5-72B-Instruct-GPTQ-{quantization}",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "awq",
+ "model_size_in_billions": "0_5",
+ "quantizations": [
+ "Int4"
+ ],
+ "model_id": "qwen/Qwen2-0.5B-Instruct-AWQ",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "awq",
+ "model_size_in_billions": "1_5",
+ "quantizations": [
+ "Int4"
+ ],
+ "model_id": "qwen/Qwen2-1.5B-Instruct-AWQ",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "awq",
+ "model_size_in_billions": 3,
+ "quantizations": [
+ "Int4"
+ ],
+ "model_id": "qwen/Qwen2.5-3B-Instruct-AWQ",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "awq",
+ "model_size_in_billions": 7,
+ "quantizations": [
+ "Int4"
+ ],
+ "model_id": "qwen/Qwen2.5-7B-Instruct-AWQ",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "awq",
+ "model_size_in_billions":14,
+ "quantizations": [
+ "Int4"
+ ],
+ "model_id": "qwen/Qwen2.5-14B-Instruct-AWQ",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "awq",
+ "model_size_in_billions": 32,
+ "quantizations": [
+ "Int4"
+ ],
+ "model_id": "qwen/Qwen2.5-32B-Instruct-AWQ",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "awq",
+ "model_size_in_billions": 72,
+ "quantizations": [
+ "Int4"
+ ],
+ "model_id": "qwen/Qwen2.5-72B-Instruct-AWQ",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "ggufv2",
+ "model_size_in_billions": "0_5",
+ "quantizations": [
+ "q2_k",
+ "q3_k_m",
+ "q4_0",
+ "q4_k_m",
+ "q5_0",
+ "q5_k_m",
+ "q6_k",
+ "q8_0",
+ "fp16"
+ ],
+ "model_id": "qwen/Qwen2.5-0.5B-Instruct-GGUF",
+ "model_file_name_template": "qwen2_5-0_5b-instruct-{quantization}.gguf",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "ggufv2",
+ "model_size_in_billions": "1_5",
+ "quantizations": [
+ "q2_k",
+ "q3_k_m",
+ "q4_0",
+ "q4_k_m",
+ "q5_0",
+ "q5_k_m",
+ "q6_k",
+ "q8_0",
+ "fp16"
+ ],
+ "model_id": "qwen/Qwen2.5-1.5B-Instruct-GGUF",
+ "model_file_name_template": "qwen2_5-1_5b-instruct-{quantization}.gguf",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "ggufv2",
+ "model_size_in_billions": 3,
+ "quantizations": [
+ "q2_k",
+ "q3_k_m",
+ "q4_0",
+ "q4_k_m",
+ "q5_0",
+ "q5_k_m",
+ "q6_k",
+ "q8_0",
+ "fp16"
+ ],
+ "model_id": "qwen/Qwen2.5-3B-Instruct-GGUF",
+ "model_file_name_template": "qwen2_5-3b-instruct-{quantization}.gguf",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "ggufv2",
+ "model_size_in_billions": 7,
+ "quantizations": [
+ "q2_k",
+ "q3_k_m",
+ "q4_0",
+ "q4_k_m",
+ "q5_0",
+ "q5_k_m",
+ "q6_k",
+ "q8_0",
+ "fp16"
+ ],
+ "model_id": "qwen/Qwen2.5-7B-Instruct-GGUF",
+ "model_file_name_template": "qwen2_5-7b-instruct-{quantization}.gguf",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "ggufv2",
+ "model_size_in_billions": 14,
+ "quantizations": [
+ "q2_k",
+ "q3_k_m",
+ "q4_0",
+ "q4_k_m",
+ "q5_0",
+ "q5_k_m",
+ "q6_k",
+ "q8_0",
+ "fp16"
+ ],
+ "model_id": "qwen/Qwen2.5-14B-Instruct-GGUF",
+ "model_file_name_template": "qwen2_5-14b-instruct-{quantization}.gguf",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "ggufv2",
+ "model_size_in_billions": 32,
+ "quantizations": [
+ "q2_k",
+ "q3_k_m",
+ "q4_0",
+ "q4_k_m",
+ "q5_0",
+ "q5_k_m",
+ "q6_k",
+ "q8_0",
+ "fp16"
+ ],
+ "model_id": "qwen/Qwen2.5-32B-Instruct-GGUF",
+ "model_file_name_template": "qwen2_5-32b-instruct-{quantization}.gguf",
+ "model_hub": "modelscope"
+ },
+ {
+ "model_format": "ggufv2",
+ "model_size_in_billions": 72,
+ "quantizations": [
+ "q2_k",
+ "q3_k_m",
+ "q4_0",
+ "q4_k_m",
+ "q5_0",
+ "q5_k_m",
+ "q6_k",
+ "q8_0",
+ "fp16"
+ ],
+ "model_id": "qwen/Qwen2.5-72B-Instruct-GGUF",
+ "model_hub": "modelscope",
+ "model_file_name_template": "qwen2_5-72b-instruct-{quantization}.gguf",
+ "model_file_name_split_template": "qwen2_5-72b-instruct-{quantization}-{part}.gguf",
+ "quantization_parts": {
+ "q5_0": [
+ "00001-of-00002",
+ "00002-of-00002"
+ ],
+ "q5_k_m": [
+ "00001-of-00002",
+ "00002-of-00002"
+ ],
+ "q6_k": [
+ "00001-of-00002",
+ "00002-of-00002"
+ ],
+ "q8_0": [
+ "00001-of-00002",
+ "00002-of-00002"
+ ],
+ "fp16": [
+ "00001-of-00004",
+ "00002-of-00004",
+ "00003-of-00004",
+ "00004-of-00004"
+ ]
+ }
+ }
+ ],
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within XML tags:\\n\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n\\n\\nFor each function call, return a json object with function name and arguments within XML tags:\\n\\n{{\\\"name\\\": , \\\"arguments\\\": }}\\n<|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n\\n' }}\n {{- message.content }}\n {{- '\\n' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
+ "stop_token_ids": [
+ 151643,
+ 151644,
+ 151645
+ ],
+ "stop": [
+ "<|endoftext|>",
+ "<|im_start|>",
+ "<|im_end|>"
+ ]
}
]
diff --git a/xinference/model/llm/vllm/core.py b/xinference/model/llm/vllm/core.py
index 811fd5d342..3aaee0738f 100644
--- a/xinference/model/llm/vllm/core.py
+++ b/xinference/model/llm/vllm/core.py
@@ -138,6 +138,7 @@ class VLLMGenerateConfig(TypedDict, total=False):
VLLM_SUPPORTED_MODELS.append("codeqwen1.5")
VLLM_SUPPORTED_CHAT_MODELS.append("codeqwen1.5-chat")
VLLM_SUPPORTED_CHAT_MODELS.append("qwen2-instruct")
+ VLLM_SUPPORTED_CHAT_MODELS.append("qwen2.5-instruct")
if VLLM_INSTALLED and vllm.__version__ >= "0.3.2":
VLLM_SUPPORTED_CHAT_MODELS.append("gemma-it")