-
Notifications
You must be signed in to change notification settings - Fork 536
/
train.py
439 lines (395 loc) · 17.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
import argparse
from loguru import logger
import os
from os.path import join
import torch
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
import bitsandbytes as bnb
from component.collator import PretrainCollator, SFTDataCollator
from component.argument import CustomizedArguments
from component.template import template_dict
from component.dataset import (
UnifiedSFTDataset,
ChatGLM2SFTDataset,
ChatGLM3SFTDataset,
UnifiedDPODataset
)
from transformers import (
set_seed,
HfArgumentParser,
TrainingArguments,
AutoTokenizer,
AutoModelForCausalLM,
AutoConfig,
BitsAndBytesConfig,
Trainer,
AddedToken
)
import importlib
if importlib.util.find_spec('unsloth') is not None:
from unsloth import FastLanguageModel
from datasets import load_dataset, concatenate_datasets
import datasets
from itertools import chain
from tqdm import tqdm
import json
from trl import DPOTrainer, get_kbit_device_map
import torch.nn as nn
os.environ['TOKENIZERS_PARALLELISM'] = 'false'
def setup_everything():
parser = argparse.ArgumentParser()
# parser.add_argument("--train_args_file", type=str, default='train_args/pretrain/full/bloom-1b1-pretrain-full.json', help="")
parser.add_argument("--train_args_file", type=str, default='train_args/sft/qlora/qwen-7b-sft-qlora.json', help="")
parser.add_argument("--local_rank", type=int, help="")
args = parser.parse_args()
train_args_file = args.train_args_file
# 读取训练的参数配置
parser = HfArgumentParser((CustomizedArguments, TrainingArguments))
# 解析得到自定义参数,以及自带参数
args, training_args = parser.parse_json_file(json_file=train_args_file)
# 创建输出目录
if not os.path.exists(training_args.output_dir):
os.makedirs(training_args.output_dir)
logger.add(join(training_args.output_dir, 'train.log'))
logger.info("train_args:{}".format(training_args))
# 加载训练配置文件
with open(train_args_file, "r") as f:
train_args = json.load(f)
# 保存训练参数到输出目录
with open(join(training_args.output_dir, 'train_args.json'), "w") as f:
json.dump(train_args, f, indent=4)
# 设置随机种子
set_seed(training_args.seed)
# check some setting
assert args.task_type in ['pretrain', 'sft', 'dpo'], "task_type should be in ['pretrain', 'sft', 'dpo']"
assert args.train_mode in ['full', 'lora', 'qlora'], "task_type should be in ['full', 'lora', 'qlora']"
assert sum([training_args.fp16, training_args.bf16]) == 1, "only one of fp16 and bf16 can be True"
# assert not (args.task_type == 'dpo' and args.use_unsloth), 'We have not tested Unsloth during DPO yet. Please set use_unsloth=False when task_type=dpo'
return args, training_args
def find_all_linear_names(model, train_mode):
"""
找出所有全连接层,为所有全连接添加adapter
"""
assert train_mode in ['lora', 'qlora']
cls = bnb.nn.Linear4bit if train_mode == 'qlora' else nn.Linear
lora_module_names = set()
for name, module in model.named_modules():
if isinstance(module, cls):
names = name.split('.')
lora_module_names.add(names[0] if len(names) == 1 else names[-1])
if 'lm_head' in lora_module_names: # needed for 16-bit
lora_module_names.remove('lm_head')
lora_module_names = list(lora_module_names)
logger.info(f'LoRA target module names: {lora_module_names}')
return lora_module_names
def load_pretrain_dataset(training_args, args, tokenizer):
"""
多线程预处理预训练数据
"""
def tokenize_function(examples):
output = tokenizer(examples["text"])
output = {'input_ids': output.input_ids}
return output
def group_texts(examples):
# Concatenate all texts.
concatenated_examples = {k: list(chain(*examples[k])) for k in examples.keys()}
total_length = len(concatenated_examples[list(examples.keys())[0]])
# We drop the small remainder, we could add padding if the model supported it instead of this drop, you can
# customize this part to your needs.
if total_length >= max_seq_length:
total_length = (total_length // max_seq_length) * max_seq_length
# Split by chunks of max_len.
result = {
k: [t[i: i + max_seq_length] for i in range(0, total_length, max_seq_length)]
for k, t in concatenated_examples.items()
}
return result
data_path = args.train_file
max_seq_length = args.max_seq_length
# 创建缓存路径
cache_dir = join(data_path, 'cache')
os.makedirs(cache_dir, exist_ok=True)
logger.info('Pretraining data path: {}'.format(data_path))
# 扫描所有jsonl文件
logger.info('Scanning all the training file...')
files = []
for root, dir_names, file_names in os.walk(data_path):
for file_name in file_names:
file = join(root, file_name)
if file_name.endswith('.jsonl'):
files.append(file)
logger.info(f'Total num of training file: {len(files)}')
# 预处理所有文本,将其id化,并且进行packing操作
with training_args.main_process_first(desc="dataset map tokenization and grouping"):
pretrain_dataset = [] # 汇总所有dataset
for idx, file in enumerate(tqdm(files)):
logger.info(f'Loading file: {file}')
file_name = os.path.basename(file)
file_name = file_name.replace('.jsonl', '')
cache_path = os.path.join(cache_dir, file_name)
os.makedirs(cache_path, exist_ok=True)
try:
processed_dataset = datasets.load_from_disk(cache_path, keep_in_memory=False)
logger.info(f'Finished loading datasets-{file_name} from cache')
except Exception:
tmp_cache_path = join(cache_path, 'tmp') # 临时缓存目录,会被自动删除
logger.info(f'There is no cache of file {file_name}, start preprocessing...')
raw_dataset = load_dataset("json", data_files=file, cache_dir=tmp_cache_path, keep_in_memory=False)
tokenized_dataset = raw_dataset.map(
tokenize_function,
batched=True,
num_proc=args.tokenize_num_workers,
remove_columns="text",
load_from_cache_file=True,
keep_in_memory=False,
cache_file_names={k: os.path.join(tmp_cache_path, 'tokenized.arrow') for k in raw_dataset},
desc="Running tokenizer on dataset",
)
grouped_datasets = tokenized_dataset.map(
group_texts,
batched=True,
num_proc=args.tokenize_num_workers,
load_from_cache_file=True,
keep_in_memory=False,
cache_file_names={k: os.path.join(tmp_cache_path, 'grouped.arrow') for k in tokenized_dataset},
desc=f"Grouping texts in chunks of {max_seq_length}",
)
processed_dataset = grouped_datasets
processed_dataset.save_to_disk(cache_path)
# 删除临时目录
# shutil.rmtree(tmp_cache_path)
logger.info(f"Training number of {file_name}: {len(processed_dataset['train'])}")
if idx == 0:
pretrain_dataset = processed_dataset['train']
else:
assert pretrain_dataset.features.type == processed_dataset["train"].features.type
pretrain_dataset = concatenate_datasets([pretrain_dataset, processed_dataset["train"]])
logger.info(f"Total training number: {len(pretrain_dataset)}")
return pretrain_dataset
def load_tokenizer(args):
config = AutoConfig.from_pretrained(args.model_name_or_path, trust_remote_code=True)
# 加载tokenzier
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path,
trust_remote_code=True,
# llama不支持fast
use_fast=False if config.model_type == 'llama' or config.model_type == 'internlm2' else True
)
# 部分模型的base与chat版本的tokenizer存在差异
if 'internlm2' in args.model_name_or_path.lower():
tokenizer._added_tokens_encoder.update({'<|im_start|>': 92543})
tokenizer._added_tokens_encoder.update({'<|im_end|>': 92542})
tokenizer._added_tokens_decoder.update({92543: AddedToken('<|im_start|>')})
tokenizer._added_tokens_decoder.update({92542: AddedToken('<|im_end|>')})
tokenizer.add_special_tokens({'additional_special_tokens': ['<|im_start|>', '<|im_end|>']})
elif 'orion' in args.model_name_or_path.lower():
tokenizer.add_special_tokens({'bos_token': '<s>', 'eos_token': '</s>'})
elif 'gemma' in args.model_name_or_path.lower():
tokenizer.add_special_tokens({'additional_special_tokens': ['<start_of_turn>', '<end_of_turn>']})
if tokenizer.__class__.__name__ == 'QWenTokenizer':
tokenizer.pad_token_id = tokenizer.eod_id
tokenizer.bos_token_id = tokenizer.eod_id
tokenizer.eos_token_id = tokenizer.eod_id
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
assert tokenizer.pad_token_id is not None, "pad_token_id should not be None"
assert tokenizer.eos_token_id is not None, "eos_token_id should not be None"
logger.info(f'vocab_size of tokenizer: {tokenizer.vocab_size}')
return tokenizer
def load_unsloth_model(args, training_args):
model, tokenizer = FastLanguageModel.from_pretrained(
model_name=args.model_name_or_path,
max_seq_length=args.max_seq_length,
dtype=None,
trust_remote_code=True,
load_in_4bit=True if args.train_mode == 'qlora' else False,
)
if args.train_mode in ['lora', 'qlora']:
logger.info('Initializing PEFT Model...')
target_modules = find_all_linear_names(model, args.train_mode)
model = FastLanguageModel.get_peft_model(
model,
r=args.lora_rank,
target_modules=target_modules,
lora_alpha=args.lora_alpha,
lora_dropout=args.lora_dropout,
bias="none",
use_gradient_checkpointing=True,
random_state=training_args.seed,
max_seq_length=args.max_seq_length,
)
logger.info(f'target_modules: {target_modules}')
return {
'model': model,
'ref_model': None,
'peft_config': None
}
def load_model(args, training_args):
"""
加载模型
"""
assert training_args.bf16 or training_args.fp16, 'bf16 or fp16 should be True'
logger.info(f'Loading model from base model: {args.model_name_or_path}')
logger.info(f'Train model with {args.train_mode}')
# init model kwargs
# todo add flash attention
# attn_implementation = None
torch_dtype = torch.float16 if training_args.fp16 else torch.bfloat16
if args.train_mode == 'qlora':
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16 if training_args.fp16 else torch.bfloat16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
llm_int8_threshold=6.0,
llm_int8_has_fp16_weight=False,
)
else:
quantization_config = None
model_kwargs = dict(
trust_remote_code=True,
# attn_implementation=attn_implementation,
torch_dtype=torch_dtype,
use_cache=False if training_args.gradient_checkpointing else True,
device_map=get_kbit_device_map() if quantization_config is not None else None,
quantization_config=quantization_config,
)
model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, **model_kwargs)
# moe模型,需要考虑负载均衡的loss
if 'output_router_logits' in model.config.to_dict():
logger.info('set output_router_logits as True')
model.config.output_router_logits = True
# QLoRA: casts all the non int8 modules to full precision (fp32) for stability
if args.train_mode == 'qlora' and args.task_type in ['pretrain', 'sft']:
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing)
# LoRA: Enables the gradients for the input embeddings
if args.train_mode == 'lora' and args.task_type in ['pretrain', 'sft']:
# For backward compatibility
if hasattr(model, "enable_input_require_grads"):
model.enable_input_require_grads()
else:
def make_inputs_require_grad(module, input, output):
output.requires_grad_(True)
model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)
# init peft_config
if args.train_mode == 'full':
peft_config = None
else:
# 找到所有需要插入adapter的全连接层
target_modules = find_all_linear_names(model, args.train_mode)
peft_config = LoraConfig(
r=args.lora_rank,
lora_alpha=args.lora_alpha,
target_modules=target_modules,
lora_dropout=args.lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
# init peft model
if args.train_mode in ['lora', 'qlora'] and args.task_type in ['pretrain', 'sft']:
model = get_peft_model(model, peft_config)
logger.info(f'memory footprint of model: {model.get_memory_footprint() / (1024 * 1024 * 1024)} GB')
model.print_trainable_parameters()
# init ref_model
if args.task_type == 'dpo':
ref_model = AutoModelForCausalLM.from_pretrained(args.model_name_or_path, **model_kwargs) if args.train_mode == 'full' else None
# pretrain和sft,不需要ref_model
else:
ref_model = None
# 计算模型参数量
total = sum(p.numel() for p in model.parameters())
logger.info("Total model params: %.2fM" % (total / 1e6))
return {
'model': model,
'ref_model': ref_model,
'peft_config': peft_config
}
def load_sft_dataset(args, tokenizer):
if args.template_name not in template_dict.keys():
raise Exception(f"template_name doesn't exist, all template_name: {template_dict.keys()}")
template = template_dict[args.template_name]
if 'chatglm2' in args.model_name_or_path.lower():
logger.info('Loading data with ChatGLM2SFTDataset')
train_dataset = ChatGLM2SFTDataset(args.train_file, tokenizer, args.max_seq_length, template)
elif 'chatglm3' in args.model_name_or_path.lower():
logger.info('Loading data with ChatGLM3SFTDataset')
train_dataset = ChatGLM3SFTDataset(args.train_file, tokenizer, args.max_seq_length, template)
else:
logger.info('Loading data with UnifiedSFTDataset')
train_dataset = UnifiedSFTDataset(args.train_file, tokenizer, args.max_seq_length, template)
return train_dataset
def load_dpo_dataset(args, tokenizer):
if args.template_name not in template_dict.keys():
raise Exception(f"template_name doesn't exist, all template_name: {template_dict.keys()}")
template = template_dict[args.template_name]
train_dataset = UnifiedDPODataset(args.train_file, tokenizer, args.max_seq_length, args.max_prompt_length, template)
return train_dataset
def init_components(args, training_args):
"""
初始化各个组件
"""
training_args.ddp_find_unused_parameters = False
logger.info('Initializing components...')
# 加载tokenizer
tokenizer = load_tokenizer(args)
# 加载model
if args.use_unsloth:
components = load_unsloth_model(args, training_args)
else:
components = load_model(args, training_args)
model = components['model']
ref_model = components['ref_model']
peft_config = components['peft_config']
# 初始化dataset和collator
if args.task_type == 'pretrain':
logger.info('Train model with pretrain task')
train_dataset = load_pretrain_dataset(training_args, args, tokenizer)
data_collator = PretrainCollator(tokenizer, args.max_seq_length)
elif args.task_type == 'sft':
logger.info('Train model with sft task')
train_dataset = load_sft_dataset(args, tokenizer)
data_collator = SFTDataCollator(tokenizer, args.max_seq_length)
else:
logger.info('Train model with dpo task')
train_dataset = load_dpo_dataset(args, tokenizer)
data_collator = None
# dpo
if args.task_type == 'dpo':
trainer = DPOTrainer(
model,
ref_model,
args=training_args,
beta=args.beta,
train_dataset=train_dataset,
data_collator=data_collator,
tokenizer=tokenizer,
peft_config=peft_config
)
# pretrain or sft
else:
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
tokenizer=tokenizer,
data_collator=data_collator,
)
return trainer
def main():
# 进行一些配置和检查
args, training_args = setup_everything()
# 加载各种组件
trainer = init_components(args, training_args)
# 开始训练
logger.info("*** starting training ***")
train_result = trainer.train()
# 保存最好的checkpoint
final_save_path = join(training_args.output_dir)
trainer.save_model(final_save_path) # Saves the tokenizer too
# 保存训练指标
metrics = train_result.metrics
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
if __name__ == "__main__":
main()