-
Notifications
You must be signed in to change notification settings - Fork 47
/
main.py
104 lines (75 loc) · 3.77 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import os
import argparse
import torch
import torch.nn as nn
from torch.optim.lr_scheduler import StepLR
from torch.optim.lr_scheduler import CosineAnnealingLR
from effnet import EfficientNet
from runner import Runner
from loader import get_loaders
from logger import Logger
def arg_parse():
# projects description
desc = "Pytorch EfficientNet"
parser = argparse.ArgumentParser(description=desc)
parser.add_argument('--save_dir', type=str, required=True,
help='Directory name to save the model')
parser.add_argument('--root', type=str, default="/data2/imagenet",
help="The Directory of data path.")
parser.add_argument('--gpus', type=str, default="0,1,2,3",
help="Select GPU Numbers | 0,1,2,3 | ")
parser.add_argument('--num_workers', type=int, default="32",
help="Select CPU Number workers")
parser.add_argument('--model', type=str, default='b0',
choices=["b0"],
help='The type of Efficient net.')
parser.add_argument('--epoch', type=int, default=350, help='The number of epochs')
parser.add_argument('--batch_size', type=int, default=1024, help='The size of batch')
parser.add_argument('--test', action="store_true", help='Only Test')
parser.add_argument('--ema_decay', type=float, default=0.9999,
help="Exponential Moving Average Term")
parser.add_argument('--dropout_rate', type=float, default=0.2)
parser.add_argument('--dropconnect_rate', type=float, default=0.2)
parser.add_argument('--optim', type=str, default='rmsprop', choices=["rmsprop"])
parser.add_argument('--lr', type=float, default=0.016, help="Base learning rate when train batch size is 256.")
# Adam Optimizer
parser.add_argument('--beta', nargs="*", type=float, default=(0.5, 0.999))
parser.add_argument('--momentum', type=float, default=0.9)
parser.add_argument('--eps', type=float, default=0.001)
parser.add_argument('--decay', type=float, default=1e-5)
parser.add_argument('--scheduler', type=str, default='exp', choices=["exp", "cosine", "none"],
help="Learning rate scheduler type")
return parser.parse_args()
def get_model(arg, classes=1000):
if arg.model == "b0":
return EfficientNet(1, 1, num_classes=classes)
def get_scheduler(optim, sche_type, step_size, t_max):
if sche_type == "exp":
return StepLR(optim, step_size, 0.97)
elif sche_type == "cosine":
return CosineAnnealingLR(optim, t_max)
else:
return None
if __name__ == "__main__":
arg = arg_parse()
arg.save_dir = "%s/outs/%s" % (os.getcwd(), arg.save_dir)
if os.path.exists(arg.save_dir) is False:
os.mkdir(arg.save_dir)
logger = Logger(arg.save_dir)
logger.will_write(str(arg) + "\n")
os.environ["CUDA_VISIBLE_DEVICES"] = arg.gpus
torch_device = torch.device("cuda")
train_loader, val_loader = get_loaders(arg.root, arg.batch_size, 224, arg.num_workers)
net = get_model(arg, classes=1000)
net = nn.DataParallel(net).to(torch_device)
loss = nn.CrossEntropyLoss()
scaled_lr = arg.lr * arg.batch_size / 256
optim = {
# "adam" : lambda : torch.optim.Adam(net.parameters(), lr=arg.lr, betas=arg.beta, weight_decay=arg.decay),
"rmsprop" : lambda : torch.optim.RMSprop(net.parameters(), lr=scaled_lr, momentum=arg.momentum, eps=arg.eps, weight_decay=arg.decay)
}[arg.optim]()
scheduler = get_scheduler(optim, arg.scheduler, int(2.4 * len(train_loader)), arg.epoch * len(train_loader))
model = Runner(arg, net, optim, torch_device, loss, logger, scheduler)
if arg.test is False:
model.train(train_loader, val_loader)
model.test(train_loader, val_loader)