gocache is an easy-to-use, high-performance, lightweight and thread-safe (goroutine-safe) in-memory key-value cache with support for LRU and FIFO eviction policies as well as expiration, bulk operations and even retrieval of keys by pattern.
gocache supports the following cache eviction policies:
- First in first out (FIFO)
- Least recently used (LRU)
It also supports cache entry TTL, which is both active and passive. Active expiration means that if you attempt to retrieve a cache key that has already expired, it will delete it on the spot and the behavior will be as if the cache key didn't exist. As for passive expiration, there's a background task that will take care of deleting expired keys.
It also includes what you'd expect from a cache, like GET/SET, bulk operations and get by pattern.
go get -u github.com/TwiN/gocache/v2
cache := gocache.NewCache().WithMaxSize(1000).WithEvictionPolicy(gocache.LeastRecentlyUsed)
If you're planning on using expiration (SetWithTTL
or Expire
) and you want expired entries to be automatically deleted
in the background, make sure to start the janitor when you instantiate the cache:
cache.StartJanitor()
Function | Description |
---|---|
WithMaxSize | Sets the max size of the cache. gocache.NoMaxSize means there is no limit. If not set, the default max size is gocache.DefaultMaxSize . |
WithMaxMemoryUsage | Sets the max memory usage of the cache. gocache.NoMaxMemoryUsage means there is no limit. The default behavior is to not evict based on memory usage. |
WithEvictionPolicy | Sets the eviction algorithm to be used when the cache reaches the max size. If not set, the default eviction policy is gocache.FirstInFirstOut (FIFO). |
WithDefaultTTL | Sets the default TTL for each entry. |
WithForceNilInterfaceOnNilPointer | Configures whether values with a nil pointer passed to write functions should be forcefully set to nil. Defaults to true. |
StartJanitor | Starts the janitor, which is in charge of deleting expired cache entries in the background. |
StopJanitor | Stops the janitor. |
Set | Same as SetWithTTL , but using the default TTL (which is gocache.NoExpiration , unless configured otherwise). |
SetWithTTL | Creates or updates a cache entry with the given key, value and expiration time. If the max size after the aforementioned operation is above the configured max size, the tail will be evicted. Depending on the eviction policy, the tail is defined as the oldest |
SetAll | Same as Set , but in bulk. |
SetAllWithTTL | Same as SetWithTTL , but in bulk. |
Get | Gets a cache entry by its key. |
GetByKeys | Gets a map of entries by their keys. The resulting map will contain all keys, even if some of the keys in the slice passed as parameter were not present in the cache. |
GetAll | Gets all cache entries. |
GetKeysByPattern | Retrieves a slice of keys that matches a given pattern. |
Delete | Removes a key from the cache. |
DeleteAll | Removes multiple keys from the cache. |
DeleteKeysByPattern | Removes all keys that that matches a given pattern. |
Count | Gets the size of the cache. This includes cache keys which may have already expired, but have not been removed yet. |
Clear | Wipes the cache. |
TTL | Gets the time until a cache key expires. |
Expire | Sets the expiration time of an existing cache key. |
For further documentation, please refer to Go Reference
cache.Set("key", "value")
cache.Set("key", 1)
cache.Set("key", struct{ Text string }{Test: "value"})
cache.SetWithTTL("key", []byte("value"), 24*time.Hour)
value, exists := cache.Get("key")
You can also get multiple entries by using cache.GetByKeys([]string{"key1", "key2"})
cache.Delete("key")
You can also delete multiple entries by using cache.DeleteAll([]string{"key1", "key2"})
package main
import (
"fmt"
"time"
"github.com/TwiN/gocache/v2"
)
func main() {
cache := gocache.NewCache().WithEvictionPolicy(gocache.LeastRecentlyUsed).WithMaxSize(10000)
cache.StartJanitor() // Passively manages expired entries
defer cache.StopJanitor()
cache.Set("key", "value")
cache.SetWithTTL("key-with-ttl", "value", 60*time.Minute)
cache.SetAll(map[string]any{"k1": "v1", "k2": "v2", "k3": "v3"})
fmt.Println("[Count] Cache size:", cache.Count())
value, exists := cache.Get("key")
fmt.Printf("[Get] key=key; value=%s; exists=%v\n", value, exists)
for key, value := range cache.GetByKeys([]string{"k1", "k2", "k3"}) {
fmt.Printf("[GetByKeys] key=%s; value=%s\n", key, value)
}
for _, key := range cache.GetKeysByPattern("key*", 0) {
fmt.Printf("[GetKeysByPattern] pattern=key*; key=%s\n", key)
}
cache.Expire("key", time.Hour)
time.Sleep(500*time.Millisecond)
timeUntilExpiration, _ := cache.TTL("key")
fmt.Println("[TTL] Number of minutes before 'key' expires:", int(timeUntilExpiration.Seconds()))
cache.Delete("key")
cache.DeleteAll([]string{"k1", "k2", "k3"})
cache.Clear()
fmt.Println("[Count] Cache size after clearing the cache:", cache.Count())
}
Output
[Count] Cache size: 5
[Get] key=key; value=value; exists=true
[GetByKeys] key=k1; value=v1
[GetByKeys] key=k2; value=v2
[GetByKeys] key=k3; value=v3
[GetKeysByPattern] pattern=key*; key=key-with-ttl
[GetKeysByPattern] pattern=key*; key=key
[TTL] Number of minutes before 'key' expires: 3599
[Count] Cache size after clearing the cache: 0
Prior to v2, gocache supported persistence out of the box.
After some thinking, I decided that persistence added too many dependencies, and given than this is a cache library and most people wouldn't be interested in persistence, I decided to get rid of it.
That being said, you can use the GetAll
and SetAll
methods of gocache.Cache
to implement persistence yourself.
Eviction by MaxSize is the default behavior, and is also the most efficient.
The code below will create a cache that has a maximum size of 1000:
cache := gocache.NewCache().WithMaxSize(1000)
This means that whenever an operation causes the total size of the cache to go above 1000, the tail will be evicted.
Eviction by MaxMemoryUsage is disabled by default, and is in alpha.
The code below will create a cache that has a maximum memory usage of 50MB:
cache := gocache.NewCache().WithMaxSize(0).WithMaxMemoryUsage(50*gocache.Megabyte)
This means that whenever an operation causes the total memory usage of the cache to go above 50MB, one or more tails will be evicted.
Unlike evictions caused by reaching the MaxSize, evictions triggered by MaxMemoryUsage may lead to multiple entries being evicted in a row. The reason for this is that if, for instance, you had 100 entries of 0.1MB each and you suddenly added a single entry of 10MB, 100 entries would need to be evicted to make enough space for that new big entry.
It's very important to keep in mind that eviction by MaxMemoryUsage is approximate.
The only memory taken into consideration is the size of the cache, not the size of the entire application. If you pass along 100MB worth of data in a matter of seconds, even though the cache's memory usage will remain under 50MB (or whatever you configure the MaxMemoryUsage to), the memory footprint generated by that 100MB will still exist until the next GC cycle.
As previously mentioned, this is a work in progress, and here's a list of the things you should keep in mind:
- The memory usage of structs are a gross estimation and may not reflect the actual memory usage.
- Native types (string, int, bool, []byte, etc.) are the most accurate for calculating the memory usage.
- Adding an entry bigger than the configured MaxMemoryUsage will work, but it will evict all other entries.
There are two ways that the deletion of expired keys can take place:
- Active
- Passive
Active deletion of expired keys happens when an attempt is made to access the value of a cache entry that expired.
Get
, GetByKeys
and GetAll
are the only functions that can trigger active deletion of expired keys.
Passive deletion of expired keys runs in the background and is managed by the janitor. If you do not start the janitor, there will be no passive deletion of expired keys.
- Set: Both map and gocache have the same performance.
- Get: Map is faster than gocache.
This is because gocache keeps track of the head and the tail for eviction and expiration/TTL.
Ultimately, the difference is negligible.
We could add a way to disable eviction or disable expiration altogether just to match the map's performance, but if you're looking into using a library like gocache, odds are, you want more than just a map.
key | value |
---|---|
goos | windows |
goarch | amd64 |
cpu | i7-9700K |
mem | 32G DDR4 |
// Normal map
BenchmarkMap_Get-8 49944228 24.2 ns/op 7 B/op 0 allocs/op
BenchmarkMap_Set/small_value-8 3939964 394.1 ns/op 188 B/op 2 allocs/op
BenchmarkMap_Set/medium_value-8 3868586 395.5 ns/op 191 B/op 2 allocs/op
BenchmarkMap_Set/large_value-8 3992138 385.3 ns/op 186 B/op 2 allocs/op
// Gocache
BenchmarkCache_Get/FirstInFirstOut-8 27907950 44.3 ns/op 7 B/op 0 allocs/op
BenchmarkCache_Get/LeastRecentlyUsed-8 28211396 44.2 ns/op 7 B/op 0 allocs/op
BenchmarkCache_Set/FirstInFirstOut_small_value-8 3139538 373.5 ns/op 185 B/op 3 allocs/op
BenchmarkCache_Set/FirstInFirstOut_medium_value-8 3099516 378.6 ns/op 186 B/op 3 allocs/op
BenchmarkCache_Set/FirstInFirstOut_large_value-8 3086776 386.7 ns/op 186 B/op 3 allocs/op
BenchmarkCache_Set/LeastRecentlyUsed_small_value-8 3070555 379.0 ns/op 187 B/op 3 allocs/op
BenchmarkCache_Set/LeastRecentlyUsed_medium_value-8 3056928 383.8 ns/op 187 B/op 3 allocs/op
BenchmarkCache_Set/LeastRecentlyUsed_large_value-8 3108250 383.8 ns/op 186 B/op 3 allocs/op
BenchmarkCache_SetUsingMaxMemoryUsage/medium_value-8 2773315 449.0 ns/op 210 B/op 4 allocs/op
BenchmarkCache_SetUsingMaxMemoryUsage/large_value-8 2731818 440.0 ns/op 211 B/op 4 allocs/op
BenchmarkCache_SetUsingMaxMemoryUsage/small_value-8 2659296 446.8 ns/op 213 B/op 4 allocs/op
BenchmarkCache_SetWithMaxSize/100_small_value-8 4848658 248.8 ns/op 114 B/op 3 allocs/op
BenchmarkCache_SetWithMaxSize/10000_small_value-8 4117632 293.7 ns/op 106 B/op 3 allocs/op
BenchmarkCache_SetWithMaxSize/100000_small_value-8 3867402 313.0 ns/op 110 B/op 3 allocs/op
BenchmarkCache_SetWithMaxSize/100_medium_value-8 4750057 250.1 ns/op 113 B/op 3 allocs/op
BenchmarkCache_SetWithMaxSize/10000_medium_value-8 4143772 294.5 ns/op 106 B/op 3 allocs/op
BenchmarkCache_SetWithMaxSize/100000_medium_value-8 3768883 313.2 ns/op 111 B/op 3 allocs/op
BenchmarkCache_SetWithMaxSize/100_large_value-8 4822646 251.1 ns/op 114 B/op 3 allocs/op
BenchmarkCache_SetWithMaxSize/10000_large_value-8 4154428 291.6 ns/op 106 B/op 3 allocs/op
BenchmarkCache_SetWithMaxSize/100000_large_value-8 3897358 313.7 ns/op 110 B/op 3 allocs/op
BenchmarkCache_SetWithMaxSizeAndLRU/100_small_value-8 4784180 254.2 ns/op 114 B/op 3 allocs/op
BenchmarkCache_SetWithMaxSizeAndLRU/10000_small_value-8 4067042 292.0 ns/op 106 B/op 3 allocs/op
BenchmarkCache_SetWithMaxSizeAndLRU/100000_small_value-8 3832760 313.8 ns/op 111 B/op 3 allocs/op
BenchmarkCache_SetWithMaxSizeAndLRU/100_medium_value-8 4846706 252.2 ns/op 114 B/op 3 allocs/op
BenchmarkCache_SetWithMaxSizeAndLRU/10000_medium_value-8 4103817 292.5 ns/op 106 B/op 3 allocs/op
BenchmarkCache_SetWithMaxSizeAndLRU/100000_medium_value-8 3845623 315.1 ns/op 111 B/op 3 allocs/op
BenchmarkCache_SetWithMaxSizeAndLRU/100_large_value-8 4744513 257.9 ns/op 114 B/op 3 allocs/op
BenchmarkCache_SetWithMaxSizeAndLRU/10000_large_value-8 3956316 299.5 ns/op 106 B/op 3 allocs/op
BenchmarkCache_SetWithMaxSizeAndLRU/100000_large_value-8 3876843 351.3 ns/op 110 B/op 3 allocs/op
BenchmarkCache_GetSetMultipleConcurrent-8 750088 1566.0 ns/op 128 B/op 8 allocs/op
BenchmarkCache_GetSetConcurrentWithFrequentEviction/FirstInFirstOut-8 3836961 316.2 ns/op 80 B/op 1 allocs/op
BenchmarkCache_GetSetConcurrentWithFrequentEviction/LeastRecentlyUsed-8 3846165 315.6 ns/op 80 B/op 1 allocs/op
BenchmarkCache_GetConcurrently/FirstInFirstOut-8 4830342 239.8 ns/op 8 B/op 1 allocs/op
BenchmarkCache_GetConcurrently/LeastRecentlyUsed-8 4895587 243.2 ns/op 8 B/op 1 allocs/op
(Trimmed "BenchmarkCache_" for readability)
WithForceNilInterfaceOnNilPointer/true_with_nil_struct_pointer-8 6901461 178.5 ns/op 7 B/op 1 allocs/op
WithForceNilInterfaceOnNilPointer/true-8 6629566 180.7 ns/op 7 B/op 1 allocs/op
WithForceNilInterfaceOnNilPointer/false_with_nil_struct_pointer-8 6282798 170.1 ns/op 7 B/op 1 allocs/op
WithForceNilInterfaceOnNilPointer/false-8 6741382 172.6 ns/op 7 B/op 1 allocs/op
WithForceNilInterfaceOnNilPointerWithConcurrency/true_with_nil_struct_pointer-8 4432951 258.0 ns/op 8 B/op 1 allocs/op
WithForceNilInterfaceOnNilPointerWithConcurrency/true-8 4676943 244.4 ns/op 8 B/op 1 allocs/op
WithForceNilInterfaceOnNilPointerWithConcurrency/false_with_nil_struct_pointer-8 4818418 239.6 ns/op 8 B/op 1 allocs/op
WithForceNilInterfaceOnNilPointerWithConcurrency/false-8 5025937 238.2 ns/op 8 B/op 1 allocs/op
While creating your own auto save feature might come in handy, it may still lead to loss of data if the application automatically saves every 10 minutes and your application crashes 9 minutes after the previous save.
To increase your odds of not losing any data, you can use Go's signal
package, more specifically its Notify
function
which allows listening for termination signals like SIGTERM and SIGINT. Once a termination signal is caught, you can
add the necessary logic for a graceful shutdown.
In the following example, the code that would usually be present in the main
function is moved to a different function
named Start
which is launched on a different goroutine so that listening for a termination signals is what blocks the
main goroutine instead:
package main
import (
"log"
"os"
"os/signal"
"syscall"
"github.com/TwiN/gocache/v2"
)
var cache = gocache.NewCache()
func main() {
data := retrieveCacheEntriesUsingWhateverMeanYouUsedToPersistIt()
cache.SetAll(data)
// Start everything else on another goroutine to prevent blocking the main goroutine
go Start()
// Wait for termination signal
sig := make(chan os.Signal, 1)
done := make(chan bool, 1)
signal.Notify(sig, os.Interrupt, syscall.SIGTERM)
go func() {
<-sig
log.Println("Received termination signal, attempting to gracefully shut down")
// Persist the cache entries
cacheEntries := cache.GetAll()
persistCacheEntriesHoweverYouWant(cacheEntries)
// Tell the main goroutine that we're done
done <- true
}()
<-done
log.Println("Shutting down")
}
Note that this won't protect you from a SIGKILL, as this signal cannot be caught.