-
Notifications
You must be signed in to change notification settings - Fork 4.6k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
rtx-4090多卡推理(模型为qlora微调后qwen72b)是否支持?通过FSDP+QLoRA,可以正常对qwen-72b的模型进行微调,想问一下,如何使用rxt-4090对其进行推理部署呢? #3023
Labels
solved
This problem has been already solved
Comments
依赖的包的版本是多少 |
|
我用1机8卡RTX3090 lora微调qwen1,5-72B-chat有相同的问题,换Yi-34B-chat后还是会OOM,请问 @ConniePK 您解决了吗? |
我又尝试了fsdp+qlora的方式,能够正常运行 |
是推理吗?微调可以正常运行。微调成功之后,用双卡推理出现了上述问题 |
ConniePK
changed the title
我使用rtx-4090多卡,通过FSDP+QLoRA,可以正常对qwen-72b的模型进行微调,想问一下,如何使用rxt-4090部署微调后的模型能?是否支持?
rtx-4090多卡推理(模型为qlora微调后qwen72b)是否支持?通过FSDP+QLoRA,可以正常对qwen-72b的模型进行微调,想问一下,如何使用rxt-4090对其进行推理部署呢?
Apr 1, 2024
hiyouga
added a commit
that referenced
this issue
Apr 1, 2024
最新版代码支持了多卡推理量化模型,使用 CUDA_VISIBLE_DEVICES=4,5,6,7 python cli_demo.py \
--model_name_or_path 'Qwen-72B-Chat' \
--adapter_name_or_path 'lora_model' \
--template qwen \
--quantization_bit 4 \
--quantization_device_map auto 进行量化模型的多卡推理 |
hiyouga
added
solved
This problem has been already solved
and removed
pending
This problem is yet to be addressed
labels
Apr 1, 2024
tybalex
added a commit
to sanjay920/LLaMA-Factory
that referenced
this issue
Apr 10, 2024
* fix packages * Update wechat.jpg * Updated README with new information * Updated README with new information * Updated README with new information * Follow HF_ENDPOINT environment variable * fix hiyouga#2346 * fix hiyouga#2777 hiyouga#2895 * add orca_dpo_pairs dataset * support fsdp + qlora * update readme * update tool extractor * paper release * add citation * move file * Update README.md, fix the release date of the paper * Update README_zh.md, fix the release date of the paper * Update wechat.jpg * fix hiyouga#2941 * fix hiyouga#2928 * fix hiyouga#2936 * fix Llama lora merge crash * fix Llama lora merge crash * fix Llama lora merge crash * pass ruff check * tiny fix * Update requirements.txt * Update README_zh.md * release v0.6.0 * add arg check * Update README_zh.md * Update README.md * update readme * tiny fix * release v0.6.0 (real) * Update wechat.jpg * fix hiyouga#2961 * fix bug * fix hiyouga#2981 * fix ds optimizer * update trainers * fix hiyouga#3010 * update readme * fix hiyouga#2982 * add project * update readme * release v0.6.1 * Update wechat.jpg * fix pile datset hf hub url * upgrade gradio to 4.21.0 * support save args in webui hiyouga#2807 hiyouga#3046 some ideas are borrowed from @marko1616 * Fix Llama model save for full param train * fix blank line contains whitespace * tiny fix * support ORPO * support orpo in webui * update readme * use log1p in orpo loss huggingface/trl#1491 * fix plots * fix IPO and ORPO loss * fix ORPO loss * update webui * support infer 4bit model on GPUs hiyouga#3023 * fix hiyouga#3077 * add qwen1.5 moe * fix hiyouga#3083 * set dev version * Update SECURITY.md * fix hiyouga#3022 * add moe aux loss control hiyouga#3085 * simplify readme * update readme * update readme * update examples * update examples * add zh readme * update examples * update readme * update vllm example * Update wechat.jpg * fix hiyouga#3116 * fix resize vocab at inference hiyouga#3022 * fix requires for windows * fix bug in latest gradio * back to gradio 4.21 and fix chat * tiny fix * update examples * update readme * support Qwen1.5-32B * support Qwen1.5-32B * fix spell error * support hiyouga#3152 * rename template to breeze * rename template to breeze * add empty line * Update wechat.jpg * tiny fix * fix quant infer and qwen2moe * Pass additional_target to unsloth Fixes hiyouga#3200 * Update adapter.py * Update adapter.py * fix hiyouga#3225 --------- Co-authored-by: hiyouga <[email protected]> Co-authored-by: 刘一博 <[email protected]> Co-authored-by: khazic <[email protected]> Co-authored-by: SirlyDreamer <[email protected]> Co-authored-by: Sanjay Nadhavajhala <[email protected]> Co-authored-by: sanjay920 <[email protected]> Co-authored-by: 0xez <[email protected]> Co-authored-by: marko1616 <[email protected]> Co-authored-by: Remek Kinas <[email protected]> Co-authored-by: Tsumugii24 <[email protected]> Co-authored-by: li.yunhao <[email protected]> Co-authored-by: sliderSun <[email protected]> Co-authored-by: codingma <[email protected]> Co-authored-by: Erich Schubert <[email protected]>
目前1张4090支持多少个推理请求? |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
rtx-4090多卡推理(模型为qlora微调后qwen72b)是否支持?通过FSDP+QLoRA,可以正常对qwen-72b的模型进行微调,想问一下,如何使用rxt-4090对其进行推理部署呢?
我尝试使用如下的脚本进行多卡推理:
但很快就报oom的错误,如下所示
当模型权重加载到11/19的时候,显存占用情况如下:
看起来是每个卡都在加载一遍模型,而不是将模型平均分配到多张卡上?
The text was updated successfully, but these errors were encountered: