-
-
Notifications
You must be signed in to change notification settings - Fork 358
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #238 from annk15/main
Add mem0 filter to examples
- Loading branch information
Showing
1 changed file
with
140 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,140 @@ | ||
""" | ||
title: Long Term Memory Filter | ||
author: Anton Nilsson | ||
date: 2024-08-23 | ||
version: 1.0 | ||
license: MIT | ||
description: A filter that processes user messages and stores them as long term memory by utilizing the mem0 framework together with qdrant and ollama | ||
requirements: pydantic, ollama, mem0ai | ||
""" | ||
|
||
from typing import List, Optional | ||
from pydantic import BaseModel | ||
import json | ||
from mem0 import Memory | ||
import threading | ||
|
||
class Pipeline: | ||
class Valves(BaseModel): | ||
pipelines: List[str] = [] | ||
priority: int = 0 | ||
|
||
store_cycles: int = 5 # Number of messages from the user before the data is processed and added to the memory | ||
mem_zero_user: str = "user" # Memories belongs to this user, only used by mem0 for internal organization of memories | ||
|
||
# Default values for the mem0 vector store | ||
vector_store_qdrant_name: str = "memories" | ||
vector_store_qdrant_url: str = "host.docker.internal" | ||
vector_store_qdrant_port: int = 6333 | ||
vector_store_qdrant_dims: int = 768 # Need to match the vector dimensions of the embedder model | ||
|
||
# Default values for the mem0 language model | ||
ollama_llm_model: str = "llama3.1:latest" # This model need to exist in ollama | ||
ollama_llm_temperature: float = 0 | ||
ollama_llm_tokens: int = 8000 | ||
ollama_llm_url: str = "http://host.docker.internal:11434" | ||
|
||
# Default values for the mem0 embedding model | ||
ollama_embedder_model: str = "nomic-embed-text:latest" # This model need to exist in ollama | ||
ollama_embedder_url: str = "http://host.docker.internal:11434" | ||
|
||
def __init__(self): | ||
self.type = "filter" | ||
self.name = "Memory Filter" | ||
self.user_messages = [] | ||
self.thread = None | ||
self.valves = self.Valves( | ||
**{ | ||
"pipelines": ["*"], # Connect to all pipelines | ||
} | ||
) | ||
self.m = self.init_mem_zero() | ||
|
||
async def on_startup(self): | ||
print(f"on_startup:{__name__}") | ||
pass | ||
|
||
async def on_shutdown(self): | ||
print(f"on_shutdown:{__name__}") | ||
pass | ||
|
||
async def inlet(self, body: dict, user: Optional[dict] = None) -> dict: | ||
print(f"pipe:{__name__}") | ||
|
||
user = self.valves.mem_zero_user | ||
store_cycles = self.valves.store_cycles | ||
|
||
if isinstance(body, str): | ||
body = json.loads(body) | ||
|
||
all_messages = body["messages"] | ||
last_message = all_messages[-1]["content"] | ||
|
||
self.user_messages.append(last_message) | ||
|
||
if len(self.user_messages) == store_cycles: | ||
|
||
message_text = "" | ||
for message in self.user_messages: | ||
message_text += message + " " | ||
|
||
if self.thread and self.thread.is_alive(): | ||
print("Waiting for previous memory to be done") | ||
self.thread.join() | ||
|
||
self.thread = threading.Thread(target=self.m.add, kwargs={"data":message_text,"user_id":user}) | ||
|
||
print("Text to be processed in to a memory:") | ||
print(message_text) | ||
|
||
self.thread.start() | ||
self.user_messages.clear() | ||
|
||
memories = self.m.search(last_message, user_id=user) | ||
|
||
if(memories): | ||
fetched_memory = memories[0]["memory"] | ||
else: | ||
fetched_memory = "" | ||
|
||
print("Memory added to the context:") | ||
print(fetched_memory) | ||
|
||
if fetched_memory: | ||
all_messages.insert(0, {"role":"system", "content":"This is your inner voice talking, you remember this about the person you chatting with "+str(fetched_memory)}) | ||
|
||
print("Final body to send to the LLM:") | ||
print(body) | ||
|
||
return body | ||
|
||
def init_mem_zero(self): | ||
config = { | ||
"vector_store": { | ||
"provider": "qdrant", | ||
"config": { | ||
"collection_name": self.valves.vector_store_qdrant_name, | ||
"host": self.valves.vector_store_qdrant_url, | ||
"port": self.valves.vector_store_qdrant_port, | ||
"embedding_model_dims": self.valves.vector_store_qdrant_dims, | ||
}, | ||
}, | ||
"llm": { | ||
"provider": "ollama", | ||
"config": { | ||
"model": self.valves.ollama_llm_model, | ||
"temperature": self.valves.ollama_llm_temperature, | ||
"max_tokens": self.valves.ollama_llm_tokens, | ||
"ollama_base_url": self.valves.ollama_llm_url, | ||
}, | ||
}, | ||
"embedder": { | ||
"provider": "ollama", | ||
"config": { | ||
"model": self.valves.ollama_embedder_model, | ||
"ollama_base_url": self.valves.ollama_embedder_url, | ||
}, | ||
}, | ||
} | ||
|
||
return Memory.from_config(config) |