-
-
Notifications
You must be signed in to change notification settings - Fork 358
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #99 from atgehrhardt/main
Ollama Dynamic Vision Pipeline
- Loading branch information
Showing
1 changed file
with
91 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,91 @@ | ||
""" | ||
title: Ollama Dynamic Vision Pipeline | ||
author: Andrew Tait Gehrhardt | ||
date: 2024-06-18 | ||
version: 1.0 | ||
license: MIT | ||
description: A pipeline for dynamically processing images when current model is a text only model | ||
requirements: pydantic, aiohttp | ||
""" | ||
|
||
from typing import List, Optional | ||
from pydantic import BaseModel | ||
import json | ||
import aiohttp | ||
from utils.pipelines.main import get_last_user_message | ||
|
||
class Pipeline: | ||
class Valves(BaseModel): | ||
pipelines: List[str] = [] | ||
priority: int = 0 | ||
vision_model: str = "llava" | ||
ollama_base_url: str = "" | ||
model_to_override: str = "" | ||
|
||
def __init__(self): | ||
self.type = "filter" | ||
self.name = "Interception Filter" | ||
self.valves = self.Valves( | ||
**{ | ||
"pipelines": ["*"], # Connect to all pipelines | ||
} | ||
) | ||
|
||
async def on_startup(self): | ||
print(f"on_startup:{__name__}") | ||
pass | ||
|
||
async def on_shutdown(self): | ||
print(f"on_shutdown:{__name__}") | ||
pass | ||
|
||
async def process_images_with_llava(self, images: List[str], content: str, vision_model: str, ollama_base_url: str) -> str: | ||
url = f"{ollama_base_url}/api/chat" | ||
payload = { | ||
"model": vision_model, | ||
"messages": [ | ||
{ | ||
"role": "user", | ||
"content": content, | ||
"images": images | ||
} | ||
] | ||
} | ||
|
||
async with aiohttp.ClientSession() as session: | ||
async with session.post(url, json=payload) as response: | ||
if response.status == 200: | ||
content = [] | ||
async for line in response.content: | ||
data = json.loads(line) | ||
content.append(data.get("message", {}).get("content", "")) | ||
return "".join(content) | ||
else: | ||
print(f"Failed to process images with LLava, status code: {response.status}") | ||
return "" | ||
|
||
async def inlet(self, body: dict, user: Optional[dict] = None) -> dict: | ||
print(f"pipe:{__name__}") | ||
|
||
images = [] | ||
|
||
# Ensure the body is a dictionary | ||
if isinstance(body, str): | ||
body = json.loads(body) | ||
|
||
model = body.get("model", "") | ||
|
||
# Get the content of the most recent message | ||
user_message = get_last_user_message(body["messages"]) | ||
|
||
if model in self.valves.model_to_override: | ||
messages = body.get("messages", []) | ||
for message in messages: | ||
if "images" in message: | ||
images.extend(message["images"]) | ||
raw_llava_response = await self.process_images_with_llava(images, user_message, self.valves.vision_model,self.valves.ollama_base_url) | ||
llava_response = f"REPEAT THIS BACK: {raw_llava_response}" | ||
message["content"] = llava_response | ||
message.pop("images", None) # This will safely remove the 'images' key if it exists | ||
|
||
return body |