Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix: bipedal rgb_array shape #3083

Merged
merged 1 commit into from
Sep 11, 2022
Merged

Conversation

younik
Copy link
Contributor

@younik younik commented Sep 11, 2022

Fix the problem reported in this issue: #3049

This issue happens when the agent moves backward, thus the scroll becomes negative.

To reproduce the issue:

import gym
import numpy as np

env = gym.make("BipedalWalker-v3", render_mode="rgb_array")
action_list = [np.array([0.643685, -0.62666583, -0.1335137, -0.13038172]), np.array([-0.19339366, -0.9087967,  0.00145424, -0.4682705]), np.array([0.179367,  0.6020662,  0.42777744, -0.39004773]), np.array([ 0.02049271,  0.04724116, -0.8624853 ,  0.03024031]), np.array([-0.6154519 ,  0.52910167, -0.33587497,  0.7485084 ]), np.array([-0.6128346,  0.4765728,  0.2591065, -0.3021512]), np.array([-0.235959  , -0.30048248,  0.87556076,  0.7753413 ]), np.array([-0.9614248 , -0.13825607,  0.99294996, -0.11442958]), np.array([-0.18276785,  0.26463097,  0.44796792, -0.8739907 ]), np.array([0.85195774, 0.5286732 , 0.496335  , 0.36988902]), np.array([-0.0840409 ,  0.16184323, -0.634224  ,  0.86797273]), np.array([-0.97534806,  0.31701997, -0.8507178 ,  0.4120439 ]), np.array([-0.39506558,  0.9434654 , -0.96054906,  0.00880588]), np.array([-0.6835781 ,  0.8211686 , -0.05593331,  0.05781673]), np.array([-0.58589566, -0.6381957 , -0.632999  , -0.30774575]), np.array([ 0.47192395, -0.92304075,  0.6425233 , -0.92087024]), np.array([ 0.1875863,  0.5420707, -0.9274609,  0.6606024]), np.array([-0.72258395, -0.7478248 , -0.5655383 , -0.2581901 ]), np.array([ 0.2705225 ,  0.47199565, -0.11255373, -0.86911774]), np.array([-0.13884565, -0.37597236,  0.07308514,  0.45713252]), np.array([ 0.92100114, -0.35050565,  0.6811875 ,  0.47295535]), np.array([-0.09725217, -0.20325504, -0.7870783 ,  0.07472079]), np.array([ 0.09136666, -0.93310696, -0.82850933,  0.14684333]), np.array([0.4453324, 0.9152248, 0.8322004, 0.8049548]), np.array([ 0.56018   , -0.01450923,  0.16680394,  0.47482583]), np.array([-0.41383448, -0.20085047,  0.42868853,  0.5110155 ]), np.array([-0.4279947 ,  0.35662994,  0.8183462 ,  0.21517053]), np.array([ 0.5898978 , -0.9781276 ,  0.18979469, -0.1614459 ]), np.array([-0.31077167,  0.60447997,  0.82021326,  0.82657313]), np.array([ 0.8207786 ,  0.65222967, -0.66079664, -0.02506254]), np.array([-0.51066256,  0.27079412, -0.92657954,  0.8742213 ]), np.array([ 0.46347475, -0.15175875, -0.53603065, -0.21098745]), np.array([ 0.39295816, -0.01637655, -0.721596  , -0.57422465]), np.array([-0.60221064, -0.15010175, -0.39234048, -0.5266877 ]), np.array([-0.05991038, -0.53504926, -0.32401964,  0.38576806]), np.array([-0.6268798 , -0.06704492,  0.69337595, -0.6427842 ]), np.array([ 0.7093774 , -0.43126252, -0.99616826, -0.6455295 ]), np.array([-0.14166228,  0.8667675 ,  0.1795836 ,  0.6241876 ]), np.array([ 0.9157805 ,  0.84588903,  0.76045954, -0.8032939 ]), np.array([-0.14809695, -0.17869028, -0.87412864, -0.1591354 ]), np.array([-0.51737565, -0.9989355 ,  0.40166578, -0.5023515 ]), np.array([ 0.9502871 , -0.9040277 ,  0.21352765,  0.57944405]), np.array([ 0.56125003,  0.20018181, -0.95034605, -0.15287359]), np.array([-0.3154254 , -0.07446004, -0.9690393 ,  0.9622016 ]), np.array([ 0.21771437,  0.8887881 , -0.9863894 , -0.8724034 ]), np.array([ 0.39352176, -0.7001385 , -0.16980354,  0.07000761]), np.array([-0.979767  , -0.45758107,  0.8911563 , -0.08953675]), np.array([ 0.49918324,  0.9228076 , -0.2646765 , -0.3097803 ]), np.array([ 0.6620012 , -0.96974695, -0.15020505,  0.30313143]), np.array([-0.18247065,  0.43751952,  0.01933471,  0.33363464]), np.array([-0.61877394, -0.9476306 , -0.8349054 , -0.25190774]), np.array([-0.92225266, -0.8115883 ,  0.15599026, -0.59566766]), np.array([ 0.00533226, -0.34414297,  0.14059748,  0.16085744]), np.array([-0.17177185,  0.56855583, -0.52641034,  0.62500757]), np.array([-0.40493345, -0.3076859 , -0.7160312 , -0.65174174]), np.array([ 0.6850576 , -0.9612596 , -0.02091006,  0.32623777]), np.array([-0.9160383,  0.8617576, -0.465756 , -0.9227743]), np.array([-0.18535642, -0.75398093, -0.8249806 ,  0.13734086]), np.array([ 0.14831062,  0.7711198 ,  0.6504944 , -0.78548276]), np.array([-0.5524805 , -0.69469136,  0.2031052 ,  0.9546891 ]), np.array([ 0.16769259,  0.79624283, -0.02346617, -0.7695191 ]), np.array([ 0.12755956,  0.52089745,  0.07243016, -0.34585223]), np.array([-0.3771856 , -0.17726257,  0.5565605 ,  0.3665386 ]), np.array([ 0.20121232, -0.8475649 ,  0.41901204,  0.3628199 ]), np.array([ 0.71005636,  0.7055862 , -0.76494634,  0.05509782]), np.array([ 0.41927156,  0.8637003 ,  0.9983261 , -0.8352386 ]), np.array([ 0.31284067,  0.03769052,  0.70507765, -0.08994306]), np.array([ 0.09184641,  0.8967327 ,  0.26557937, -0.29661146]), np.array([-0.7726936 , -0.52805257, -0.0618767 , -0.35944775]), np.array([-0.46993572,  0.9251816 , -0.95027226,  0.31960052]), np.array([ 0.85452825,  0.18880677, -0.71394354, -0.70524025]), np.array([-0.8985728 , -0.10281813, -0.48221368, -0.04487926]), np.array([-0.15196428,  0.8618916 ,  0.4890748 ,  0.41005248]), np.array([-0.5974676 , -0.93549937, -0.4677144 , -0.63049424]), np.array([-0.3779468 ,  0.9106576 ,  0.6289624 ,  0.95054334]), np.array([-0.97507274, -0.02020846, -0.1372993 , -0.50736964]), np.array([ 0.50563085,  0.38596255,  0.25653768, -0.9416368 ]), np.array([ 0.6106515 , -0.136857  ,  0.01290369,  0.0478943 ]), np.array([-0.04328071, -0.94382745, -0.363252  , -0.21479565]), np.array([ 0.30206698,  0.08327765, -0.9129897 ,  0.9103231 ]), np.array([-0.8882193 ,  0.6252409 ,  0.50017494, -0.6119237 ]), np.array([-0.13433145, -0.24199042,  0.49307704,  0.3015699 ]), np.array([ 0.25055128,  0.9157094 , -0.4901475 ,  0.8099683 ]), np.array([0.52348274, 0.27641577, 0.85683835, 0.7544451 ]), np.array([0.38568947, 0.30092776, 0.29074007, 0.787334  ]), np.array([-0.93295896,  0.13218422, -0.29519245, -0.324167  ]), np.array([ 0.5638857 ,  0.3410942 , -0.37738988, -0.03427474]), np.array([ 0.5623664 ,  0.32109112,  0.9927296 , -0.01804948]), np.array([-0.6755795 ,  0.30867776,  0.71335405,  0.7087948 ]), np.array([0.2989208 , 0.34821448, 0.8940771 , 0.81655675]), np.array([ 0.67319655, -0.68893814, -0.25520962, -0.6391557 ]), np.array([-0.07174755, -0.8299711 ,  0.21328507,  0.9296278 ]), np.array([-0.97989726, -0.865415  , -0.5236168 ,  0.1891743 ]), np.array([ 0.10780847, -0.5415337 , -0.96623516,  0.43275303]), np.array([-0.20953982, -0.97188723, -0.3014299 ,  0.7011993 ]), np.array([ 0.02814789, -0.89827526, -0.24117279,  0.42374986]), np.array([ 0.42804134,  0.3521514 , -0.39498943, -0.884818  ]), np.array([ 0.16669601, -0.31610003,  0.8251603 ,  0.982135  ]), np.array([-0.11691312,  0.56624407, -0.39886016,  0.662622  ]), np.array([ 0.95325524,  0.31067362, -0.41781706, -0.43493238])]


env.reset()
for action in action_list:
    print(env.render().shape)
    env.step(action)

@jkterry1 jkterry1 merged commit cae736b into openai:master Sep 11, 2022
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

3 participants