-
Notifications
You must be signed in to change notification settings - Fork 1.7k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #84 from rmcc3/main
Add support for DeepSeek language models in STORM Wiki pipeline
- Loading branch information
Showing
2 changed files
with
246 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,157 @@ | ||
""" | ||
STORM Wiki pipeline powered by DeepSeek models and You.com or Bing search engine. | ||
You need to set up the following environment variables to run this script: | ||
- DEEPSEEK_API_KEY: DeepSeek API key | ||
- DEEPSEEK_API_BASE: DeepSeek API base URL (default is https://api.deepseek.com) | ||
- YDC_API_KEY: You.com API key; or, BING_SEARCH_API_KEY: Bing Search API key | ||
Output will be structured as below | ||
args.output_dir/ | ||
topic_name/ # topic_name will follow convention of underscore-connected topic name w/o space and slash | ||
conversation_log.json # Log of information-seeking conversation | ||
raw_search_results.json # Raw search results from search engine | ||
direct_gen_outline.txt # Outline directly generated with LLM's parametric knowledge | ||
storm_gen_outline.txt # Outline refined with collected information | ||
url_to_info.json # Sources that are used in the final article | ||
storm_gen_article.txt # Final article generated | ||
storm_gen_article_polished.txt # Polished final article (if args.do_polish_article is True) | ||
""" | ||
|
||
import os | ||
import sys | ||
import re | ||
import logging | ||
from argparse import ArgumentParser | ||
|
||
from knowledge_storm import STORMWikiRunnerArguments, STORMWikiRunner, STORMWikiLMConfigs | ||
from knowledge_storm.lm import DeepSeekModel | ||
from knowledge_storm.rm import YouRM, BingSearch | ||
from knowledge_storm.utils import load_api_key | ||
|
||
|
||
def sanitize_topic(topic): | ||
""" | ||
Sanitize the topic name for use in file names. | ||
Remove or replace characters that are not allowed in file names. | ||
""" | ||
# Replace spaces with underscores | ||
topic = topic.replace(' ', '_') | ||
|
||
# Remove any character that isn't alphanumeric, underscore, or hyphen | ||
topic = re.sub(r'[^a-zA-Z0-9_-]', '', topic) | ||
|
||
# Ensure the topic isn't empty after sanitization | ||
if not topic: | ||
topic = "unnamed_topic" | ||
|
||
return topic | ||
|
||
|
||
def main(args): | ||
load_api_key(toml_file_path='secrets.toml') | ||
lm_configs = STORMWikiLMConfigs() | ||
|
||
# Ensure DEEPSEEK_API_KEY is set | ||
if not os.getenv("DEEPSEEK_API_KEY"): | ||
raise ValueError("DEEPSEEK_API_KEY environment variable is not set. Please set it in your secrets.toml file.") | ||
|
||
deepseek_kwargs = { | ||
'api_key': os.getenv("DEEPSEEK_API_KEY"), | ||
'api_base': os.getenv("DEEPSEEK_API_BASE", "https://api.deepseek.com"), | ||
'temperature': args.temperature, | ||
'top_p': args.top_p, | ||
} | ||
|
||
# DeepSeek offers two main models: 'deepseek-chat' for general tasks and 'deepseek-coder' for coding tasks | ||
# Users can choose the appropriate model based on their needs | ||
conv_simulator_lm = DeepSeekModel(model=args.model, max_tokens=500, **deepseek_kwargs) | ||
question_asker_lm = DeepSeekModel(model=args.model, max_tokens=500, **deepseek_kwargs) | ||
outline_gen_lm = DeepSeekModel(model=args.model, max_tokens=400, **deepseek_kwargs) | ||
article_gen_lm = DeepSeekModel(model=args.model, max_tokens=700, **deepseek_kwargs) | ||
article_polish_lm = DeepSeekModel(model=args.model, max_tokens=4000, **deepseek_kwargs) | ||
|
||
lm_configs.set_conv_simulator_lm(conv_simulator_lm) | ||
lm_configs.set_question_asker_lm(question_asker_lm) | ||
lm_configs.set_outline_gen_lm(outline_gen_lm) | ||
lm_configs.set_article_gen_lm(article_gen_lm) | ||
lm_configs.set_article_polish_lm(article_polish_lm) | ||
|
||
engine_args = STORMWikiRunnerArguments( | ||
output_dir=args.output_dir, | ||
max_conv_turn=args.max_conv_turn, | ||
max_perspective=args.max_perspective, | ||
search_top_k=args.search_top_k, | ||
max_thread_num=args.max_thread_num, | ||
) | ||
|
||
# STORM is a knowledge curation system which consumes information from the retrieval module. | ||
# Currently, the information source is the Internet and we use search engine API as the retrieval module. | ||
if args.retriever == 'bing': | ||
rm = BingSearch(bing_search_api=os.getenv('BING_SEARCH_API_KEY'), k=engine_args.search_top_k) | ||
elif args.retriever == 'you': | ||
rm = YouRM(ydc_api_key=os.getenv('YDC_API_KEY'), k=engine_args.search_top_k) | ||
else: | ||
raise ValueError(f"Invalid retriever: {args.retriever}. Choose either 'bing' or 'you'.") | ||
|
||
runner = STORMWikiRunner(engine_args, lm_configs, rm) | ||
|
||
topic = input('Topic: ') | ||
sanitized_topic = sanitize_topic(topic) | ||
|
||
try: | ||
runner.run( | ||
topic=sanitized_topic, | ||
do_research=args.do_research, | ||
do_generate_outline=args.do_generate_outline, | ||
do_generate_article=args.do_generate_article, | ||
do_polish_article=args.do_polish_article, | ||
remove_duplicate=args.remove_duplicate, | ||
) | ||
runner.post_run() | ||
runner.summary() | ||
except Exception as e: | ||
logger.exception(f"An error occurred: {str(e)}") | ||
raise | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = ArgumentParser() | ||
# global arguments | ||
parser.add_argument('--output-dir', type=str, default='./results/deepseek', | ||
help='Directory to store the outputs.') | ||
parser.add_argument('--max-thread-num', type=int, default=3, | ||
help='Maximum number of threads to use. The information seeking part and the article generation' | ||
'part can speed up by using multiple threads. Consider reducing it if keep getting ' | ||
'"Exceed rate limit" error when calling LM API.') | ||
parser.add_argument('--retriever', type=str, choices=['bing', 'you'], required=True, | ||
help='The search engine API to use for retrieving information.') | ||
parser.add_argument('--model', type=str, choices=['deepseek-chat', 'deepseek-coder'], default='deepseek-chat', | ||
help='DeepSeek model to use. "deepseek-chat" for general tasks, "deepseek-coder" for coding tasks.') | ||
parser.add_argument('--temperature', type=float, default=1.0, | ||
help='Sampling temperature to use.') | ||
parser.add_argument('--top_p', type=float, default=0.9, | ||
help='Top-p sampling parameter.') | ||
# stage of the pipeline | ||
parser.add_argument('--do-research', action='store_true', | ||
help='If True, simulate conversation to research the topic; otherwise, load the results.') | ||
parser.add_argument('--do-generate-outline', action='store_true', | ||
help='If True, generate an outline for the topic; otherwise, load the results.') | ||
parser.add_argument('--do-generate-article', action='store_true', | ||
help='If True, generate an article for the topic; otherwise, load the results.') | ||
parser.add_argument('--do-polish-article', action='store_true', | ||
help='If True, polish the article by adding a summarization section and (optionally) removing ' | ||
'duplicate content.') | ||
# hyperparameters for the pre-writing stage | ||
parser.add_argument('--max-conv-turn', type=int, default=3, | ||
help='Maximum number of questions in conversational question asking.') | ||
parser.add_argument('--max-perspective', type=int, default=3, | ||
help='Maximum number of perspectives to consider in perspective-guided question asking.') | ||
parser.add_argument('--search-top-k', type=int, default=3, | ||
help='Top k search results to consider for each search query.') | ||
# hyperparameters for the writing stage | ||
parser.add_argument('--retrieve-top-k', type=int, default=3, | ||
help='Top k collected references for each section title.') | ||
parser.add_argument('--remove-duplicate', action='store_true', | ||
help='If True, remove duplicate content from the article.') | ||
|
||
main(parser.parse_args()) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters